Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
J Anat ; 245(1): 156-180, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38381116

RESUMO

Extant great apes are characterized by a wide range of locomotor, postural and manipulative behaviours that each require the limbs to be used in different ways. In addition to external bone morphology, comparative investigation of trabecular bone, which (re-)models to reflect loads incurred during life, can provide novel insights into bone functional adaptation. Here, we use canonical holistic morphometric analysis (cHMA) to analyse the trabecular morphology in the distal femoral epiphysis of Homo sapiens (n = 26), Gorilla gorilla (n = 14), Pan troglodytes (n = 15) and Pongo sp. (n = 9). We test two predictions: (1) that differing locomotor behaviours will be reflected in differing trabecular architecture of the distal femur across Homo, Pan, Gorilla and Pongo; (2) that trabecular architecture will significantly differ between male and female Gorilla due to their different levels of arboreality but not between male and female Pan or Homo based on previous studies of locomotor behaviours. Results indicate that trabecular architecture differs among extant great apes based on their locomotor repertoires. The relative bone volume and degree of anisotropy patterns found reflect habitual use of extended knee postures during bipedalism in Homo, and habitual use of flexed knee posture during terrestrial and arboreal locomotion in Pan and Gorilla. Trabecular architecture in Pongo is consistent with a highly mobile knee joint that may vary in posture from extension to full flexion. Within Gorilla, trabecular architecture suggests a different loading of knee in extension/flexion between females and males, but no sex differences were found in Pan or Homo, supporting our predictions. Inter- and intra-specific variation in trabecular architecture of distal femur provides a comparative context to interpret knee postures and, in turn, locomotor behaviours in fossil hominins.


Assuntos
Osso Esponjoso , Fêmur , Hominidae , Animais , Masculino , Feminino , Fêmur/anatomia & histologia , Hominidae/anatomia & histologia , Hominidae/fisiologia , Humanos , Osso Esponjoso/anatomia & histologia , Locomoção/fisiologia , Gorilla gorilla/anatomia & histologia , Gorilla gorilla/fisiologia , Pan troglodytes/anatomia & histologia , Pan troglodytes/fisiologia
2.
Hum Reprod ; 39(3): 454-463, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300232

RESUMO

The high prevalence and burden of uterine fibroids in women raises questions about the origin of these benign growths. Here, we propose that fibroids should be understood in the context of human evolution, specifically the advent of bipedal locomotion in the hominin lineage. Over the ≥7 million years since our arboreal ancestors left their trees, skeletal adaptations ensued, affecting the pelvis, limbs, hands, and feet. By 3.2 million years ago, our ancestors were fully bipedal. A key evolutionary advantage of bipedalism was the freedom to use hands to carry and prepare food and create and use tools which, in turn, led to further evolutionary changes such as brain enlargement (encephalization), including a dramatic increase in the size of the neocortex. Pelvic realignment resulted in narrowing and transformation of the birth canal from a simple cylinder to a convoluted structure with misaligned pelvic inlet, mid-pelvis, and pelvic outlet planes. Neonatal head circumference has increased, greatly complicating parturition in early and modern humans, up to and including our own species. To overcome the so-called obstetric dilemma provoked by bipedal locomotion and encephalization, various compensatory adaptations have occurred affecting human neonatal development. These include adaptations limiting neonatal size, namely altricial birth (delivery of infants at an early neurodevelopmental stage, relative to other primates) and mid-gestation skeletal growth deceleration. Another key adaptation was hyperplasia of the myometrium, specifically the neomyometrium (the outer two-thirds of the myometrium, corresponding to 90% of the uterine musculature), allowing the uterus to more forcefully push the baby through the pelvis during a lengthy parturition. We propose that this hyperplasia of smooth muscle tissue set the stage for highly prevalent uterine fibroids. These fibroids are therefore a consequence of the obstetric dilemma and, ultimately, of the evolution of bipedalism in our hominin ancestors.


Assuntos
Hominidae , Leiomioma , Lactente , Recém-Nascido , Gravidez , Animais , Humanos , Feminino , Hiperplasia , Músculo Liso , Miométrio
3.
J Hum Evol ; 189: 103513, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38401300

RESUMO

Bipedal locomotion was a major functional change during hominin evolution, yet, our understanding of this gradual and complex process remains strongly debated. Based on fossil discoveries, it is possible to address functional hypotheses related to bipedal anatomy, however, motor control remains intangible with this approach. Using comparative models which occasionally walk bipedally has proved to be relevant to shed light on the evolutionary transition toward habitual bipedalism. Here, we explored the organization of the neuromuscular control using surface electromyography (sEMG) for six extrinsic muscles in two baboon individuals when they walk quadrupedally and bipedally on the ground. We compared their muscular coordination to five human subjects walking bipedally. We extracted muscle synergies from the sEMG envelopes using the non-negative matrix factorization algorithm which allows decomposing the sEMG data in the linear combination of two non-negative matrixes (muscle weight vectors and activation coefficients). We calculated different parameters to estimate the complexity of the sEMG signals, the duration of the activation of the synergies, and the generalizability of the muscle synergy model across species and walking conditions. We found that the motor control strategy is less complex in baboons when they walk bipedally, with an increased muscular activity and muscle coactivation. When comparing the baboon bipedal and quadrupedal pattern of walking to human bipedalism, we observed that the baboon bipedal pattern of walking is closer to human bipedalism for both baboons, although substantial differences remain. Overall, our findings show that the muscle activity of a non-adapted biped effectively fulfills the basic mechanical requirements (propulsion and balance) for walking bipedally, but substantial refinements are possible to optimize the efficiency of bipedal locomotion. In the evolutionary context of an expanding reliance on bipedal behaviors, even minor morphological alterations, reducing muscle coactivation, could have faced strong selection pressure, ultimately driving bipedal evolution in hominins.


Assuntos
Hominidae , Caminhada , Animais , Humanos , Papio/fisiologia , Caminhada/fisiologia , Locomoção , Músculos , Fenômenos Biomecânicos
4.
Evol Anthropol ; 33(1): e22012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009942

RESUMO

In 1938, the first distal femur of a fossil Australopithecus was discovered at Sterkfontein, South Africa. A decade later, another distal femur was discovered at the same locality. These two fossil femora were the subject of a foundational paper authored by Kingsbury Heiple and Owen Lovejoy in 1971. In this paper, the authors discussed functionally relevant anatomies of these two fossil femora and noted their strong affinity to the modern human condition. Here, we update this work by including eight more fossil Australopithecus distal femora, an expanded comparative dataset, as well as additional linear measurements. Just as Heiple and Lovejoy reported a half-century ago, we find strong overlap between modern humans and cercopithecoids, except for inferiorly flattened condyles and a high bicondylar angle, both of which characterize modern humans and Australopithecus and are directly related to striding bipedalism. All other measured aspects of the femora are by-products of these key morphological traits. Additional fossil material from the early Pliocene will help to inform the evolution of the hominin distal femur and its condition in the Pan-Homo common ancestor that preceded bipedal locomotion.


Assuntos
Hominidae , Humanos , Animais , Hominidae/anatomia & histologia , Fêmur/anatomia & histologia , Locomoção , Extremidade Inferior , África do Sul , Fósseis , Evolução Biológica
5.
J Hum Evol ; 179: 103359, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37099927

RESUMO

The primate vertebral column has been extensively studied, with a particular focus on hominoid primates and the last common ancestor of humans and chimpanzees. The number of vertebrae in hominoids-up to and including the last common ancestor of humans and chimpanzees-is subject to considerable debate. However, few formal ancestral state reconstructions exist, and none include a broad sample of primates or account for the correlated evolution of the vertebral column. Here, we conduct an ancestral state reconstruction using a model of evolution that accounts for both homeotic (changes of one type of vertebra to another) and meristic (addition or loss of a vertebra) changes. Our results suggest that ancestral primates were characterized by 29 precaudal vertebrae, with the most common formula being seven cervical, 13 thoracic, six lumbar, and three sacral vertebrae. Extant hominoids evolved tail loss and a reduced lumbar column via sacralization (homeotic transition at the last lumbar vertebra). Our results also indicate that the ancestral hylobatid had seven cervical, 13 thoracic, five lumbar, and four sacral vertebrae, and the ancestral hominid had seven cervical, 13 thoracic, four lumbar, and five sacral vertebrae. The last common ancestor of humans and chimpanzees likely either retained this ancestral hominid formula or was characterized by an additional sacral vertebra, possibly acquired through a homeotic shift at the sacrococcygeal border. Our results support the 'short-back' model of hominin vertebral evolution, which postulates that hominins evolved from an ancestor with an African ape-like numerical composition of the vertebral column.


Assuntos
Hominidae , Humanos , Animais , Pan troglodytes , Evolução Biológica , Fósseis , Primatas , Vértebras Lombares/anatomia & histologia
6.
Evol Anthropol ; 32(5): 260-274, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37527355

RESUMO

The obstetrical dilemma describes the competing demands that a bipedally adapted pelvis and a large-brained neonate place on human childbirth and is the predominant model within which hypotheses about the evolution of the pelvis are framed. I argue the obstetrical dilemma follows the adaptationist program outlined by Gould and Lewontin in 1979 and should be replaced with a new model, the multifactor pelvis. This change will allow thorough consideration of nonadaptive explanations for the evolution of the human pelvis and avoid negative social impacts from considering human childbirth inherently dangerous. First, the atomization of the pelvis into discrete traits is discussed, after which current evidence for both adaptive and nonadaptive hypotheses is evaluated, including childbirth, locomotion, shared genetics with other traits under selection, evolutionary history, genetic drift, and environmental and epigenetic influences on the pelvis.

7.
J Anat ; 241(2): 500-517, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35373345

RESUMO

The Kromdraai site in South Africa has yielded numerous early hominin fossils since 1938. As a part of recent excavations within Unit P, a largely complete early hominin calcaneus (KW 6302) was discovered. Due to its role in locomotion, the calcaneus has the potential to reveal important form/function relationships. Here, we describe KW 6302 and analyze its preserved morphology relative to human and nonhuman ape calcanei, as well as calcanei attributed to Australopithecus afarensis, Australopithecus africanus, Australopithecus sediba, Homo naledi, and the Omo calcaneus (either Paranthropus or early Homo). KW 6302 calcaneal morphology is assessed using numerous quantitative metrics including linear measures, calcaneal robusticity index, relative lateral plantar process position, Achilles tendon length reconstruction, and a three-dimensional geometric morphometric sliding semilandmark analysis. KW 6302 exhibits an overall calcaneal morphology that is intermediate between humans and nonhuman apes, although closer to modern humans. KW 6302 possesses many traits that indicate it was likely well-adapted for terrestrial bipedal locomotion, including a relatively flat posterior talar facet and a large lateral plantar process that is similarly positioned to modern humans. It also retains traits that indicate that climbing may have remained a part of its locomotor repertoire, such as a relatively gracile tuber and a large peroneal trochlea. Specimens from Kromdraai have been attributed to either Paranthropus robustus or early Homo; however, there are no definitively attributed calcanei for either genus, making it difficult to taxonomically assign this specimen. KW 6302 and the Omo calcaneus, however, fall outside the range of expected variation for an extant genus, indicating that if the Omo calcaneus was Paranthropus, then KW 6302 would likely be attributed to early Homo (or vice versa).


Assuntos
Calcâneo , Hominidae , Animais , Evolução Biológica , Calcâneo/anatomia & histologia , Fósseis , Hominidae/anatomia & histologia , Humanos , África do Sul
8.
J Anat ; 241(6): 1336-1343, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36001459

RESUMO

Human plantar intrinsic foot muscles consist of 10 muscles that originate and insert within the sole of the foot. It is known that the anatomical cross-sectional area (ACSA) and muscle thickness of two plantar intrinsic foot muscles, the flexor hallucis brevis (FHB) and abductor hallucis (ABH), associate with morphological parameters of the foot, such as total and truncated foot length and navicular height. However, it is unclear how the size for each of the plantar intrinsic foot muscles associates with various morphological profiles of the foot. This study aimed to elucidate this subject. By using magnetic resonance imaging (MRI), serial images of the right foot were obtained in 13 young adult men without foot deformities. From the obtained MR images, ACSA for each of the individual plantar intrinsic foot muscles was analyzed along the foot length, and then its muscle volume (MV) was calculated. The analyzed muscles were the abductor digiti minimi (ABDM), ABH, adductor hallucis oblique head (ADDH-OH), adductor hallucis transverse head (ADDH-TH), flexor digitorum brevis (FDB), FHB, and quadratus plantae (QP). Furthermore, MV of the whole plantar intrinsic foot muscle (WHOLE) was defined as the total MVs of all the analyzed muscles. As morphological parameters, total foot length, truncated foot length, forefoot width, ball circumference, instep circumference, navicular height, great toe eversion angle, and little toe inversion angle were measured using a laser three-dimensional foot scanner in standing and sitting conditions. In addition, navicular drop (ND) and normalized truncated navicular height (NTNH) were also calculated as medial longitudinal arch (MLA) height indices. The MV of WHOLE was significantly associated with the forefoot width, ball circumference, and instep circumference (r = 0.647-0.711, p = 0.006-0.013). Positive correlations were found between the forefoot width and MV of FHB, FDB, and QP (r = 0.564-0.653, p = 0.015-0.045), between the ball circumference and MV of QP (r = 0.559, p = 0.047), between the instep circumference and MV of FHB (r = 0.609, p = 0.027), and between the little toe inversion angle and MV of QP (r = 0.570, p = 0.042). The MVs of ABH, ABDM, and ADDH-OH were not significantly correlated with any morphological parameters of the foot. Similarly, no significant correlations were found between MV of each muscle and either of the MLA height indices (ND and NTNH). Thus, the current results indicate that forefoot width and circumferential parameters (instep and ball circumference), not MLA height, associate with the size of the whole plantar intrinsic foot muscles, especially those specialized in toe flexion (FHB, FDB, and QP).


Assuntos
, Músculo Esquelético , Masculino , Adulto Jovem , Humanos , Pé/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Dedos do Pé , Posição Ortostática
9.
J Hum Evol ; 168: 103195, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35596976

RESUMO

Humans are unique among apes and other primates in the musculoskeletal design of their lower back, pelvis, and lower limbs. Here, we describe the three-dimensional ground reaction forces and lower/hindlimb joint mechanics of human and bipedal chimpanzees walking over a full stride and test whether: 1) the estimated limb joint work and power during the stance phase, especially the single-support period, is lower in humans than bipedal chimpanzees, 2) the limb joint work and power required for limb swing is lower in humans than in bipedal chimpanzees, and 3) the estimated total mechanical power during walking, accounting for the storage of passive elastic strain energy in humans, is lower in humans than in bipedal chimpanzees. Humans and bipedal chimpanzees were compared at matched dimensionless and dimensional velocities. Our results indicate that humans walk with significantly less work and power output in the first double-support period and the single-support period of stance, but markedly exceed chimpanzees in the second double-support period (i.e., push-off). Humans generate less work and power in limb swing, although the species difference in limb swing power was not statistically significant. We estimated that total mechanical positive 'muscle fiber' work and power were 46.9% and 35.8% lower, respectively, in humans than in bipedal chimpanzees at matched dimensionless speeds. This is due in part to mechanisms for the storage and release of elastic energy at the ankle and hip in humans. Furthermore, these results indicate distinct 'heel strike' and 'lateral balance' mechanics in humans and bipedal chimpanzees and suggest a greater dissipation of mechanical energy through soft tissue deformations in humans. Together, our results document important differences between human and bipedal chimpanzee walking mechanics over a full stride, permitting a more comprehensive understanding of the mechanics and energetics of chimpanzee bipedalism and the evolution of hominin walking.


Assuntos
Pan troglodytes , Caminhada , Animais , Fenômenos Biomecânicos/fisiologia , Marcha/fisiologia , Humanos , Articulações/fisiologia , Extremidade Inferior/fisiologia , Pan troglodytes/fisiologia , Caminhada/fisiologia
10.
J Hum Evol ; 170: 103231, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940157

RESUMO

The calculation of morphological integration across living apes and humans may provide important insights into the potential influence of integration on evolutionary trajectories in the hominid lineage. Here, we quantify magnitudes of morphological integration among and within elements of the midfoot in great apes and humans to examine the link between locomotor differences and trait covariance. We test the hypothesis that the medial elements of the great ape foot are less morphologically integrated with one another compared to humans based on their abducted halluces, and aim to determine how adaptations for midfoot mobility/stiffness and locomotor specialization influence magnitudes of morphological integration. The study sample is composed of all cuneiforms, the navicular, the cuboid, and metatarsals 1-5 of Homo sapiens (n = 80), Pan troglodytes (n = 63), Gorilla gorilla (n = 39), and Pongo sp. (n = 41). Morphological integration was quantified using the integration coefficient of variation of interlandmark distances organized into sets of a priori-defined modules. Magnitudes of integration across these modules were then compared against sets of random traits from the whole midfoot. Results show that all nonhuman apes have less integrated medial elements, whereas humans have highly integrated medial elements, suggesting a link between hallucal abduction and reduced levels of morphological integration. However, we find considerable variation in magnitudes of morphological integration across metatarsals 2-5, the intermediate and lateral cuneiform, the cuboid, and navicular, emphasizing the influence of functional and nonfunctional factors in magnitudes of integration. Lastly, we find that humans and orangutans show the lowest overall magnitudes of integration in the midfoot, which may be related to their highly specialized functions, and suggest a link between strong diversifying selection and reduced magnitudes of morphological integration.


Assuntos
Hominidae , Animais , Pé/anatomia & histologia , Gorilla gorilla/anatomia & histologia , Hominidae/anatomia & histologia , Humanos , Pan troglodytes/anatomia & histologia , Pongo , Pongo pygmaeus
11.
J Exp Biol ; 225(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35098305

RESUMO

Humans walk with an upright posture on extended limbs during stance and with a double-peaked vertical ground reaction force. Our closest living relatives, chimpanzees, are facultative bipeds that walk with a crouched posture on flexed, abducted hind limbs and with a single-peaked vertical ground reaction force. Differences in human and bipedal chimpanzee three-dimensional (3D) kinematics have been well quantified, yet it is unclear what the independent effects of using a crouched posture are on 3D gait mechanics for humans, and how they compare with chimpanzees. Understanding the relationships between posture and gait mechanics, with known differences in morphology between species, can help researchers better interpret the effects of trait evolution on bipedal walking. We quantified pelvis and lower limb 3D kinematics and ground reaction forces as humans adopted a series of upright and crouched postures and compared them with data from bipedal chimpanzee walking. Human crouched-posture gait mechanics were more similar to that of bipedal chimpanzee gait than to normal human walking, especially in sagittal plane hip and knee angles. However, there were persistent differences between species, as humans walked with less transverse plane pelvis rotation, less hip abduction, and greater peak anterior-posterior ground reaction force in late stance than chimpanzees. Our results suggest that human crouched-posture walking reproduces only a small subset of the characteristics of 3D kinematics and ground reaction forces of chimpanzee walking, with the remaining differences likely due to the distinct musculoskeletal morphologies of humans and chimpanzees.


Assuntos
Marcha , Pan troglodytes , Animais , Fenômenos Biomecânicos , Humanos , Postura , Caminhada
12.
Am J Phys Anthropol ; 175(3): 589-598, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33818760

RESUMO

OBJECTIVES: Brachial index is a skeletal ratio that describes the relative length of the distal forelimb. Over the course of hominin evolution, a shift toward smaller brachial indices occurred. First, Pleistocene australopiths yield values between extant chimpanzees and humans, with further evolution in Pliocene Homo to the modern human range. We hypothesized that shorter distal forelimbs benefit walking and running performance, notably elbow and shoulder joint torques, and predicted that the benefit would be greater in running compared to walking. MATERIALS AND METHODS: We tested our hypothesis in a modern human sample walking and running while carrying hand weights, which increase the inertia (mass and effective length) of the distal forelimb, simulating a larger brachial index. RESULTS: We found longer distal forelimbs and the added mass increased elbow muscle torque by 98% while walking and 70% in running, confirming our hypothesis that shorter distal forelimbs benefit walking and running performance. Shoulder muscle torque similarly increased in both gaits with the addition of hand weights due to elongation of the effective forelimb length. Normalized elbow torque, which accounted for the effect on shoulder torque caused by the experimental manipulation, increased by 16% while walking but 52% while running, indicating that shorter distal forelimbs provide a greater benefit for running by approximately three-fold. DISCUSSION: Selection for economical bipedal walking in Australopithecus and endurance running in Homo likely contributed to the shift toward relatively smaller distal forelimbs across hominin evolution, with modern human proportions attained in Pleistocene Homo erectus and retained in later species.


Assuntos
Hominidae , Animais , Evolução Biológica , Fenômenos Biomecânicos , Membro Anterior , Humanos , Músculo Esquelético , Caminhada
13.
Am J Phys Anthropol ; 176(2): 283-294, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34227681

RESUMO

OBJECTIVES: One of the most contentious issues in paleoanthropology is the nature of the last common ancestor of humans and our closest living relatives, chimpanzees and bonobos (panins). The numerical composition of the vertebral column has featured prominently, with multiple models predicting distinct patterns of evolution and contexts from which bipedalism evolved. Here, we study total numbers of vertebrae from a large sample of hominoids to quantify variation in and patterns of regional and total numbers of vertebrae in hominoids. MATERIALS AND METHODS: We compile and study a large sample (N = 893) of hominoid vertebral formulae (numbers of cervical, thoracic, lumbar, sacral, caudal segments in each specimen) and analyze full vertebral formulae, total numbers of vertebrae, and super-regional numbers of vertebrae: presacral (cervical, thoracic, lumbar) vertebrae and sacrococcygeal vertebrae. We quantify within- and between-taxon variation using heterogeneity and similarity measures derived from population genetics. RESULTS: We find that humans are most similar to African apes in total and super-regional numbers of vertebrae. Additionally, our analyses demonstrate that selection for bipedalism reduced variation in numbers of vertebrae relative to other hominoids. DISCUSSION: The only proposed ancestral vertebral configuration for the last common ancestor of hominins and panins that is consistent with our results is the modal formula demonstrated by chimpanzees and bonobos (7 cervical-13 thoracic-4 lumbar-6 sacral-3 coccygeal). Hox gene expression boundaries suggest that a rostral shift in Hox10/Hox11-mediated complexes could produce the human modal formula from the proposal ancestral and panin modal formula.


Assuntos
Pan troglodytes , Coluna Vertebral , Animais , Antropologia Física , Antropometria , Evolução Biológica , Hominidae/anatomia & histologia , Hominidae/fisiologia , Humanos , Pan troglodytes/anatomia & histologia , Pan troglodytes/fisiologia , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/fisiologia , Caminhada/fisiologia
14.
Proc Natl Acad Sci U S A ; 115(35): 8746-8751, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104373

RESUMO

The primate foot functions as a grasping organ. As such, its bones, soft tissues, and joints evolved to maximize power and stability in a variety of grasping configurations. Humans are the obvious exception to this primate pattern, with feet that evolved to support the unique biomechanical demands of bipedal locomotion. Of key functional importance to bipedalism is the morphology of the joints at the forefoot, known as the metatarsophalangeal joints (MTPJs), but a comprehensive analysis of hominin MTPJ morphology is currently lacking. Here we present the results of a multivariate shape and Bayesian phylogenetic comparative analyses of metatarsals (MTs) from a broad selection of anthropoid primates (including fossil apes and stem catarrhines) and most of the early hominin pedal fossil record, including the oldest hominin for which good pedal remains exist, Ardipithecus ramidus Results corroborate the importance of specific bony morphologies such as dorsal MT head expansion and "doming" to the evolution of terrestrial bipedalism in hominins. Further, our evolutionary models reveal that the MT1 of Ar. ramidus shifts away from the reconstructed optimum of our last common ancestor with apes, but not necessarily in the direction of modern humans. However, the lateral rays of Ar. ramidus are transformed in a more human-like direction, suggesting that they were the digits first recruited by hominins into the primary role of terrestrial propulsion. This pattern of evolutionary change is seen consistently throughout the evolution of the foot, highlighting the mosaic nature of pedal evolution and the emergence of a derived, modern hallux relatively late in human evolution.


Assuntos
Evolução Biológica , Hominidae , Ossos do Metatarso , Filogenia , Animais , Hominidae/anatomia & histologia , Hominidae/fisiologia , Ossos do Metatarso/anatomia & histologia , Ossos do Metatarso/fisiologia
15.
Proc Natl Acad Sci U S A ; 115(35): 8799-8804, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104377

RESUMO

Fundamental human traits, such as language and bipedalism, are associated with a range of anatomical adaptations in craniofacial shaping and skeletal remodeling. However, it is unclear how such morphological features arose during hominin evolution. FOXP2 is a brain-expressed transcription factor implicated in a rare disorder involving speech apraxia and language impairments. Analysis of its evolutionary history suggests that this gene may have contributed to the emergence of proficient spoken language. In the present study, through analyses of skeleton-specific knockout mice, we identified roles of Foxp2 in skull shaping and bone remodeling. Selective ablation of Foxp2 in cartilage disrupted pup vocalizations in a similar way to that of global Foxp2 mutants, which may be due to pleiotropic effects on craniofacial morphogenesis. Our findings also indicate that Foxp2 helps to regulate strength and length of hind limbs and maintenance of joint cartilage and intervertebral discs, which are all anatomical features that are susceptible to adaptations for bipedal locomotion. In light of the known roles of Foxp2 in brain circuits that are important for motor skills and spoken language, we suggest that this gene may have been well placed to contribute to coevolution of neural and anatomical adaptations related to speech and bipedal locomotion.


Assuntos
Remodelação Óssea/genética , Fatores de Transcrição Forkhead , Locomoção/genética , Mutação , Proteínas Repressoras , Crânio/metabolismo , Vocalização Animal , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Membro Posterior/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
16.
Clin Anat ; 34(6): 884-898, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33904192

RESUMO

The inherent variable anatomy of the neonate and the uniquely-shaped maternal birth canal that is associated with the evolution of human bipedalism constitute risk factors for neonatal brachial plexus palsy (NBPP). For example, those neonates with a prefixed brachial plexus (BP) are at greater risk of trauma due to lateral neck traction during delivery than those with a normal or postfixed BP. Compared to adults, neonates also have extremely large and heavy heads (high head: body ratio) set upon necks with muscles and ligaments that are weak and poorly developed. Accordingly, insufficient cranial stability can place large torques on the cervical spinal nerves. In addition, the pelvic changes necessary for habitual bipedal posture resulted in a uniquely-shaped, obstruction-filled, sinusoidal birth canal, requiring the human fetus to complete a complicated series of rotations to successfully traverse it. Furthermore, although there are many risk factors that are known to contribute to NBPP, the specific anatomy and physiology of the neonate, except for macrosomia, is not considered to be one of them. In fact, currently, the amount of lateral traction applied to the neck during delivery is the overwhelming legal factor that is used to evaluate whether a birth attendant is liable in cases of permanent NBPP. Here, we suggest that the specific anatomy and physiology of the neonate and mother, which are clearly not within the control of the birth attendant, should also be considered when assessing liability in cases of NBPP.


Assuntos
Variação Anatômica , Parto Obstétrico/efeitos adversos , Cabeça/anatomia & histologia , Pescoço/anatomia & histologia , Paralisia do Plexo Braquial Neonatal/etiologia , Parto , Humanos , Recém-Nascido , Fatores de Risco
17.
Int Orthop ; 45(9): 2435-2443, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34269821

RESUMO

Traditional stepping in the zenkutsu-dachi stance of the Shotokan style of karate is very physically demanding. It requires considerably more effort than what is expended during conventional human bipedalism. We performed a biomechanical study to analyze and compare these two types of gaits when performed by a highly experienced karateka. The study involved a three-dimensional motion analysis system (digital cameras and optical reflectors) and a force platform to analyze the ground reaction forces in all three planes. The study had both kinematic and kinetic components. We found that zenkutsu-dachi stepping is much more costly from an energetics point of view because the properties of the biarticular muscles are not used, the muscular moments of force are higher, and the body's potential energy is not converted into kinetic energy, contrary to the more economical model of human bipedalism that involves an inverted pendulum pattern.


Assuntos
Marcha , Fenômenos Biomecânicos , Humanos
18.
J Intern Med ; 287(3): 226-237, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31733113

RESUMO

The relationship of evolution with diet and environment can provide insights into modern disease. Fossil evidence shows apes, and early human ancestors were fruit eaters living in environments with strongly seasonal climates. Rapid cooling at the end of the Middle Miocene (15-12 Ma: millions of years ago) increased seasonality in Africa and Europe, and ape survival may be linked with a mutation in uric acid metabolism. Climate stabilized in the later Miocene and Pliocene (12-5 Ma), and fossil apes and early hominins were both adapted for life on ground and in trees. Around 2.5 Ma, early species of Homo introduced more animal products into their diet, and this coincided with developing bipedalism, stone tool technology and increase in brain size. Early species of Homo such as Homo habilis still lived in woodland habitats, and the major habitat shift in human evolution occurred at 1.8 Ma with the origin of Homo erectus. Homo erectus had increased body size, greater hunting skills, a diet rich in meat, control of fire and understanding about cooking food, and moved from woodland to savannah. Group size may also have increased at the same time, facilitating the transmission of knowledge from one generation to the next. The earliest fossils of Homo sapiens appeared about 300 kyr, but they had separated from Neanderthals by 480 kyr or earlier. Their diet shifted towards grain-based foods about 100 kyr ago, and settled agriculture developed about 10 kyr ago. This pattern remains for many populations to this day and provides important insights into current burden of lifestyle diseases.


Assuntos
Evolução Biológica , Dieta/tendências , Adaptação Fisiológica , Animais , Clima , Ecossistema , Fósseis , Hominidae , Humanos , Fenótipo
19.
J Anat ; 236(6): 1137-1145, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31972872

RESUMO

Knowledge of the ontogenetic pattern of morphological features is essential to improve biological interpretations. The study of morphological features of the pelvic girdle and hind limb apparatus throughout growth is an excellent approach to understand how the skeletal morphology and muscles are interrelated during growth in a bird with a specialized mode of locomotion. The Greater Rhea (Rhea americana) is a large cursorial palaeognathous bird with long legs and powerful musculature. The postnatal shape changes of the pelvis of this bird were studied with geometric morphometric techniques, using landmarks and semilandmarks. In addition, regression analyses were used to explore the association between pelvic shape changes with muscle and body mass. The pelvises of 16 specimens of Rhea americana from 1 month old to adulthood were studied in dorsal and lateral views. Noticeable differences in pelvic shape were noted between ages, particularly in lateral view. In young birds, the pre- and post-acetabular ilium was subequal in length, whereas in adults the pre-acetabular ilium became shorter. In dorsal view, the main shape changes observed were the progressive thinning of both ilium portions and the elongation of the vertex craniolateralis ilii from chicks to adulthood. In this view, the only clear differentiation was between young and adult birds. Shape differences were influenced by body mass and pelvic muscles; the post-acetabular muscle mass explained the highest percentage of the variation. The specialized locomotion of Greater Rhea is reflected in their pelvic musculoskeletal system, in which the change to a longer post-acetabular ilium correlates with the growth of the powerful post-acetabular muscles. The actions of these muscles provide the necessary strength to support the body mass, minimize the body swinging movements and propel the body forward during locomotion. Bone morphology is affected by the forces produced by body mass and the muscle activity, demonstrating the presence of common growth mechanisms, which are primordial and gave rise to a functional and properly proportioned adult.


Assuntos
Evolução Biológica , Membro Posterior/anatomia & histologia , Locomoção/fisiologia , Pelve/anatomia & histologia , Corrida/fisiologia , Animais , Feminino , Membro Posterior/fisiologia , Masculino , Pelve/fisiologia , Reiformes
20.
J Hum Evol ; 142: 102747, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32240884

RESUMO

The adoption of bipedalism is a key benchmark in human evolution that has impacted talar morphology. Here, we investigate talar morphological variability in extinct and extant hominins using a 3D geometric morphometric approach. The evolutionary timing and appearance of modern human-like features and their contributions to bipedal locomotion were evaluated on the talus as a whole, each articular facet separately, and multiple combinations of facets. Distinctive suites of features are consistently present in all fossil hominins, despite the presence of substantial interspecific variation, suggesting a potential connection of these suites to bipedal gait. A modern human-like condition evolved in navicular and lateral malleolar facets early in the hominin lineage compared with other facets, which demonstrate more complex morphological variation within Homininae. Interestingly, navicular facet morphology of Australopithecus afarensis is derived in the direction of Homo, whereas more recent hominin species such as Australopithecus africanus and Australopithecus sediba retain more primitive states in this facet. Combining the navicular facet with the trochlea and the posterior calcaneal facet as a functional suite, however, distinguishes Australopithecus from Homo in that the medial longitudinal arch had not fully developed in the former. Our results suggest that a more everted foot and stiffer medial midtarsal region are adaptations that coincide with the emergence of bipedalism, whereas a high medial longitudinal arch emerges later in time, within Homo. This study provides novel insights into the emergence of talar morphological traits linked to bipedalism and its transition from a facultative to an obligate condition.


Assuntos
Evolução Biológica , Hominidae/anatomia & histologia , Hominidae/fisiologia , Locomoção , Tálus/anatomia & histologia , Animais , Feminino , Fósseis/anatomia & histologia , Gorilla gorilla/anatomia & histologia , Gorilla gorilla/fisiologia , Humanos , Masculino , Homem de Neandertal/anatomia & histologia , Homem de Neandertal/fisiologia , Pan troglodytes/anatomia & histologia , Pan troglodytes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA