Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38609347

RESUMO

AIMS: This study investigated phenotypic and genotypic antimicrobial resistance profiles of Vibrio strains identified from Mytilus galloprovincialis farmed for human consumption in the Adriatic Sea Central Italy. METHODS AND RESULTS: A total of 475 mussels (M. galloprovincialis) were involved in the present study, and culture-dependent microbiological methods permitted to identify a total of 50 Vibrio strains that were tested for antibiotic susceptibility followed by the genetic determinant detections. Antibiograms showed resistance against ampicillin (36.0%), amoxicillin-clavulanic acid (30.0%), gentamycin (14.0%), and imipenem (18.0%). Biomolecular assays amplified a total of 264 antibiotic resistance genes harbored by both susceptible and resistant Vibrio species. Among resistance genes, aacC2 (62.0%) and aadA (58.0%) for aminoglycosides, blaTEM (54.0%) for beta-lactams, qnrS (24.0%) for quinolones, tetD (66.0%) for tetracyclines, and vanB (60.0%) for glycopeptides were mainly amplified by PCR assays. CONCLUSIONS: Vibrio genus is involved in the antibiotic resistance phenomenon diffusion in the aquatic environments, as demonstrated by the harboring of many genetic determinants representing a kind of genetic "dark world".


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Vibrio , Animais , Itália , Vibrio/genética , Vibrio/efeitos dos fármacos , Vibrio/isolamento & purificação , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Mytilus/microbiologia , Bivalves/microbiologia , Aquicultura
2.
Biosci Biotechnol Biochem ; 84(9): 1767-1774, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32441212

RESUMO

Functional analysis of biomolecules, including nucleic acids and proteins, is important for understanding biological mechanisms in living cells such as gene expression and metabolism. To analyze diverse biomolecular functions, large-scale screening systems for biomolecules have been developed for various applications such as to improve enzyme activity and identify target binding molecules. One of these systems, the Bead Display system, utilizes emulsion technology and is a powerful tool for rapidly screening functional nucleic acids or proteins in vitro. Furthermore, an analytical pipeline that consists of genomic systematic evolution of ligands by exponential enrichment (gSELEX)-Seq, gene expression analysis, and bioinformatics was shown to be a robust platform for comprehensively identifying genes regulated by a transcription factor. This review provides an overview of the biomolecular screening methods developed to date.


Assuntos
Biologia Computacional/métodos , DNA/metabolismo , Humanos , Reação em Cadeia da Polimerase , Técnica de Seleção de Aptâmeros , Fatores de Transcrição/metabolismo
3.
J Biopharm Stat ; 25(4): 757-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24905187

RESUMO

Biomolecular screening research frequently searches for the chemical compounds that are most likely to make a biochemical or cell-based assay system produce a strong continuous response. Several doses are tested with each compound and it is assumed that, if there is a dose-response relationship, the relationship follows a monotonic curve, usually a version of the median-effect equation. However, the null hypothesis of no relationship cannot be statistically tested using this equation. We used a linearized version of this equation to define a measure of pharmacological effect size, and use this measure to rank the investigated compounds in order of their overall capability to produce strong responses. The null hypothesis that none of the examined doses of a particular compound produced a strong response can be tested with this approach. The proposed approach is based on a new statistical model of the important concept of response detection limit, a concept that is usually neglected in the analysis of dose-response data with continuous responses. The methodology is illustrated with data from a study searching for compounds that neutralize the infection by a human immunodeficiency virus of brain glioblastoma cells.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Limite de Detecção , Modelos Estatísticos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Infecções por HIV/tratamento farmacológico , Humanos , Projetos de Pesquisa/estatística & dados numéricos , Resultado do Tratamento
4.
Front Microbiol ; 7: 1426, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27672383

RESUMO

Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome.

5.
Curr Genomics ; 12(2): 113-22, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21966249

RESUMO

Fungal laccases are generalists biocatalysts with potential applications that range from bioremediation to novel green processes. Fuelled by molecular oxygen, these enzymes can act on dozens of molecules of different chemical nature, and with the help of redox mediators, their spectrum of oxidizable substrates is further pushed towards xenobiotic compounds (pesticides, industrial dyes, PAHs), biopolymers (lignin, starch, cellulose) and other complex molecules. In recent years, extraordinary efforts have been made to engineer fungal laccases by directed evolution and semi-rational approaches to improve their functional expression or stability. All these studies have taken advantage of Saccharomyces cerevisiae as a heterologous host, not only to secrete the enzyme but also, to emulate the introduction of genetic diversity through in vivo DNA recombination. Here, we discuss all these endeavours to convert fungal laccases into valuable biomolecular platforms on which new functions can be tailored by directed evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA