Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 662
Filtrar
1.
Annu Rev Immunol ; 33: 355-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25594431

RESUMO

The TAM receptor tyrosine kinases (RTKs)-TYRO3, AXL, and MERTK-together with their cognate agonists GAS6 and PROS1 play an essential role in the resolution of inflammation. Deficiencies in TAM signaling have been associated with chronic inflammatory and autoimmune diseases. Three processes regulated by TAM signaling may contribute, either independently or collectively, to immune homeostasis: the negative regulation of the innate immune response, the phagocytosis of apoptotic cells, and the restoration of vascular integrity. Recent studies have also revealed the function of TAMs in infectious diseases and cancer. Here, we review the important milestones in the discovery of these RTKs and their ligands and the studies that underscore the functional importance of this signaling pathway in physiological immune settings and disease.


Assuntos
Homeostase , Imunidade/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Suscetibilidade a Doenças , Humanos , Ligantes , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética
2.
Cell ; 182(3): 685-712.e19, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32645325

RESUMO

The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Pneumonia Viral/metabolismo , Proteômica/métodos , Células A549 , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais/farmacologia , COVID-19 , Células CACO-2 , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosforilação , Pneumonia Viral/virologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptor Tirosina Quinase Axl
3.
Cell ; 173(3): 649-664.e20, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677511

RESUMO

Resistance to chemotherapy plays a significant role in cancer mortality. To identify genetic units affecting sensitivity to cytarabine, the mainstay of treatment for acute myeloid leukemia (AML), we developed a comprehensive and integrated genome-wide platform based on a dual protein-coding and non-coding integrated CRISPRa screening (DICaS). Putative resistance genes were initially identified using pharmacogenetic data from 760 human pan-cancer cell lines. Subsequently, genome scale functional characterization of both coding and long non-coding RNA (lncRNA) genes by CRISPR activation was performed. For lncRNA functional assessment, we developed a CRISPR activation of lncRNA (CaLR) strategy, targeting 14,701 lncRNA genes. Computational and functional analysis identified novel cell-cycle, survival/apoptosis, and cancer signaling genes. Furthermore, transcriptional activation of the GAS6-AS2 lncRNA, identified in our analysis, leads to hyperactivation of the GAS6/TAM pathway, a resistance mechanism in multiple cancers including AML. Thus, DICaS represents a novel and powerful approach to identify integrated coding and non-coding pathways of therapeutic relevance.


Assuntos
Sistemas CRISPR-Cas , Resistencia a Medicamentos Antineoplásicos , Genoma Humano , RNA Longo não Codificante/genética , Animais , Citarabina/farmacologia , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Células HEK293 , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Masculino , Camundongos , Farmacogenética , Proteínas/genética , RNA/análise , RNA Mensageiro/genética , Transdução de Sinais
4.
Immunity ; 56(9): 2086-2104.e8, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572655

RESUMO

The limited efficacy of immunotherapies against glioblastoma underscores the urgency of better understanding immunity in the central nervous system. We found that treatment with αCTLA-4, but not αPD-1, prolonged survival in a mouse model of mesenchymal-like glioblastoma. This effect was lost upon the depletion of CD4+ T cells but not CD8+ T cells. αCTLA-4 treatment increased frequencies of intratumoral IFNγ-producing CD4+ T cells, and IFNγ blockade negated the therapeutic impact of αCTLA-4. The anti-tumor activity of CD4+ T cells did not require tumor-intrinsic MHC-II expression but rather required conventional dendritic cells as well as MHC-II expression on microglia. CD4+ T cells interacted directly with microglia, promoting IFNγ-dependent microglia activation and phagocytosis via the AXL/MER tyrosine kinase receptors, which were necessary for tumor suppression. Thus, αCTLA-4 blockade in mesenchymal-like glioblastoma promotes a CD4+ T cell-microglia circuit wherein IFNγ triggers microglia activation and phagocytosis and microglia in turn act as antigen-presenting cells fueling the CD4+ T cell response.


Assuntos
Glioblastoma , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Antígeno CTLA-4 , Células Th1 , Microglia , Linfócitos T CD8-Positivos , Fagocitose , Células Dendríticas , Linfócitos T CD4-Positivos
5.
Cell ; 167(6): 1511-1524.e10, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27884405

RESUMO

Zika virus (ZIKV) persists in the semen of male patients, a first for flavivirus infection. Here, we demonstrate that ZIKV can induce inflammation in the testis and epididymidis, but not in the prostate or seminal vesicle, and can lead to damaged testes after 60 days post-infection in mice. ZIKV induces innate immune responses in Leydig, Sertoli, and epididymal epithelial cells, resulting in the production of pro-inflammatory cytokines/chemokines. However, ZIKV does not induce a rapid and abundant cytokine production in peritubular cell and spermatogonia, suggesting that these cells are vulnerable for ZIKV infection and could be the potential repositories for ZIKV. Our study demonstrates a correlation between ZIKV and testis infection/damage and suggests that ZIKV infection, under certain circumstances, can eventually lead to male infertility.


Assuntos
Infertilidade Masculina/virologia , Testículo/virologia , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Citocinas/metabolismo , Epididimo/patologia , Epididimo/virologia , Humanos , Infertilidade Masculina/patologia , Masculino , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor de Interferon alfa e beta/genética , Testículo/patologia , Internalização do Vírus , Zika virus/isolamento & purificação , Infecção por Zika virus/patologia , Infecção por Zika virus/transmissão , Receptor Tirosina Quinase Axl
6.
Mol Cell ; 82(6): 1123-1139.e8, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35182481

RESUMO

A mesenchymal tumor phenotype associates with immunotherapy resistance, although the mechanism is unclear. Here, we identified FBXO7 as a maintenance regulator of mesenchymal and immune evasion phenotypes of cancer cells. FBXO7 bound and stabilized SIX1 co-transcriptional regulator EYA2, stimulating mesenchymal gene expression and suppressing IFNα/ß, chemokines CXCL9/10, and antigen presentation machinery, driven by AXL extracellular ligand GAS6. Ubiquitin ligase SCFFBXW7 antagonized this pathway by promoting EYA2 degradation. Targeting EYA2 Tyr phosphatase activity decreased mesenchymal phenotypes and enhanced cancer cell immunogenicity, resulting in attenuated tumor growth and metastasis, increased infiltration of cytotoxic T and NK cells, and enhanced anti-PD-1 therapy response in mouse tumor models. FBXO7 expression correlated with mesenchymal and immune-suppressive signatures in patients with cancer. An FBXO7-immune gene signature predicted immunotherapy responses. Collectively, the FBXO7/EYA2-SCFFBXW7 axis maintains mesenchymal and immune evasion phenotypes of cancer cells, providing rationale to evaluate FBXO7/EYA2 inhibitors in combination with immune-based therapies to enhance onco-immunotherapy responses.


Assuntos
Proteínas F-Box , Proteína 7 com Repetições F-Box-WD , Neoplasias , Animais , Linhagem Celular Tumoral , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Proteínas de Homeodomínio/genética , Humanos , Evasão da Resposta Imune , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Neoplasias/genética , Proteínas Nucleares/metabolismo , Fenótipo , Proteínas Tirosina Fosfatases/genética , Ubiquitina/metabolismo
7.
Mol Cell ; 75(3): 457-468.e4, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31230815

RESUMO

Necroptosis, a cell death pathway mediated by the RIPK1-RIPK3-MLKL signaling cascade downstream of tumor necrosis factor α (TNF-α), has been implicated in many inflammatory diseases. Members of the TAM (Tyro3, Axl, and Mer) family of receptor tyrosine kinases are known for their anti-apoptotic, oncogenic, and anti-inflammatory roles. Here, we identify an unexpected role of TAM kinases as promoters of necroptosis, a pro-inflammatory necrotic cell death. Pharmacologic or genetic targeting of TAM kinases results in a potent inhibition of necroptotic death in various cellular models. We identify phosphorylation of MLKL Tyr376 as a direct point of input from TAM kinases into the necroptosis signaling. The oligomerization of MLKL, but not its membranal translocation or phosphorylation by RIPK3, is controlled by TAM kinases. Importantly, both knockout and inhibition of TAM kinases protect mice from systemic inflammatory response syndrome. In conclusion, this study discovers that immunosuppressant TAM kinases are promoters of pro-inflammatory necroptosis, shedding light on the biological complexity of the regulation of inflammation.


Assuntos
Proteínas Quinases/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Síndrome de Resposta Inflamatória Sistêmica/genética , c-Mer Tirosina Quinase/genética , Animais , Apoptose/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Necroptose/genética , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Síndrome de Resposta Inflamatória Sistêmica/patologia , Fator de Necrose Tumoral alfa/genética , Receptor Tirosina Quinase Axl
8.
Immunity ; 47(6): 1037-1050.e6, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29221729

RESUMO

Given the limited efficacy of clinical approaches that rely on ex vivo generated dendritic cells (DCs), it is imperative to design strategies that harness specialized DC subsets in situ. This requires delineating the expression of surface markers by DC subsets among individuals and tissues. Here, we performed a multiparametric phenotypic characterization and unbiased analysis of human DC subsets in blood, tonsil, spleen, and skin. We uncovered previously unreported phenotypic heterogeneity of human cDC2s among individuals, including variable expression of functional receptors such as CD172a. We found marked differences in DC subsets localized in blood and lymphoid tissues versus skin, and a striking absence of the newly discovered Axl+ DCs in the skin. Finally, we evaluated the capacity of anti-receptor monoclonal antibodies to deliver vaccine components to skin DC subsets. These results offer a promising path for developing DC subset-specific immunotherapies that cannot be provided by transcriptomic analysis alone.


Assuntos
Antígenos de Diferenciação/imunologia , Variação Biológica Individual , Células Dendríticas/imunologia , Fenótipo , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Receptores Imunológicos/imunologia , Pele/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacocinética , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação/genética , Biomarcadores/análise , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/biossíntese , Citofotometria/métodos , Células Dendríticas/citologia , Feminino , Expressão Gênica , Humanos , Imunofenotipagem , Imunoterapia , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Especificidade de Órgãos , Tonsila Palatina/citologia , Tonsila Palatina/imunologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética , Receptores Imunológicos/genética , Pele/citologia , Baço/citologia , Baço/imunologia , Receptor Tirosina Quinase Axl
9.
J Biol Chem ; 300(6): 107375, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762181

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive breast cancer sub-type with limited treatment options and poor prognosis. Currently, standard treatments for TNBC include surgery, chemotherapy, and anti-PDL1 therapy. These therapies have limited efficacy in advanced stages. Myeloid-cell leukemia 1 (MCL1) is an anti-apoptotic BCL2 family protein. High expression of MCL1 contributes to chemotherapy resistance and is associated with a worse prognosis in TNBC. MCL1 inhibitors are in clinical trials for TNBC, but response rates to these inhibitors can vary and predictive markers are lacking. Currently, we identified a 4-member (AXL, ETS1, IL6, EFEMP1) gene signature (GS) that predicts MCL1 inhibitor sensitivity in TNBC cells. Factors encoded by these genes regulate signaling pathways to promote MCL1 inhibitor resistance. Small molecule inhibitors of the GS factors can overcome resistance and sensitize otherwise resistant TNBC cells to MCL1 inhibitor treatment. These findings offer insights into potential therapeutic strategies and tumor stratification for MCL1 inhibitor use in TNBC.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Neoplasias de Mama Triplo Negativas , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Feminino , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Interleucina-6/metabolismo , Interleucina-6/genética , Proteína Proto-Oncogênica c-ets-1
10.
Mol Ther ; 32(3): 663-677, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38273654

RESUMO

BCL11A-XL directly binds and represses the fetal globin (HBG1/2) gene promoters, using 3 zinc-finger domains (ZnF4, ZnF5, and ZnF6), and is a potential target for ß-hemoglobinopathy treatments. Disrupting BCL11A-XL results in derepression of fetal globin and high HbF, but also affects hematopoietic stem and progenitor cell (HSPC) engraftment and erythroid maturation. Intriguingly, neurodevelopmental patients with ZnF domain mutations have elevated HbF with normal hematological parameters. Inspired by this natural phenomenon, we used both CRISPR-Cas9 and base editing at specific ZnF domains and assessed the impacts on HbF production and hematopoietic differentiation. Generating indels in the various ZnF domains by CRISPR-Cas9 prevented the binding of BCL11A-XL to its site in the HBG1/2 promoters and elevated the HbF levels but affected normal hematopoiesis. Far fewer side effects were observed with base editing- for instance, erythroid maturation in vitro was near normal. However, we observed a modest reduction in HSPC engraftment and a complete loss of B cell development in vivo, presumably because current base editing is not capable of precisely recapitulating the mutations found in patients with BCL11A-XL-associated neurodevelopment disorders. Overall, our results reveal that disrupting different ZnF domains has different effects. Disrupting ZnF4 elevated HbF levels significantly while leaving many other erythroid target genes unaffected, and interestingly, disrupting ZnF6 also elevated HbF levels, which was unexpected because this region does not directly interact with the HBG1/2 promoters. This first structure/function analysis of ZnF4-6 provides important insights into the domains of BCL11A-XL that are required to repress fetal globin expression and provide framework for exploring the introduction of natural mutations that may enable the derepression of single gene while leaving other functions unaffected.


Assuntos
Edição de Genes , gama-Globinas , Humanos , Edição de Genes/métodos , gama-Globinas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Dedos de Zinco , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo
11.
J Cell Physiol ; 239(2): e31162, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994152

RESUMO

The developmental fate of ovarian follicles is primarily determined by the survival status (proliferation or apoptosis) of granulosa cells (GCs). Owing to the avascular environment within follicles, GCs are believed to live in a hypoxic niche. Follicle-stimulating hormone (FSH) has been reported to improve GCs survival by governing hypoxia-inducible factor-1α (HIF-1α)-dependent hypoxia response, but the underlying mechanisms remain poorly understood. Growth arrest-specific gene 6 (GAS6) is a secreted ligand of tyrosine kinase receptors, and has been documented to facilitate tumor growth. Here, we showed that the level of GAS6 was markedly increased in mouse ovarian GCs after the injection of FSH. Specifically, FSH-induced GAS6 expression was accompanied by HIF-1α accumulation under conditions of hypoxia both in vivo and in vitro, whereas inhibition of HIF-1α with small interfering RNAs/antagonist repressed both expression and secretion of GAS6. As such, Luciferase reporter assay and chromatin immunoprecipitation assay showed that HIF-1α directly bound to a hypoxia response element site within the Gas6 promoter and contributed to the regulation of GAS6 expression in response to FSH. Notably, blockage of GAS6 and/or its receptor Axl abrogated the pro-survival effects of FSH under hypoxia. Moreover, phosphorylation of Axl by GAS6 is required for FSH-mediated Akt activation and the resultant pro-survival phenotypes. Finally, the in vitro findings were verified in vivo, which showed that FSH-induced proliferative and antiapoptotic effects in ovarian GCs were diminished after blocking GAS6/Axl using HIF-1α antagonist. These findings highlight a novel function of FSH in preserving GCs viability against hypoxic stress by activating the HIF-1a-GAS6-Axl-Akt pathway.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Feminino , Camundongos , Hormônio Foliculoestimulante/farmacologia , Células da Granulosa/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos ICR
12.
Cancer Sci ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039802

RESUMO

Lazertinib, a novel third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), demonstrates marked efficacy in EGFR-mutant lung cancer. However, resistance commonly develops, prompting consideration of therapeutic strategies to overcome initial drug resistance mechanisms. This study aimed to elucidate the adaptive resistance to lazertinib and advocate novel combination treatments that demonstrate efficacy in preventing resistance as a first-line treatment for EGFR mutation-positive NSCLC. We found that AXL knockdown significantly inhibited lung cancer cell viability in the presence of lazertinib, indicating that AXL activation contributes to lazertinib resistance. However, long-term culture with a combination of lazertinib and AXL inhibitors led to residual cell proliferation and increased the MCL-1 expression level, which was mediated by the nuclear translocation of the transcription factor YAP. Triple therapy with an MCL-1 or YAP inhibitor in combination with lazertinib and an AXL inhibitor significantly reduced cell viability and increased the apoptosis rate. These results demonstrate that AXL and YAP/MCL-1 signals contribute to adaptive lazertinib resistance in EGFR-mutant lung cancer cells, suggesting that the initial dual inhibition of AXL and YAP/MCL-1 might be a highly effective strategy in eliminating lazertinib-resistant cells.

13.
Clin Immunol ; 263: 110203, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575046

RESUMO

Langerhans cell histiocytosis (LCH) is characterized by an expansion and accumulation of pathological histiocytes expressing langerin (CD207) and CD1a in different organs under an inflammatory milieu. The origin of pathognomonic precursors of LCH is widely debated, but monocytes and pre-dendritic cells (pre-DC) play a significant role. Remarkably, we found an expansion of AXLhigh cells in the CD11c+ subset of patients with active LCH, which also express the pathognomonic CD207 and CD1a. Moreover, we obtained a monocyte-derived LC-like (mo-LC-like) expressing high levels of AXL when treated with inflammatory cytokine, or plasma of patients with active disease. Intriguingly, inhibiting the mTOR pathway at the initial stages of monocyte differentiation to LC-like fosters the pathognomonic LCH program, highly increasing CD207 levels, together with NOTCH1 induction. We define here that AXLhigh could also be taken as a strong pathognomonic marker for LCH, and the release of Langerin and NOTCH1 expression depends on the inhibition of the mTOR pathway.


Assuntos
Antígenos CD , Receptor Tirosina Quinase Axl , Histiocitose de Células de Langerhans , Lectinas Tipo C , Lectinas de Ligação a Manose , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Serina-Treonina Quinases TOR , Humanos , Histiocitose de Células de Langerhans/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Antígenos CD/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Lectinas de Ligação a Manose/metabolismo , Lectinas Tipo C/metabolismo , Masculino , Células Mieloides/metabolismo , Biomarcadores , Feminino , Adolescente , Receptor Notch1/metabolismo , Antígenos CD1/metabolismo , Criança , Monócitos/metabolismo , Monócitos/imunologia , Adulto , Pré-Escolar , Transdução de Sinais , Diferenciação Celular
14.
J Cell Sci ; 135(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35394045

RESUMO

Altered endocytosis and vesicular trafficking are major players during tumorigenesis. Flotillin overexpression, a feature observed in many invasive tumors and identified as a marker of poor prognosis, induces a deregulated endocytic and trafficking pathway called upregulated flotillin-induced trafficking (UFIT). Here, we found that in non-tumoral mammary epithelial cells, induction of the UFIT pathway promotes epithelial-to-mesenchymal transition (EMT) and accelerates the endocytosis of several transmembrane receptors, including AXL, in flotillin-positive late endosomes. AXL overexpression, frequently observed in cancer cells, is linked to EMT and metastasis formation. In flotillin-overexpressing non-tumoral mammary epithelial cells and in invasive breast carcinoma cells, we found that the UFIT pathway-mediated AXL endocytosis allows its stabilization and depends on sphingosine kinase 2, a lipid kinase recruited in flotillin-rich plasma membrane domains and endosomes. Thus, the deregulation of vesicular trafficking following flotillin upregulation, and through sphingosine kinase 2, emerges as a new mechanism of AXL overexpression and EMT-inducing signaling pathway activation.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Proteínas de Membrana , Fosfotransferases (Aceptor do Grupo Álcool) , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas de Membrana/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor Tirosina Quinase Axl
15.
J Virol ; 97(7): e0061623, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37382521

RESUMO

African swine fever (ASF) is an acute and hemorrhagic infectious disease caused by African swine fever virus (ASFV), which is listed as an animal epidemic disease that must be reported by The World Organization for Animal Health and that causes serious economic losses to China and even the whole world. Currently, the entry mechanism of ASFV is not fully understood. Especially in the early stages of virus entry, the host factors required for ASFV entry have not yet been identified and characterized. In this study, we demonstrated that ASFV externalized phosphatidylserine (PS) on the envelope functioned as viral apoptotic mimicry, which interacts with AXL, a tyrosine kinase receptor, to mediate ASFV entry into porcine alveolar macrophages (PAMs). We found that AXL was the most pronounced phosphatidylserine receptor (PSR) affecting ASFV entry in PAMs by RNA interference screening. Knockout AXL gene expression remarkably decreased ASFV internalization and replication in MA104 cells. Furthermore, the antibody against AXL extracellular domains effectively inhibited the ASFV entry. Consistent with these results, the deletion of the intracellular kinase domain of AXL and the treatment of the AXL inhibitor, R428, significantly inhibited the internalization of ASFV. Mechanistically, AXL facilitated the internalization of ASFV virions via macropinocytosis. Collectively, we provide evidence that AXL is a coreceptor for ASFV entry into PAMs, which expands our knowledge of ASFV entry and provides a theoretical basis for identifying new antiviral targets. IMPORTANCE African swine fever (ASF) is a highly contagious infectious disease caused by the ASF virus (ASFV), with a mortality rate of up to 100%. ASFV has caused huge economic losses to pig farming worldwide. Specific cellular surface receptors are considered crucial determinants of ASFV tropism. However, the host factors required for ASFV entry have not yet been identified, and the molecular mechanism of its entry remains unclear. Here, we found that ASFV utilized phosphatidylserine (PS) on the surface of virions to masquerade as apoptotic mimicry and facilitated virus entry by interacting with host factor AXL. We found that knockout of AXL remarkably decreased ASFV internalization and replication. The antibody against AXL extracellular domains and AXL inhibitor R428 significantly inhibited the internalization of ASFV via macropinocytosis. The current work deepens our understanding of ASFV entry and provides clues for the development of antiviral drugs to control ASFV infection.


Assuntos
Febre Suína Africana , Receptor Tirosina Quinase Axl , Interações entre Hospedeiro e Microrganismos , Internalização do Vírus , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Suínos , Receptor Tirosina Quinase Axl/genética , Receptor Tirosina Quinase Axl/metabolismo , Macrófagos Alveolares/virologia , Técnicas de Inativação de Genes , Linhagem Celular , Envelope Viral/metabolismo , Ligação Viral , Domínios Proteicos
16.
Cell Biol Toxicol ; 40(1): 20, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578518

RESUMO

The epithelial-mesenchymal transition (EMT) and fibroblast activation are major events in idiopathic pulmonary fibrosis pathogenesis. Here, we investigated whether growth arrest-specific protein 6 (Gas6) plays a protective role in lung fibrosis via suppression of the EMT and fibroblast activation. rGas6 administration inhibited the EMT in isolated mouse ATII cells 14 days post-BLM treatment based on morphologic cellular alterations, changes in mRNA and protein expression profiles of EMT markers, and induction of EMT-activating transcription factors. BLM-induced increases in gene expression of fibroblast activation-related markers and the invasive capacity of primary lung fibroblasts in primary lung fibroblasts were reversed by rGas6 administration. Furthermore, the hydroxyproline content and collagen accumulation in interstitial areas with damaged alveolar structures in lung tissue were reduced by rGas6 administration. Targeting Gas6/Axl signaling events with specific inhibitors of Axl (BGB324), COX-2 (NS-398), EP1/EP2 receptor (AH-6809), or PGD2 DP2 receptor (BAY-u3405) reversed the inhibitory effects of rGas6 on EMT and fibroblast activation. Finally, we confirmed the antifibrotic effects of Gas6 using Gas6-/- mice. Therefore, Gas6/Axl signaling events play a potential role in inhibition of EMT process and fibroblast activation via COX-2-derived PGE2 and PGD2 production, ultimately preventing the development of pulmonary fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Fibroblastos , Peptídeos e Proteínas de Sinalização Intercelular , Animais , Camundongos , Ciclo-Oxigenase 2/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Pulmão/metabolismo
17.
Jpn J Clin Oncol ; 54(1): 62-69, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37801445

RESUMO

OBJECTIVE: The prediction of prognosis in hepatocellular carcinoma patients is important for switching treatment. The association between circulating growth arrest-specific 6 levels and prognosis in hepatocellular carcinoma patients is unknown. METHODS: We retrospectively analysed the association between serum growth arrest-specific 6 levels and clinical findings in 132 patients with hepatocellular carcinoma. Serum growth arrest-specific 6 levels were measured using enzyme-linked immunosorbent assay. RESULTS: Amongst 132 patients, the Barcelona Clinic Liver Cancer stage was classified as 0, A, B, C and D in 19, 48, 41, 18 and 6 patients, respectively. Serum growth arrest-specific 6 levels in hepatocellular carcinoma patients were higher than those in healthy controls (28.4 ng/mL vs. 19.6 ng/mL, P < 0.001), and growth arrest-specific 6 levels were positively correlated with soluble Axl levels. In the entire cohort, high growth arrest-specific 6 levels were associated with a shorter survival period (hazard ratio: 1.78 per 20 ng/mL, 95% confidence interval: 1.01-3.16, P = 0.045). In early and intermediate-stage hepatocellular carcinoma patients treated with transcatheter arterial chemoembolization (n = 59), we determined a cut-off value of 36.4 ng/mL based on the receiver operating characteristic curve to predict death within 3 years, and high growth arrest-specific 6 levels were associated with a high cumulative incidence of portal vein tumour thrombosis (Gray's test: P = 0.010) and shorter overall survival (log-rank: P = 0.005). CONCLUSIONS: Serum growth arrest-specific 6 levels were associated with prognosis in hepatocellular carcinoma patients. In early and intermediate-stage hepatocellular carcinoma patients who underwent transcatheter arterial chemoembolization, high growth arrest-specific 6 levels were associated with a high incidence of portal vein tumour thrombosis. Circulating growth arrest-specific 6 levels may be a useful prognostic marker in hepatocellular carcinoma patients.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Trombose Venosa , Humanos , Carcinoma Hepatocelular/patologia , Quimioembolização Terapêutica/efeitos adversos , Neoplasias Hepáticas/patologia , Veia Porta/patologia , Prognóstico , Estudos Retrospectivos , Resultado do Tratamento , Trombose Venosa/complicações , Trombose Venosa/terapia
18.
Exp Cell Res ; 428(2): 113620, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37156457

RESUMO

Although the patient's survival time in various cancers has significantly increased in recent decades, the overall 5-year survival rate of pancreatic ductal adenocarcinoma (PDAC) has remained virtually unchanged due to rapid progression and metastasis. While N-acetyltransferase 10 (NAT10) has been identified as a regulator of mRNA acetylation in many malignancies, its role in PDAC remains unclear. Here, we found that NAT10 mRNA and protein levels were upregulated in PDAC tissues. Increased NAT10 protein expression was significantly correlated with poor prognosis in PDAC patients. Through our experiments, we demonstrated that NAT10 acted as an oncogene to promote PDAC tumorigenesis and metastasis in vitro and in vivo. Mechanistically, NAT10 exerts its oncogenic effects by promoting mRNA stability of receptor tyrosine kinase AXL in an ac4C-dependent manner leading to increased AXL expression and further promoting PDAC cell proliferation and metastasis. Together, our findings highlight the critical of NAT10 in PDAC progression and reveal a novel epigenetic mechanism by which modified mRNA acetylation promotes PDAC metastasis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células/genética , RNA Mensageiro/genética , Acetiltransferases N-Terminal , Neoplasias Pancreáticas
19.
Acta Pharmacol Sin ; 45(6): 1264-1275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438582

RESUMO

In addition to the classical resistance mechanisms, receptor tyrosine-protein kinase AXL is a main mechanism of resistance to third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) osimertinib in EGFR-mutated non-small cell lung cancer (NSCLC). Developing an effective AXL inhibitor is important to sensitize osimertinib in clinical application. In this study we assessed the efficacy of brigatinib, a second-generation of anaplastic lymphoma kinase (ALK)-TKI, as a novel AXL inhibitor, in overcoming acquired resistance to osimertinib induced by AXL activation. We established an AXL-overexpression NSCLC cell line and conducted high-throughput screening of a small molecule chemical library containing 510 anti-tumor drugs. We found that brigatinib potently inhibited AXL expression, and that brigatinib (0.5 µM) significantly enhanced the anti-tumor efficacy of osimertinib (1 µM) in AXL-mediated osimertinib-resistant NSCLC cell lines in vitro. We demonstrated that brigatinib had a potential ability to bind AXL kinase protein and further inhibit its downstream pathways in NSCLC cell lines. Furthermore, we revealed that brigatinib might decrease AXL expression through increasing K48-linked ubiquitination of AXL and promoting AXL degradation in HCC827OR cells and PC-9OR cells. In AXL-high expression osimertinib-resistant PC-9OR and HCC827OR cells derived xenograft mouse models, administration of osimertinib (10 mg·kg-1·d-1) alone for 3 weeks had no effect, and administration of brigatinib (25 mg·kg-1·d-1) alone caused a minor inhibition on the tumor growth; whereas combination of osimertinib and brigatinib caused marked tumor shrinkages. We concluded that brigatinib may be a promising clinical strategy for enhancing osimertinib efficacy in AXL-mediated osimertinib-resistant NSCLC patients.


Assuntos
Acrilamidas , Compostos de Anilina , Antineoplásicos , Receptor Tirosina Quinase Axl , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Camundongos Nus , Compostos Organofosforados , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas , Pirimidinas , Receptores Proteína Tirosina Quinases , Animais , Feminino , Camundongos , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Indóis , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos BALB C , Mutação , Compostos Organofosforados/farmacologia , Compostos Organofosforados/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Ther ; 31(1): 35-47, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36045585

RESUMO

CD19-targeting chimeric antigen receptors (CARs) with CD28 and CD3ζ signaling domains have been approved by the US FDA for treating B cell malignancies. Mutation of immunoreceptor tyrosine-based activation motifs (ITAMs) in CD3ζ generated a single-ITAM containing 1XX CAR, which displayed superior antitumor activity in a leukemia mouse model. Here, we investigated whether the 1XX design could enhance therapeutic potency against solid tumors. We constructed both CD19- and AXL-specific 1XX CARs and compared their in vitro and in vivo functions with their wild-type (WT) counterparts. 1XX CARs showed better antitumor efficacy in both pancreatic and melanoma mouse models. Detailed analysis revealed that 1XX CAR-T cells persisted longer in vivo and had a higher percentage of central memory cells. With fluorescence resonance energy transfer (FRET)-based biosensors, we found that decreased ITAM numbers in 1XX resulted in similar 70-kDa zeta chain-associated protein (ZAP70) activation, while 1XX induced higher Ca2+ elevation and faster extracellular signal-regulated kinase (Erk) activation than WT CAR. Thus, our results confirmed the superiority of 1XX against two targets in different solid tumor models and shed light on the underlying molecular mechanism of CAR signaling, paving the way for the clinical applications of 1XX CARs against solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Linfócitos T , Animais , Camundongos , Antígenos CD28/genética , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/antagonistas & inibidores , Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA