Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
EFSA J ; 22(5): e8770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38756348

RESUMO

Bacillus paralicheniformis, a species known to produce the antimicrobial bacitracin, could be misidentified as Bacillus licheniformis, depending on the identification method used. For this reason, the European Commission requested EFSA to review the taxonomic identification of formerly assessed B. licheniformis production strains. Following this request, EFSA retrieved the raw data from 27 technical dossiers submitted and found that the taxonomic identification was established by 16S rRNA gene analyses for 15 strains and by whole genome sequence analysis for 12 strains. As a conclusion, only these 12 strains could be unambiguously identified as B. licheniformis.

2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38183669

RESUMO

Effects of bacterial direct-fed microbial (DFM) mixtures on intake, nutrient digestibility, feeding behavior, ruminal fermentation profile, and ruminal degradation kinetics of beef steers were evaluated. Crossbred Angus ruminally cannulated steers (n = 6; body weight [BW] = 520 ±â€…30 kg) were used in a duplicated 3 × 3 Latin square design and offered a steam-flaked corn-based finisher diet to ad libitum intake for 3, 28-d periods. Treatments were 1) Control (no DFM, lactose carrier only); 2) Treat-A (Lactobacillus animalis, Propionibacterium freudenreichii, Bacillus subtilis, and Bacillus licheniformis), at 1:1:1:3 ratio, respectively; totaling 6 × 109 CFU (50 mg)/animal-daily minimum; and 3) Treat-B, the same DFM combination, but doses at 1:1:3:1 ratio. Bacterial counts were ~30% greater than the minimum expected. Data were analyzed using the GLIMMIX procedure of SAS with the model including the fixed effect of treatment and the random effects of square, period, and animal (square). For repeated measure variables, the fixed effects of treatment, time, and their interaction, and the random effects of square, period, animal (square), and animal (treatment) were used. Preplanned contrasts comparing Control × Treat-A or Treat-B were performed. Intake and major feeding behavior variables were not affected (P ≥ 0.17) by treatments. Steers offered Treat-A had an increased (P = 0.04) ADF digestibility compared with Control. Steers offered Treat-A experienced daily 300 min less (P = 0.04) time under ruminal pH 5.6, a greater (P = 0.04) ruminal pH average and NH3-N concentration (P = 0.05) and tended (P = 0.06) to have a lower ruminal temperature compared to Control. Ruminal VFA was not affected (P ≥ 0.38) by treatments. Steers offered Treat-A increased (P = 0.02) and tended (P = 0.08) to increase the ruminal effective degradable NDF and ADF fractions of the diet-substrate, respectively. When the forage-substrate (low quality) was incubated, steers offered Treat-A tended (P = 0.09) to increase the effective degradable hemicellulose fraction compared to Control. In this experiment, the bacterial combinations did not affect intake and feeding behavior, while the combination with a greater proportion of B. licheniformis (Treat-A) elicited an improved core-fiber digestibility and a healthier ruminal pH pattern, in which the ruminal environment showed to be more prone to induce the effective degradability of fiber fractions, while also releasing more NH3-N.


During the finishing phase, a high-energy diet offers benefits related to beef cattle growth and development. However, it is essential to acknowledge that finisher diets are energy-dense and can pose digestive challenges, such as subacute ruminal acidosis. Digestive disturbances negatively affect animal well-being, growth performance, and economic returns. To address digestive challenges endured by animals on high-energy diets, the current experiment focused on the addition of bacterial direct-fed microbial (DFM) mixtures. A unique combination of bacterial DFM containing Lactobacillus animalis, Propionibacterium freudenreichii, Bacillus subtilis, and Bacillus licheniformis was evaluated. These bacteria have been individually reported to improve cattle nutrient utilization, digestibility, ruminal function, and maintain ruminal pH. The study aimed to investigate the effects of this specific microbial combination and doses when added to beef cattle finisher diets. The DFM mixtures offered seemed to not affect intake and major feeding behavior variables. The DFM combination containing a greater proportion of B. licheniformis (Treat-A) seemed to elicit an improved total tract core-fiber digestibility, and a safer ruminal pH pattern. The ruminal environment was shown to be more prone to improve the ruminal effective degradability of fiber fractions, while also releasing more NH3­N.


Assuntos
Ração Animal , Digestão , Bovinos , Animais , Fermentação , Ração Animal/análise , Dieta/veterinária , Comportamento Alimentar , Ingestão de Alimentos , Rúmen/metabolismo
3.
Braz. j. microbiol ; 43(1): 78-88, Jan.-Mar. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-622792

RESUMO

The purpose of the current study was intended to obtain the enhanced production of bacitracin by Bacillus licheniformis through random mutagenesis and optimization of various parameters. Several isolates of Bacillus licheniformis were isolated from local habitat and isolate designated as GP-35 produced maximum bacitracin production (14±0.72 IU ml-1). Bacitracin production of Bacillus licheniformis GP-35 was increased to 23±0.69 IU ml-1 after treatment with ultraviolet (UV) radiations. Similarly, treatment of vegetative cells of GP-35 with chemicals like N-methyl N'-nitro N-nitroso guanidine (MNNG) and Nitrous acid (HNO2) increased the bacitracin production to a level of 31±1.35 IU ml-1 and 27±0.89 IU ml-1 respectively. Treatment of isolate GP-35 with combined effect of UV and chemical treatment yield significantly higher titers of bacitracin with maximum bacitracin production of 41.6±0.92 IU ml-1. Production of bacitracin was further enhanced (59.1±1.35 IU ml-1) by optimization of different parameters like phosphate sources, organic acids as well as temperature and pH. An increase of 4.22 fold in the production of bacitracin after mutagenesis and optimization of various parameters was achieved in comparison to wild type. Mutant strain was highly stable and produced consistent yield of bacitracin even after 15 generations. On the basis of kinetic variables, notably Yp/s (IU/g substrate), Yp/x (IU/g cells), Yx/s (g/g), Yp/s, mutant strain B. licheniformis UV-MN-HN-6 was found to be a hyperproducer of bacitracin.


Assuntos
Bacillus/isolamento & purificação , Bacitracina/isolamento & purificação , Compostos Químicos/análise , Mutagênese , Mutagênicos/análise , Mutagênicos/isolamento & purificação , Cinética , Métodos , Otimização de Processos , Padrões de Referência , Radiação
4.
Artigo em Português | Arca: Repositório institucional da Fiocruz | ID: arc-37012

RESUMO

Células do Bacillus licheniformis 2390 foram cultivadas em um meio semi-sintético, a fim de se observar uma possível influência de diferentes concentrações de glicose sobre o tempo necessário para o início da esporogênese. Quando se empregou 10mg%, obteve-se endósporos após dois dias de incubação, enquanto que, com 1000 mg%, obteve-se endósporos no nono dia. Os resultados obtidos mostraram uma influência da concentração da fonte de carbono ensaiada, no tempo necessário para o início da esporogênese.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA