Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.284
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Rev Physiol Biochem Pharmacol ; 184: 121-157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35266054

RESUMO

Chitosan is a natural polysaccharide widespread in nature. It has many unique and attractive properties for the pharmaceutical field: it is biodegradable, safe, hypoallergenic, biocompatible with the body, free of toxicity, with proven anticholesterolemic, antibacterial, and antimycotic action. In this review we highlighted the physical, chemical, mechanical, mucoadhesive, etc. properties of chitosan to be taken into account when obtaining various pharmaceutical forms. The methods by which the pharmaceutical forms based on chitosan are obtained are very extensive, and in this study only the most common ones were presented.


Assuntos
Quitosana , Humanos , Quitosana/química , Preparações Farmacêuticas
2.
Nano Lett ; 24(10): 3165-3175, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426438

RESUMO

Addressing the urgent need to prevent breast cancer postoperative recurrence and brain metastasis, Fe-metal organic framework (MOF)-coated hollow mesoporous organosilica nanoparticles (HMON) with tumor microenvironment dual-responsive degradability were prepared to encapsulate doxorubicin (DOX), formulating a tissue-adhesive nanosuspension for perioperative topical medication. This nanosuspension can not only retain the sustainably released drug in the postoperative residual tumor sites but also enhance the intracellular oxidative stress of tumors for remarkable tumor ferroptosis. Interestingly, the nanosuspension can act as an immune amplifier, which could not only stimulate DC cells to secrete chemokines for T cell recruitment but also elevate antigen exposure to facilitate the antigen presentation in lymph nodes. Thus, this nanosuspension could significantly activate antitumor immune responses in both in situ tumors and metastatic encephaloma for enhanced immunotherapy. In conjunction with the clinical PD-1 antibody, the locally administered nanosuspension could achieve an advanced therapeutic outcome for inhibiting postoperative recurrence and metastasis.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Estruturas Metalorgânicas , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Nanopartículas/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Estruturas Metalorgânicas/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Nano Lett ; 24(11): 3386-3394, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452250

RESUMO

Utilizing one molecule to realize combinational photodynamic and photothermal therapy upon single-wavelength laser excitation, which relies on a multifunctional phototherapy agent, is one of the most cutting-edge research directions in tumor therapy owing to the high efficacy achieved over a short course of treatment. Herein, a simple strategy of "suitable isolation side chains" is proposed to collectively improve the fluorescence intensity, reactive oxygen species production, photothermal conversion efficiency, and biodegradation capacity. Both in vitro and in vivo results reveal the practical value and huge potential of the designed biodegradable conjugated polymer PTD-C16 with suitable isolation side chains in fluorescence image-guided combinational photodynamic and photothermal therapy. These improvements are achieved through manipulation of aggregated states by only side chain modification without changing any conjugated structure, providing new insight into the design of biodegradable high-performance phototherapy agents.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Polímeros/química , Fototerapia/métodos , Nanopartículas/uso terapêutico , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Linhagem Celular Tumoral
4.
Small ; 20(23): e2309366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38150620

RESUMO

Nanocatalytic-based wound therapeutics present a promising strategy for generating reactive oxygen species (ROS) to antipathogen to promote wound healing. However, the full clinical potential of these nanocatalysts is limited by their low reactivity, limited targeting ability, and poor biodegradability in the wound microenvironment. Herein, a bio-organic nanozyme is developed by encapsulating a FeZn-based bimetallic organic framework (MOF) (MIL-88B-Fe/Zn) in platelet membranes (PM@MIL-88B-Fe/Zn) for antimicrobial activity during wound healing. The introduction of Zn in MIL-88B-Fe/Zn modulates the electronic structure of Fe thus accelerating the catalytic kinetics of its peroxidase-like activity to catalytically generate powerful ROS. The platelet membrane coating of MOF innovatively enhanced the interaction between nanoparticles and the biological environment, further developing bacterial-targeted therapy with excellent antibacterial activity against both gram-positive and gram-negative bacteria. Furthermore, this nanozyme markedly suppressed the levels of inflammatory cytokines and promoted angiogenesis in vivo to effectively treat skin surface wounds and accelerate wound healing. PM@MIL-88B-Fe/Zn exhibited superior biodegradability, favourable metabolism and non-toxic accumulation, eliminating concerns regarding side effects from long-term exposure. The high catalytic reactivity, excellent targeting features, and biodegradability of these nanoenzymes developed in this study provide useful insights into the design and synthesis of nanocatalysts/nanozymes for practical biomedical applications.


Assuntos
Antibacterianos , Estruturas Metalorgânicas , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Animais , Cicatrização/efeitos dos fármacos , Plaquetas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Humanos
5.
Small ; 20(28): e2307742, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38326101

RESUMO

Biodegradable medical implants promise to benefit patients by eliminating risks and discomfort associated with permanent implantation or surgical removal. The time until full resorption is largely determined by the implant's material composition, geometric design, and surface properties. Implants with a fixed residence time, however, cannot account for the needs of individual patients, thereby imposing limits on personalization. Here, an active Fe-based implant system is reported whose biodegradation is controlled remotely and in situ. This is achieved by incorporating a galvanic cell within the implant. An external and wireless signal is used to activate the on-board electronic circuit that controls the corrosion current between the implant body and an integrated counter electrode. This configuration leads to the accelerated degradation of the implant and allows to harvest electrochemical energy that is naturally released by corrosion. In this study, the electrochemical properties of the Fe-30Mn-1C/Pt galvanic cell model system is first investigated and high-resolution X-ray microcomputed tomography is used to evaluate the galvanic degradation of stent structures. Subsequently, a centimeter-sized active implant prototype is assembled with conventional electronic components and the remotely controlled corrosion is tested in vitro. Furthermore, strategies toward the miniaturization and full biodegradability of this system are presented.


Assuntos
Metais , Corrosão , Metais/química , Microtomografia por Raio-X , Próteses e Implantes , Eletroquímica , Implantes Absorvíveis , Técnicas Eletroquímicas/métodos
6.
Small ; 20(3): e2305181, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699749

RESUMO

As a steady stream of electronic devices being discarded, a vast amount of electronic substrate waste of petroleum-based nondegradable polymers is generated, raising endless concerns about resource depletion and environmental pollution. With coupled reagent (CR)-grafted artificial marble waste (AMW@CR) as functional fillers, polylactic acid (PLA)-based highly stretchable biodegradable green composite (AMW@CR-SBGC) is prepared, with elongation at break up to more than 250%. The degradation mechanism of AMW@CR-SBGC is deeply revealed. AMW@CR not only contributed to the photodegradation of AMW@CR-SBGC but also significantly promoted the water degradation of AMW@CR-SBGC. More importantly, AMW@CR-SBGC showed great potential as sustainable green electronic substrates and AMW@CR-SBGC-based electronic skin can simulate the perception of human skin to strain signals. The outstanding programmable degradability, recyclability, and reusability of AMW@CR-SBGC enabled its application in transient electronics. As the first demonstration of artificial marble waste in electronic substrates, AMW@CR-SBGC killed three birds with one stone in terms of waste resourcing, e-waste reduction, and saving nonrenewable petroleum resources, opening up vast new opportunities for green electronics applications in areas such as health monitoring, artificial intelligence, and security.

7.
Small ; : e2402317, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988143

RESUMO

Here, the poly (l-lactic acid) (PLLA) membrane with multi-structured networks (MSN) is successfully prepared by electrospinning technology for the first time. It is composed of micron-sized ribbon-structured fibers and ultrafine nanofibers with a diameter of tens of nanometers, and they are connected to form the new network structure. Thanks to the special fiber morphology and structure, the interception and electrostatic adsorption ability for against atmospheric particulate matter (PM) are significantly enhanced, and the resistance to airflow is reduced due to the "slip effect" caused by ultrafine nanofibers. The PLLA MSN membrane shows excellent filtration performance with ultra-high filtration efficiency (>99.9% for PM2.5 and >99.5% for PM0.3) and ultra-low pressure drop (≈20 Pa). It has demonstrated filtration performance that even exceeds current non-biodegradable polymer materials, laying the foundation for future applications of biodegradable PLLA in the field of air filtration. In addition, this new structure also provides a new idea for optimizing the performance of other polymer materials.

8.
Small ; 20(23): e2310734, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38143290

RESUMO

Achieving satisfactory bone tissue regeneration in osteoporotic patients with ordinary biomaterials is challenging because of the decreased bone mineral density and aberrant bone microenvironment. In addressing this issue, a biomimetic scaffold (PMEH/SP), incorporating 4-hexylresorcinol (4HR), and substance P (SP) into the poly(lactic-go-glycolic acid) (PLGA) scaffold with magnesium hydroxide (M) and extracellular matrix (E) is introduced, enabling the consecutive release of bioactive agents. 4HR and SP induced the phosphorylation of p38 MAPK and ERK in human umbilical vein endothelial cells (HUVECs), thereby upregulating VEGF expression level. The migration and tube-forming ability of endothelial cells can be promoted by the scaffold, which accelerates the formation and maturation of the bone. Moreover, 4HR played a crucial role in the inhibition of osteoclastogenesis by interrupting the IκB/NF-κB signaling pathway and exhibiting SP, thereby enhancing the migration and angiogenesis of HUVECs. Based on such a synergistic effect, osteoporosis can be suppressed, and bone regeneration can be achieved by inhibiting the RANKL pathway in vitro and in vivo, which is a commonly known mechanism of bone physiology. Therefore, the study presents a promising approach for developing a multifunctional regenerative material for sophisticated osteoporotic bone regeneration.


Assuntos
Regeneração Óssea , Células Endoteliais da Veia Umbilical Humana , Osteoporose , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Alicerces Teciduais , Regeneração Óssea/efeitos dos fármacos , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Alicerces Teciduais/química , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Osteogênese/efeitos dos fármacos
9.
Small ; : e2402842, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923165

RESUMO

The nacre-inspired multi-nanolayer structure offers a unique combination of advanced mechanical properties, such as strength and crack tolerance, making them highly versatile for various applications. Nevertheless, a significant challenge lies in the current fabrication methods, which is difficult to create a scalable manufacturing process with precise control of hierarchical structure. In this work, a novel strategy is presented to regulate nacre-like multi-nanolayer films with the balance mechanical properties of stiffness and toughness. By utilizing a co-continuous phase structure and an extensional stress field, the hierarchical nanolayers is successfully constructed with tunable sizes using a scalable processing technique. This strategic modification allows the robust phase to function as nacre-like platelets, while the soft phase acts as a ductile connection layer, resulting in exceptional comprehensive properties. The nanolayer-structured films demonstrate excellent isotropic properties, including a tensile strength of 113.5 MPa in the machine direction and 106.3 MPa in a transverse direction. More interestingly, these films unprecedentedly exhibit a remarkable puncture resistance at the same time, up to 324.8 N mm-1, surpassing the performance of other biodegradable films. The scalable fabrication strategy holds significant promise in designing advanced bioinspired materials for diverse applications.

10.
Metab Eng ; 83: 52-60, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521489

RESUMO

2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable pseudo-aromatic dicarboxylic acid, is a promising building block compound for manufacturing biodegradable polyesters. This study aimed to construct high-performance cell factories enabling the efficient production of PDC from glucose. Firstly, the effective enzymes of the PDC biosynthetic pathway were overexpressed on the chromosome of the 3-dehydroshikimate overproducing strain. Consequently, the one-step biosynthesis of PDC from glucose was achieved. Further, the PDC production was enhanced by multi-copy integration of the key gene PsligC encoding 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase and co-expression of Vitreoscilla hemoglobin. Subsequently, the PDC production was substantially improved by redistributing the metabolic flux for cell growth and PDC biosynthesis based on dynamically downregulating the expression of pyruvate kinase. The resultant strain PDC50 produced 129.37 g/L PDC from glucose within 78 h under fed-batch fermentation conditions, with a yield of 0.528 mol/mol and an average productivity of 1.65 g/L/h. The findings of this study lay the foundation for the potential industrial production of PDC.


Assuntos
Escherichia coli , Engenharia Metabólica , Poliésteres , Pironas , Escherichia coli/genética , Escherichia coli/metabolismo , Poliésteres/metabolismo , Pironas/metabolismo , Glucose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácidos Dicarboxílicos/metabolismo
11.
Mass Spectrom Rev ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014928

RESUMO

Biodegradable polymers have been getting more and more attention because of their contribution to the plastic pollution environmental issues and to move towards a circular economy. Nevertheless, biodegradable materials still exhibit various disadvantages restraining a widespread use in the market. Therefore, additional research efforts are required to improve their performance. Mass spectrometry (MS) affords a relevant contribution to optimize biodegradable polymer synthesis, to confirm macromolecular structures, to examine along the time the progress of degradation processes and highlight advantages and drawbacks in the extensive applications. This review aims to provide an overview of the MS investigations carried out to support the synthesis of biodegradable polymers, with helpful information on undesirable products or polymerization mechanism, to understand deterioration pathways by the structure of degradation products and to follow drug release and pharmacokinetic. Additionally, it summarizes MS studies addressed on environmental and health issues related to the extensive use of plastic materials, that is, potential migration of additives or microplastics identification and quantification. The paper is focused on the most significant studies relating to synthetic and microbial biodegradable polymers published in the last 15 years, not including agro-polymers such as proteins and polysaccharides.

12.
Rev Cardiovasc Med ; 25(5): 159, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39076475

RESUMO

Atrial septal defect (ASD) is the third most common type of structural congenital heart defect. Patent foramen ovale (PFO) is an anatomical anomaly in up to 25% of the general population. With the innovation of occlusion devices and improvement of transcatheter techniques, percutaneous closure has become a first-line therapeutic alternative for treatment of ASD and PFO. During the past few decades, the development of biodegradable occlusion devices has become a promising direction for transcatheter closure of ASD/PFO due to their biodegradability and improved biocompatibility. The purpose of this review is to comprehensively summarize biodegradable ASD/PFO occlusion devices, regarding device design, materials, biodegradability, and evaluation of animal or clinical experiments (if available). The current challenges and the research direction for the development of biodegradable occluders for congenital heart defects are also discussed.

13.
Crit Rev Biotechnol ; 44(2): 236-254, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642423

RESUMO

Nowadays, rapidly increasing production, use and disposable of plastic products has become one of the utmost environmental issues. Our current circumstances in which the food supply chain is demonstrated as containing plastic particles and other plastic-based impurities, represents a significant health risk to humans, animals, and environmental alike. According to this point of view, biodegradable plastic material aims to produce a more sustainable and greener world with a lower ecological impact. Bioplastics are being investigated as an environmentally friendly candidate to address this problem and hence global bioplastic production has seen significant growth and expansion in recent years. This article focuses on a few critical issues that must be addressed for bioplastic production to become commercially viable. Although the reduction of fruit and vegetable waste biomass has an apparent value in terms of environmental benefits and sustainability, commercial success at industrial scale has remained flat. This is due to various factors, including biomass feedstocks, pretreatment technologies, enzymatic hydrolysis, and scale-up issues in the industry, all of which contribute to high capital and operating costs. This review paper summarizes the global overview of bioplastics derived from fruit and vegetable waste biomass. Furthermore, economic and technical challenges associated with industrialization and diverse applications of bioplastics in biomedical, agricultural, and food-packaging fields due to their excellent biocompatibility properties are reviewed.HighlightsReview of the diverse types and characteristics of sustainability of biobased plasticsImproved pretreatment technologies can develop to enhance greater yieldEnzyme hydrolysis process used for bioplastic extraction & hasten industrial scale-upFocus on technical challenges facing commercialized the bioplasticsDetailed discussion on the application for sustainability of biodegradable plastics.


Assuntos
Frutas , Verduras , Animais , Humanos , Plásticos , Biopolímeros
14.
Crit Rev Biotechnol ; 44(2): 275-301, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683015

RESUMO

The hydrogels based on natural gums and chemically derivatized natural gums have great interest in pharmaceutical, food, cosmetics, and environmental remediation, due to their: economic viability, sustainability, nontoxicity, biodegradability, and biocompatibility. Since these natural gems are from plants, microorganisms, and seaweeds, they offer a great opportunity to chemically derivatize and modify into novel, innovative biomaterials as scaffolds for tissue engineering and drug delivery. Derivatization improves swelling properties, thereby developing interest in agriculture and separating technologies. This review highlights the work done over the past three and a half decades and the possibility of developing novel materials and technologies in a cost-effective and sustainable manner. This review has compiled various natural gums, their source, chemical composition, and chemically derivatized gums, various methods to synthesize hydrogel, and their applications in biomedical, food and agriculture, textile, cosmetics, water purification, remediation, and separation fields.


Assuntos
Indústria Alimentícia , Hidrogéis , Hidrogéis/química , Materiais Biocompatíveis , Engenharia Tecidual , Agricultura
15.
Chemistry ; 30(1): e202302157, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37751057

RESUMO

We report the fabrication of optically clear underwater adhesives using polyplexes of oppositely charged partially-thiolated polyamide polyelectrolytes (TPEs). The thiol content of the constituent PEs was varied to assess its influence on the adhesive properties of the resulting glues. These catechol-free, redox-responsive TPE-adhesives were formulated in aquo and exhibited high optical transparency and strong adhesion even on submerged or moist surfaces of diverse polar substrates such as glass, aluminium, wood, and bone pieces. The adhesives could be cured under water through oxidative disulphide crosslinking of the constituent TPEs. The polyamide backbone provided multi-site H-bonding interactions with the substrates while the disulphide crosslinking provided the cohesive strength to the glue. Strong adhesion of mammalian bones (load bearing capacity upto 7 kg/cm2 ) was achieved using the adhesive containing 30 mol % thiol residues. Higher pH and use of oxidants such as povidone-iodine solution enhanced the curing rate of the adhesives, and so did the use of Tris buffer instead of Phosphate buffer. The porous architecture of the adhesive and its progressive degradation in aqueous medium over the course of three weeks bode well for diverse biomedical applications where temporary adhesion of tissues is required.

16.
Biopolymers ; : e23611, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984389

RESUMO

Increased awareness of environmental pollution has changed focus to the use of biodegradable materials because they lack persistence in the environment. This article focused on the production of cellulose nanocrystals from Zhombwe, Neorautanenia brachypus (Harms) CA Sm. bagasse using steam explosion, alkaline treatment, bleaching, purification, and acid hydrolysis. The chemical composition after the treatments was determined using TAPPI standards. Further characterization was done using x-ray Diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The nanoscale dimensions and morphology of the extracted nanocrystals was determined through field emission scanning electron microscopy (FE-SEM). FTIR spectroscopy and DSC confirmed the removal of noncellulosic compounds. XRD revealed that N. brachypus bagasse contained cellulose type I, which partly endured morphological change to polymorph II after purification and hydrolysis. FE-SEM revealed elliptical to rod-shaped structures after acid hydrolysis, which had a mean length and width of 1103 nm and 597 nm respectively. TAPPI tests revealed that successive chemical treatments increased crystallinity by 29.7%, enriched cellulose content by 74.2%, reduced lignin content by 21.7%, and reduced hemicellulose to less than 1%. The semicrystalline nature of the material produced in our work is a promising candidate for swelling hydrogel applications in areas such as wound dressing, heavy metal removal, controlled drug delivery, agriculture, and sanitary products. Future studies may focus on surface modification of nanocrystals to improve their thermal stability and therefore expand their range for potential industrial applications.

17.
Biotechnol Bioeng ; 121(9): 2752-2766, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38877732

RESUMO

Natural hydrogels are widely employed in tissue engineering and have excellent biodegradability and biocompatibility. Unfortunately, the utilization of such hydrogels in the field of three-dimensional (3D) printing nasal cartilage is constrained by their subpar mechanical characteristics. In this study, we provide a multicrosslinked network hybrid ink made of photocurable gelatin, hyaluronic acid, and acrylamide (AM). The ink may be processed into intricate 3D hydrogel structures with good biocompatibility and high stiffness properties using 3D printing technology based on digital light processing (DLP), including intricate shapes resembling noses. By varying the AM content, the mechanical behavior and biocompatibility of the hydrogels can be adjusted. In comparison to the gelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA) hydrogel, adding AM considerably enhances the hydrogel's mechanical properties while also enhancing printing quality. Meanwhile, the biocompatibility of the multicrosslinked network hydrogels and the development of cartilage were assessed using neonatal Sprague-Dawley (SD) rat chondrocytes (CChons). Cells sown on the hydrogels considerably multiplied after 7 days of culture and kept up the expression of particular proteins. Together, our findings point to GelMA/HAMA/polyacrylamide (PAM) hydrogel as a potential material for nasal cartilage restoration. The photocuring multicrosslinked network ink composed of appropriate proportions of GelMA/HAMA/PAM is very suitable for DLP 3D printing and will play an important role in the construction of nasal cartilage, ear cartilage, articular cartilage, and other tissues and organs in the future. Notably, previous studies have not explored the application of 3D-printed GelMA/HAMA/PAM hydrogels for nasal cartilage regeneration.


Assuntos
Hidrogéis , Cartilagens Nasais , Impressão Tridimensional , Ratos Sprague-Dawley , Alicerces Teciduais , Animais , Ratos , Hidrogéis/química , Alicerces Teciduais/química , Condrócitos/citologia , Engenharia Tecidual , Ácido Hialurônico/química , Gelatina/química , Bioimpressão/métodos
18.
Catheter Cardiovasc Interv ; 103(2): 276-285, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38091338

RESUMO

BACKGROUND: Patients with acute coronary syndromes (ACS) may have worse outcomes after percutaneous coronary intervention compared to patients without ACS. AIMS: To compare 5-year efficacy and safety outcomes in patients with and without ACS treated with biodegradable polymers, the ultrathin strut sirolimus-eluting Orsiro stent (O-SES) or the biolimus-eluting Nobori stent (N-BES). METHODS: The Scandinavian Organisation for Randomized Trials with Clinical Outcome VII is a randomized trial comparing O-SES and N-BES in an all-comer setting. Of 2525 patients, 1329 (53%) patients had ACS and 1196 (47%) patients were without ACS. Endpoints were target lesion failure (TLF) (a composite of cardiac death, target lesion myocardial infarction, or target lesion revascularization) and definite stent thrombosis within 5 years. RESULTS: At 5-year follow-up, TLF did not differ significantly between patients with and without ACS (12.3% vs. 13.2%; rate ratio (RR) 1.00; 95% confidence interval (CI): 0.70-1.44), whereas the risk of definite stent thrombosis was increased in patients with ACS (2.3% vs. 1.3; RR: 2.01 [95% CI: 1.01-3.98]). In patients with ACS, the rate of TLF was similar between O-SES and N-BES (12.4% vs. 12.3%; RR: 1.02; 95% CI: 0.74-1.40). The reduced risk of definite stent thrombosis in O-SES treated ACS patients within the first year (0.2% vs. 1.6%; RR: 0.12; 95% CI: 0.02-0.93) was not maintained after 5 years (1.8% vs. 2.7%; RR: 0.77; 95% CI: 0.37-1.63). CONCLUSION: Patients with ACS had an increased risk of stent thrombosis regardless of the stent type used. Long-term outcomes were similar for ACS patients treated with O-SES or N-BES at 5 years.


Assuntos
Síndrome Coronariana Aguda , Ácidos Alcanossulfônicos , Fármacos Cardiovasculares , Doença da Artéria Coronariana , Trombose Coronária , Stents Farmacológicos , Intervenção Coronária Percutânea , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia , Doença da Artéria Coronariana/complicações , Síndrome Coronariana Aguda/diagnóstico por imagem , Síndrome Coronariana Aguda/terapia , Síndrome Coronariana Aguda/complicações , Fatores de Risco , Resultado do Tratamento , Stents Farmacológicos/efeitos adversos , Implantes Absorvíveis , Desenho de Prótese , Fármacos Cardiovasculares/efeitos adversos , Trombose Coronária/etiologia , Stents/efeitos adversos , Polímeros , Intervenção Coronária Percutânea/efeitos adversos
19.
Chem Rec ; 24(1): e202300226, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37728184

RESUMO

In the recent times research towards solid state supercapacitors (SSS) have increased drastically due to the promising performance in futuristic technologies particularly in portable and flexible electronics like smart watches, smart fabrics, foldable smartphones and tablets. Also, when compared to supercapacitors using liquid electrolyte, solid electrolyte has several advantages like high energy density, safety, high cycle life, flexible form factor, and less environmental impact. The crucial factor determining the sustainability of a technology is the eco-friendliness since the natural resources are being exploited in a wide scale. Numerous studies have focused on biodegradable materials for supercapacitor electrodes, electrolytes, and other inactive components. Making use of these biodegradable materials to design a SSS enables the technology to sustain for a very long time since biodegradable materials are not only environment friendly but also, they show relatively high performance. This review focuses on recent progress of different biodegradable electrodes, and electrolytes along with their properties, electrochemical performance and biodegradable capabilities for SSS have been analyzed and provides a concise summary enabling readers to understand the importance of biodegradable materials and to narrow down the research in a more rational way.

20.
Clin Transplant ; 38(3): e15289, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38486062

RESUMO

INTRODUCTION: Treatment of post lung-transplant airway complications is challenging, and treatment with conventional airway stents is associated with adverse events. More recently, biodegradable airway stents (BDS) have been introduced and may be used to reduce these adverse events. In this study we explore the feasibility of treatment with BDS post lung transplant. METHODS: All patients treated with BDS in The Netherlands were included in this retrospective multicenter study. Feasibility, life span of the stent, occurrence of adverse events, and evolution of lung function were evaluated. RESULTS: Twelve patients (six malacia and six stenosis) received a total of 57 BDS, ranging from 1 to 10 BDS per patient. Six patients had been pretreated with conventional airway stents. Median stent life span was 112 days (range 66-202). No adverse events occurred during stent placement. In 5 out of 57 stent placements, a single additional bronchoscopy was necessary because of mucus accumulation (n = 4) or excessive granulation tissue (n = 1). All stent naïve patients became airway stent independent after treatment; all patients pretreated with conventional airway stents were still airway stent dependent at the end of follow up. CONCLUSION: Treatment with BDS is safe and feasible. Adverse events were mild and easily treatable. All patients with initial treatment with BDS were airway stent independent at the end of follow up with a median treatment of 4 BDS.


Assuntos
Transplante de Pulmão , Humanos , Broncoscopia , Constrição Patológica/etiologia , Transplante de Pulmão/efeitos adversos , Complicações Pós-Operatórias/etiologia , Stents/efeitos adversos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA