Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
J Gen Virol ; 105(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39158563

RESUMO

Bovine betacoronavirus (BoCoV) is a pneumoenteric pathogen of cattle that is closely related to human coronavirus OC43. Vaccines are administered to protect against diseases caused by BoCoV, but knowledge gaps exist with regard to correlates of protection and the effect of immune evasion on driving evolution. In this study, immune epitopes were mapped onto BoCoV structural proteins, including spike and haemagglutinin esterase (HE), and then supported with targeted gene sequencing of Irish clinical isolates and selective pressure analysis. Increased prevalence of diversifying selection and amino acid changes in some mapped immune epitopes suggests that immune escape is selecting for non-synonymous mutations arising in these regions. Selection analysis and sequencing provided increased support for neutralising antibody (nAb) epitopes compared to others, suggesting that nAbs are an important arm of the immune response to BoCoV. Phylogenetic analysis of spike and HE sequences showed that Irish isolates from this study were in the European clade, except for one HE sequence that sat in the Asian/American clade, while the spike gene of this sample was in the European clade. Recombination between a European and an Asian/American isolate would give rise to such a sequence. This study has gathered evidence suggesting that pressure to evade the nAb response is contributing to BoCoV evolution.


Assuntos
Doenças dos Bovinos , Infecções por Coronavirus , Coronavirus Bovino , Filogenia , Seleção Genética , Glicoproteína da Espícula de Coronavírus , Animais , Bovinos , Coronavirus Bovino/genética , Coronavirus Bovino/imunologia , Coronavirus Bovino/isolamento & purificação , Doenças dos Bovinos/virologia , Doenças dos Bovinos/imunologia , Irlanda , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/imunologia , Epitopos/genética , Epitopos/imunologia , Anticorpos Antivirais/imunologia , Evasão da Resposta Imune , Hemaglutininas Virais , Proteínas Virais de Fusão
2.
Microb Pathog ; 192: 106717, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806136

RESUMO

There are no other bovine coronavirus (BCoV) infection models except calves, which makes efficacy evaluation of vaccines and pathogenic mechanism research of BCoV inconvenient owing to their high value and inconvenient operation. This study aimed to establish a mouse model of BCoV infection. BCoV was used to infect 4-week-old male BALB/c mice and the optimal infection conditions were screened, including the following infection routes: gavage, intraperitoneal injection, and tail vein injection at doses of 1 × 108 TCID50, 2 × 108 TCID50 and 4 × 108 TCID50. Using the optimal infection conditions, BALB/c mice were infected with BCoV, and their body weight, blood routine, inflammatory factors, autopsy, virus distribution, and viral load were measured at 1, 3, 5, and 7 days after infection. The results showed that the optimal conditions for infecting BALB/c mice with BCoV HLJ-325 strain were continuous oral gavage for 3 days with a dose of 4 × 108 TCID50. On the 7th day after infection, there was significant extensive consolidation of the lungs and thinning of the colon wall. Significant inflammation was observed in various organs, especially in the colon and alveoli, where a large number of inflammatory cells infiltrate. Both BCoV Ag and nucleic acid are positive in visceral organs. The viral load in the colon and lungs was significantly higher than that in the other organs (p < 0.001). BCoV-infected mice showed a decreasing trend in body weight starting from day 5, and there was a significant difference compared to the control group on days 6 and 7 (p < 0.001). The total number of white blood cells and lymphocytes began to decrease and was significantly lower than that in the control group 24 h after infection (p < 0.001), and gradually returned to the control level. The cytokine TNF-α, IL-1ß, and IL-6 showed an increasing trend, significantly higher than the control group on day 5 and 7 (p < 0.001). These results indicate that the BCoV HLJ-325 strain can infect BALB/c mice and cause inflammatory reactions and tissue lesions. The most significant effect was observed on the seventh day after infection with a dose of 4 × 108 TCID50 and three consecutive gavages. This study established, for the first time, a BALB/c mouse model of BCoV infection, providing a technical means for evaluating the immune efficacy of BCoV vaccines and studying their pathogenic mechanisms.


Assuntos
Infecções por Coronavirus , Coronavirus Bovino , Modelos Animais de Doenças , Pulmão , Camundongos Endogâmicos BALB C , Carga Viral , Animais , Camundongos , Masculino , Pulmão/patologia , Pulmão/virologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Bovinos , Suscetibilidade a Doenças , Colo/patologia , Colo/virologia , Interleucina-6/sangue , Interleucina-1beta , Fator de Necrose Tumoral alfa , Citocinas/metabolismo , Citocinas/sangue , Peso Corporal
3.
Virol J ; 21(1): 207, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223556

RESUMO

BACKGROUND: Coronaviruses, a group of highly transmissible and potentially pathogenic viruses, can be transmitted indirectly to humans via fomites. To date, no study has investigated their persistence on carpet fibers. Establishing persistence is essential before testing the efficacy of a disinfectant. METHODS: The persistence of BCoV and HCoV OC43 on polyethylene terephthalate (PET) and nylon carpet was first determined using infectivity and RT-qPCR assays. Then, the disinfectant efficacy of steam vapor was evaluated against both coronaviruses on nylon carpet. RESULTS: Immediately after inoculation of carpet coupons, 32.50% of BCoV and 3.87% of HCoV OC43 were recovered from PET carpet, compared to 34.86% of BCoV and 24.37% of HCoV OC43 recovered from nylon carpet. After incubation at room temperature for 1 h, BCoV and HCoV OC43 showed a 3.6 and > 2.8 log10 TCID50 reduction on PET carpet, and a 0.6 and 1.8 log10 TCID50 reduction on nylon carpet. Based on first-order decay kinetics, the whole gRNA of BCoV and HCoV OC43 were stable with k values of 1.19 and 0.67 h- 1 on PET carpet and 0.86 and 0.27 h- 1 on nylon carpet, respectively. A 15-s steam vapor treatment achieved a > 3.0 log10 TCID50 reduction of BCoV and > 3.2 log10 TCID50 reduction of HCoV OC43 on nylon carpet. CONCLUSION: BCoV was more resistant to desiccation on both carpet types than HCoV OC43. Both viruses lost infectivity quicker on PET carpet than on nylon carpet. Steam vapor inactivated both coronaviruses on nylon carpet within 15 s.


Assuntos
Desinfecção , Vapor , Desinfecção/métodos , Desinfetantes/farmacologia , Pisos e Cobertura de Pisos , Polietilenotereftalatos , Nylons/farmacologia , Humanos , Coronavirus/efeitos dos fármacos , Animais , Coronavirus Humano OC43/efeitos dos fármacos , Coronavirus Humano OC43/fisiologia
4.
Vet Res ; 55(1): 74, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863015

RESUMO

Bovine coronavirus (BCoV) is a pneumoenteric virus that can infect the digestive and respiratory tracts of cattle, resulting in economic losses. Despite its significance, information regarding BCoV pathogenesis is limited. Hence, we investigated clinical signs, patterns of viral shedding, changes in antibody abundance, and cytokine/chemokine production in calves inoculated with BCoV via intranasal and oral. Six clinically healthy Korean native calves (< 30 days old), initially negative for BCoV, were divided into intranasal and oral groups and monitored for 15 days post-infection (dpi). BCoV-infected calves exhibited clinical signs such as nasal discharge and diarrhea, starting at 3 dpi and recovering by 12 dpi, with nasal discharge being the most common symptoms. Viral RNA was detected in nasal and fecal samples from all infected calves. Nasal shedding occurred before fecal shedding regardless of the inoculation route; however, fecal shedding persisted longer. Although the number of partitions was very few, viral RNA was identified in the blood of two calves in the oral group at 7 dpi and 9 dpi using digital RT-PCR analysis. The effectiveness of maternal antibodies in preventing viral replication and shedding appeared limited. Our results showed interleukin (IL)-8 as the most common and highly induced chemokine. During BCoV infection, the levels of IL-8, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1ß were significantly affected, suggesting that these emerge as potential and reliable biomarkers for predicting BCoV infection. This study underscores the importance of BCoV as a major pathogen causing diarrhea and respiratory disease.


Assuntos
Doenças dos Bovinos , Infecções por Coronavirus , Coronavirus Bovino , Eliminação de Partículas Virais , Animais , Bovinos , Doenças dos Bovinos/virologia , Doenças dos Bovinos/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , República da Coreia , Fezes/virologia , RNA Viral/análise , Anticorpos Antivirais/sangue , Citocinas/metabolismo , Citocinas/genética , Masculino
5.
BMC Vet Res ; 20(1): 209, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760785

RESUMO

BACKGROUND: Bovine coronavirus (BCoV) is implicated in severe diarrhea in calves and contributes to the bovine respiratory disease complex; it shares a close relationship with human coronavirus. Similar to other coronaviruses, remarkable variability was found in the genome and biology of the BCoV. In 2022, samples of feces were collected from a cattle farm. A virus was isolated from 7-day-old newborn calves. In this study, we present the genetic characteristics of a new BCoV isolate. The complete genomic, spike protein, and nucleocapsid protein gene sequences of the BCoV strain, along with those of other coronaviruses, were obtained from the GenBank database. Genetic analysis was conducted using MEGA7.0 and the Neighbor-Joining (NJ) method. The reference strains' related genes were retrieved from GenBank for comparison and analysis using DNAMAN. RESULTS: The phylogenetic tree and whole genome consistency analysis showed that it belonged to the GIIb subgroup, which is epidemic in Asia and America, and was quite similar to the Chinese strains in the same cluster. Significantly, the S gene was highly consistent with QH1 (MH810151.1) isolated from yak. This suggests that the strain may have originated from interspecies transmission involving mutations of wild strains. The N gene was conserved and showed high sequence identity with the epidemic strains in China and the USA. CONCLUSIONS: Genetic characterization suggests that the isolated strain could be a new mutant from a wild-type lineage, which is in the same cluster as most Chinese epidemic strains but on a new branch.


Assuntos
Doenças dos Bovinos , Infecções por Coronavirus , Coronavirus Bovino , Genoma Viral , Filogenia , Animais , Bovinos , Coronavirus Bovino/genética , Coronavirus Bovino/isolamento & purificação , China/epidemiologia , Doenças dos Bovinos/virologia , Doenças dos Bovinos/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/epidemiologia , Fezes/virologia , Glicoproteína da Espícula de Coronavírus/genética , Animais Recém-Nascidos
6.
BMC Vet Res ; 20(1): 389, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39227796

RESUMO

BACKGROUND: Calf diarrhea is a major cause of morbidity and mortality in the livestock sector worldwide and it can be caused by multiple infectious agents. In Ethiopia, cattle are the most economically important species within the livestock sector, but at the same time the young animals suffer from high rates of morbidity and mortality due to calf diarrhea. However, studies including both screening and molecular characterization of bovine enteric pathogens are lacking. Therefore, we aimed to both detect and molecularly characterize four of the major enteric pathogens in calf diarrhea, Enterotoxigenic Escherichia coli (E. coli K99 +), Cryptosporidium spp., rotavirus A (RVA), and bovine coronavirus (BCoV) in calves from central Ethiopia. Diarrheic and non-diarrheic calves were included in the study and fecal samples were analyzed with antigen-ELISA and quantitative real-time PCR (qPCR). Positive samples were further characterized by genotyping PCRs. RESULTS: All four pathogens were detected in both diarrheic and non-diarrheic calves using qPCR and further characterization showed the presence of three Cryptosporidium species, C. andersoni, C. bovis and C. ryanae. Furthermore, genotyping of RVA-positive samples found a common bovine genotype G10P[11], as well as a more unusual G-type, G24. To our knowledge this is the first detection of the G24 RVA genotype in Ethiopia as well as in Africa. Lastly, investigation of the spike gene revealed two distinct BCoV strains, one classical BCoV strain and one bovine-like CoV strain. CONCLUSIONS: Our results show that Cryptosporidium spp., E. coli K99 + , RVA and BCoV circulate in calves from central Ethiopia. Furthermore, our findings of the rare RVA G-type G24 and a bovine-like CoV demonstrates the importance of genetic characterization.


Assuntos
Doenças dos Bovinos , Coronavirus Bovino , Cryptosporidium , Diarreia , Fezes , Rotavirus , Animais , Bovinos , Etiópia/epidemiologia , Diarreia/veterinária , Diarreia/virologia , Diarreia/microbiologia , Diarreia/parasitologia , Doenças dos Bovinos/virologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/parasitologia , Fezes/virologia , Fezes/parasitologia , Fezes/microbiologia , Rotavirus/genética , Rotavirus/isolamento & purificação , Rotavirus/classificação , Cryptosporidium/isolamento & purificação , Cryptosporidium/genética , Cryptosporidium/classificação , Coronavirus Bovino/genética , Coronavirus Bovino/isolamento & purificação , Escherichia coli Enterotoxigênica/isolamento & purificação , Escherichia coli Enterotoxigênica/genética , Genótipo , Criptosporidiose/epidemiologia , Infecções por Rotavirus/veterinária , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia
7.
Trop Anim Health Prod ; 56(6): 211, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001969

RESUMO

Bovine coronavirus (BCoV) is one of the important causes of diarrhoea in cattle. The virus is responsible for the high fatality rate associated with acute diarrhoea in calves. Rapid and accurate tests need to be conducted to detect the virus and minimise economic losses associated with the disease. Nucleic acid-based detection assays including PCR is an accurate test for detecting pathogens. However, these tests need skilled personnel, time and expensive devices. In this study, we developed a novel assay for the detection of BCoV in clinical cases. This novel assay combined reverse transcription-recombinase polymerase amplification with CRISPR/Cas13 and conducted a rapid visualisation of cleavage activity using a Lateral Flow Device. A conserved sequence of the BCV M gene was used as a target gene and the assays were tested in terms of specificity, sensitivity and time consumption. The result showed the specificity of the assay as 100% with no false positives being detected. Ten copies of the input RNA were enough to detect the virus and perform the assay. It took up to forty minutes for reading the results. Conducted together, the assay should be used as a rapid test to clinically diagnose infectious pathogens including bovine coronavirus. However, the assay needed the RNA to be extracted from the clinical sample in order to detect the virus. Therefore, more studies are needed to optimise the assay to be able to detect the virus in the clinical sample without extracting the RNA.


Assuntos
Sistemas CRISPR-Cas , Doenças dos Bovinos , Coronavirus Bovino , Diarreia , Sensibilidade e Especificidade , Animais , Bovinos , Coronavirus Bovino/isolamento & purificação , Coronavirus Bovino/genética , Diarreia/veterinária , Diarreia/virologia , Diarreia/diagnóstico , Doenças dos Bovinos/virologia , Doenças dos Bovinos/diagnóstico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/diagnóstico
8.
Microb Pathog ; 176: 106009, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36736543

RESUMO

Bovine coronavirus (BCoV) is one of the important pathogens that cause calf diarrhea (CD), winter dysentery (WD), and the bovine respiratory disease complex (BRDC), and spreads worldwide. An infection of BCoV in cattle can lead to death of young animals, stunted growth, reduced milk production, and milk quality, thus bringing serious economic losses to the bovine industry. Therefore, it is necessary to prevent and control the spread of BCoV. Here, a systematic review and meta-analysis was conducted to assess the prevalence of BCoV in cattle in China before 2022. A total of 57 articles regarding the prevalence of BCoV in cattle in China were collected from five databases (PubMed, ScienceDirect, CNKI, VIP, and Wan Fang). Based on the inclusion criteria, a total of 15,838 samples were included, and 6,136 were positive cases. The overall prevalence of BCoV was 30.8%, with the highest prevalence rate (60.5%) identified in South China and the lowest prevalence (15.6%) identified in Central China. We also analyzed other subgroup information, included sampling years, sample sources, detection methods, breeding methods, age, type of cattle, presence of diarrhea, and geographic and climatic factors. The results indicated that BCoV was widely prevalent in China. Among all subgroups, the sample sources, detection methods, breeding methods, and presence or absence of diarrheal might be potential risk factors responsible for BCoV prevalence. It is recommended to strengthen the detection of BCoV in cattle, in order to effectively control the spread of BCoV.


Assuntos
Doenças dos Bovinos , Coronavirus Bovino , Disenteria , Bovinos , Animais , Prevalência , Doenças dos Bovinos/epidemiologia , Diarreia/veterinária , China/epidemiologia , Fezes
9.
BMC Vet Res ; 19(1): 74, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264393

RESUMO

BACKGROUND: The European bison (Bison bonasus) is a near threatened species and requires health monitoring. The aim of the present study was to determine the prevalence of antibodies to pathogens known to cause respiratory and digestive illness in ruminants. RESULTS: In the studied 328 European bison, the highest seroprevalence was observed for Bovine herpesvirus-1 (BoHV-1) (50.27%), Bovine Coronavirus (BCoV) (26.36%), and Bluetongue Virus (BTV) (12.83%). For Mycoplasma bovis strains and Bovine Viral Diarrhea Virus (BVDV), positive results were rare. Interestingly, a higher prevalence of BTV antibodies was noted in the northeastern populations and older animals. CONCLUSIONS: Our findings indicate that the Polish European bison population appears to have considerable contact with BoHV-1; however, this does not appear to be of great significance, as clinical symptoms and post-mortem lesions are rarely noted in Polish European bison population. The high seroprevalence of BTV in the north-east of Poland is an ongoing trend, also noted in previous studies. It is possible that European bison may perpetuate the virus in this region. This is the first report of antibodies for BCoV in European bison.


Assuntos
Bison , Herpesvirus Bovino 1 , Animais , Polônia/epidemiologia , Estudos Soroepidemiológicos , Anticorpos Antivirais , Sistema Digestório
10.
Anim Biotechnol ; 34(9): 4658-4666, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38347693

RESUMO

The enteric viruses in animals are responsible for severe and devastating losses to the livestock owners with a profound negative impact on animal, health, welfare, and productivity. These viruses are usually transmitted via the feco-oral route and primarily infect the digestive tract of the humans, bovines and different mammals as well as birds. Some of the important enteric viruses in ruminants are: Rotavirus A (RVA), Peste des petits virus (PPRV), Norovirus (NV), Bovine corona virus (BoCV) and Bluetongue virus (BTV). In the present study, sensitive, specific and reliable TaqMan probe-based RT-qPCRs were developed and standardized for the rapid detection and quantification of enteric viruses from fecal samples. The assays result in efficient amplification of the RVA, BTV and BoCV RNA with a limit of detection (LoD) of 5, 5 and 4 copies, respectively, which is 1000 times more sensitive than the traditional gel-based RT-PCR. The reproducibility of each assay was satisfactory, thus allowing for a sensitive and accurate measurement of the viral RNA load in clinical samples. In conclusion, real time PCR developed for these viruses are highly specific and sensitive technique for the detection of diarrheic viral pathogens of cattle and buffalo.


Assuntos
Doenças dos Bovinos , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Humanos , Bovinos , Animais , Peste dos Pequenos Ruminantes/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Reprodutibilidade dos Testes , Cabras/genética , Sensibilidade e Especificidade , Antígenos Virais , Doenças dos Bovinos/diagnóstico
11.
J Basic Microbiol ; 63(5): 519-529, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36538736

RESUMO

Bovine coronavirus (BCoV) is a member of pathogenic Betacoronaviruses that has been circulating for several decades in multiple host species. Given the similarity between BCoV and human coronaviruses, the current study aimed to review the complete genomes of 107 BCoV strains available on the GenBank database, collected between 1983 and 2017 from different countries. The maximum-likelihood based phylogenetic analysis revealed three main BCoV genogroups: GI, GII, and GIII. GI is further divided into nine subgenogroups: GI-a to GI-i. The GI-a to GI-d are restricted to Japan, and GI-e to GI-i to the USA. The evolutionary relationships were also inferred using phylogenetic network analysis, revealing two major distinct networks dominated by viruses identified in the USA and Japan, respectively. The USA strains-dominated Network Cluster includes two sub-branches: France/Germany and Japan/China in addition to the United States, while Japan strains-dominated Network Cluster is limited to Japan. Twelve recombination events were determined, including 11 intragenogroup (GI) and one intergenogroup (GII vs. GI-g). The breakpoints of the recombination events were mainly located in ORF1ab and the spike glycoprotein ORF. Interestingly, 10 of 12 recombination events occurred between Japan strains, one between the USA strains, and one from intercontinental recombination (Japan vs. USA). These findings suggest that geographical characteristics, and population density with closer contact, might significantly impact the BCoV infection and co-infection and boost the emergence of more complex virus lineages.


Assuntos
Doenças dos Bovinos , Infecções por Coronavirus , Coronavirus Bovino , Animais , Bovinos , Humanos , Filogenia , Funções Verossimilhança , Infecções por Coronavirus/epidemiologia , Recombinação Genética , Doenças dos Bovinos/epidemiologia
12.
Indian J Microbiol ; 63(4): 513-519, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38031618

RESUMO

Bovine viral diarrheal virus (BVDV) and bovine coronavirus (BCoV) are prevalent viral infections in buffalo calves that result in significant economic losses globally. However, Bovine picobirnavirus (BPBV) Group I and II has been an emerging causes of gastrointestinal infection as has been detected with mixed of BVDV as well as BCV. To combat economic losses and viral infection, a rapid and innovative multiplex-PCR assay (M-PCR) was developed to simultaneously identify BVDV, BCV, and BPBV. The assay employed three primer pairs, each specific to a particular virus. Notably, the primers for BCV and BVDV, targeting the transmembrane (M) Mebus gene and 5'UTR genes, respectively, were self-designed. To validate the assay, 300 samples of buffalo calf feces were subjected to the standardized multiplex PCR. The results demonstrated that 54 (18%) samples tested positive for multiple viruses, with 16.67% samples infected by BVDV, 0.9% by BCoV, and 0.13% by BPBV, as detected by the M-PCR assay. In summary, this developed assay is characterized by high specificity, sensitivity, throughput, and speed, enabling the simultaneous detection of the three viruses in a single reaction tube. Consequently, it holds potential for epidemiological investigations. It is worth noting that, to the best of our knowledge, this is the first reported multiplex assay for the worldwide detection of BVDV, BCoV, and BPBV. This novel assay promises to aid in the detection of mixed infections in the gastrointestinal tract.

13.
Arch Microbiol ; 204(8): 536, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913638

RESUMO

The present study aimed to explore if bovine coronavirus nucleocapsid (BCoV N) impacts IFN-ß production in the host cells and to reveal further molecular mechanism of BCoV pathogenesis. Human embryonic kidney (HEK) 293 T cells were transiently transfected with pMyc-BCoV-N recombinant plasmids, then infected with the vesicular stomatitis virus (VSV). Expression levels of beta interferon (IFN-ß) mRNA were detected using RT-qPCR. The results showed that BCoV N gene was 1347 bp that was consistent with the expected size. pMyc-BCoV-N recombinant protein was 1347 bp which was successfully transcribed and overexpressed in HEK 293 T cells. BCoV-N recombinant protein inhibited dose-dependently VSV-induced IFN-ß production (p < 0.01). MDA5, MAVS, TBK1 and IRF3 could promote transcription levels of IFN-ß mRNA. But, BCoV-N protein demoted IFN-ß transcription levels induced by MDA5, MAVS, TBK1 and IRF3. Furthermore, expression levels of MDA5, MAVS, TBK1 and IRF3 mRNAs were reduced in RIG-I-like receptor (RLR) pathway. In conclusion, BCoV-N reduced IFN-ß levels in RIG-I-like receptor (RLR) pathway in HEK 293 T cells which were induced by MDA5, MAVS, TBK1 and IRF3(5D). BCoV-N protein inhibited IFN-ß production and activation of RIG-I-like receptors (RLRs) signal pathway. Our findings demonstrated BCoV N protein is an IFN-ß antagonist through inhibition of MDA5, MAVS, TBK1 and IRF3(5D) in RLRs pathway, also revealed a new mechanism of BCoV N protein to evade host innate immune response by inhibiting type I IFN production, which is beneficial to developing novel prevention strategy for BCoV disease in the animals and humans.


Assuntos
Coronavirus Bovino , Animais , Bovinos , Coronavirus Bovino/genética , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Interferon beta/genética , Nucleocapsídeo , RNA Mensageiro , Proteínas Recombinantes
14.
Environ Res ; 214(Pt 4): 114057, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995225

RESUMO

Since the COVID-19 outbreak has started in late 2019, SARS-CoV-2 has been widely detected in human stools and in urban wastewater. No infectious SARS-CoV-2 particles have been detected in raw wastewater until now, but it has been reported occasionally in human stools. This has raised questions on the fate of SARS-CoV-2 during wastewater treatment and notably in its end-product, wastewater treatment sludge, which is classically valorized by land spreading for agricultural amendment. In the present work, we focused on SARS-CoV-2 stability in wastewater treatment sludge, either during storage (4 °C, room temperature) or thermophilic anaerobic digestion (50 °C). Anaerobic digestion is one of the possible processes for sludge valorization. Experiments were conducted in laboratory pilots; SARS-CoV-2 detection was based on RT-quantitative PCR or RT-digital droplet PCR. In addition to SARS-CoV-2, Bovine Coronavirus (BCoV) particles were used as surrogate virus. The RNA from SARS-CoV-2 particles, inactivated or not, was close to the detection limit but stable in wastewater treatment sludge, over the whole duration of the assays at 4 °C (55 days) and at ambient temperature (∼20 °C, 25 days). By contrast, the RNA levels of BCoV and inactivated SARS-CoV-2 particles decreased rapidly during the thermophilic anaerobic digestion of wastewater treatment sludge lasting for 5 days, with final levels that were close to the detection limit. Although the particles' infectivity was not assessed, these results suggest that thermophilic anaerobic digestion is a suitable process for sludge sanitation, consistent with previous knowledge on other coronaviruses.


Assuntos
COVID-19 , Purificação da Água , Anaerobiose , Animais , COVID-19/epidemiologia , Bovinos , Humanos , RNA , SARS-CoV-2/genética , Esgotos , Águas Residuárias , Purificação da Água/métodos
15.
BMC Vet Res ; 18(1): 323, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35996133

RESUMO

BACKGROUND: Neonatal calf diarrhea (NCD) is the leading cause of calf morbidity and mortality in beef cattle. Cow's vaccination in last stage of pregnancy is one of the most important measures to mitigate the risk of NCD outbreaks. The aim of this study was to evaluate the efficacy of prepartum single dose vaccination against NCD, especially Bovine Rotavirus type A (BoRVA) and Bovine Coronavirus (BCoV), in Nelore dams and offspring. A total of 117 pregnant cows (n = 81) and heifers (n = 36) were distributed in two groups, vaccinated (VAC: cows = 40; heifers = 19) and non-vaccinated (NVAC: cows = 41; heifers = 17). Vaccination occurred between 60 to 50 days before the expected calving date with a single dose of a water-in-oil (W/O) vaccine, and NVAC group received a dose of saline solution 0.9%. Blood samples were collected before vaccination and 30 days after to evaluate the antibody (Ab) response. Specific IgG1 Abs against BoRVA and BCoV were measured by using an Enzyme Linked Immuno Sorbent Assay (ELISA). Calves' births were monitored, and the transference of passive immunity was evaluated. Diarrhea was monitored in the first 30 days of age, and fecal samples were collected for identification of the etiological agent. RESULTS: Higher titers of IgG1 Ab against BoRVA and BCoV was observed in the VAC group than NVAC group in the cow (P < 0.0001) and total dams categories (P < 0.0001). The titer of specific IgG1 Abs in the calves' serum reflected the dams response, observing higher IgG1 Ab titers for BoRVA (P < 0.0016) and BCoV (P < 0.0095) in the offspring born to VAC cows and higher IgG1 Ab titers for BoRVA(P < 0.0171) and BCoV (P < 0.0200) in the offspring born to VAC total dams. The general incidence of diarrhea observed was 18.6% (11/59) and 29.3% (17/58) in the calves born to the VAC and NVAC group, respectively. CONCLUSIONS: Prepartum vaccination with a single dose of the vaccine tested increased the titers of IgG1 Ab against BCoV and BoRVA, and it could be used as a preventive strategy to decrease the NCD occurrence in Nelore calves.


Assuntos
Doenças dos Bovinos , Doenças não Transmissíveis , Animais , Bovinos , Diarreia/prevenção & controle , Diarreia/veterinária , Feminino , Imunoglobulina G , Gravidez , Vacinação/veterinária
16.
Trop Anim Health Prod ; 53(1): 62, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389254

RESUMO

Bovine rotavirus A (RVA) and bovine coronavirus (CoV) are the two main viral enteropathogens associated with neonatal calf diarrhea. The aim of the present work was to study the impact of group and individual housing systems in the epidemiology of RVA and CoV infection. Eleven calves reared in individual housing (FA) and nine calves in group housing (FB) were monitored during the first 7 weeks of life. Stool and serum samples were screened for RVA and CoV antigens by ELISA. IgG1 antibodies (Ab) to both antigens were also measured. From the 160 fecal samples collected, the proportion of positive samples to RVA and CoV was significantly higher in FB (23.6%) than in FA (9%) (p = 0.03). The geometric mean of colostral IgG1 Ab titers to CoV and RVA in FA (IgG1 anti-CoV 1024 and anti-RVA 1782.9) was lower than in FB (IgG1 anti-CoV 10,321.2 and anti-RVA 4096) at birth. Calves less than 2 weeks of life from FB had a higher risk of being infected by RVA (OR = 4.9; p = 0.01) and CoV (OR = 17.15; p = 0.01) than calves from FA. The obtained results showed that there was higher RVA and CoV shedding in group-housed calves than in individual-housed animals.


Assuntos
Doenças dos Bovinos/virologia , Infecções por Coronavirus/veterinária , Abrigo para Animais , Infecções por Rotavirus/veterinária , Animais , Animais Recém-Nascidos , Argentina , Bovinos , Doenças dos Bovinos/epidemiologia , Colostro/imunologia , Infecções por Coronavirus/virologia , Coronavirus Bovino , Indústria de Laticínios , Diarreia/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Fezes/virologia , Feminino , Imunoglobulina G/imunologia , Estudos Longitudinais , Gravidez , Rotavirus , Infecções por Rotavirus/virologia , Eliminação de Partículas Virais
17.
BMC Vet Res ; 16(1): 405, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109183

RESUMO

BACKGROUND: Apart from the huge worldwide economic losses often occasioned by bovine coronavirus (BCoV) to the livestock industry, particularly with respect to cattle rearing, continuous surveillance of the virus in cattle and small ruminants is essential in monitoring variations in the virus that could enhance host switching. In this study, we collected rectal swabs from a total of 1,498 cattle, sheep and goats. BCoV detection was based on reverse transcriptase polymerase chain reaction. Sanger sequencing of the partial RNA-dependent RNA polymerase (RdRp) region for postive samples were done and nucleotide sequences were compared with homologous sequences from the GenBank. RESULTS: The study reports a BCoV prevalence of 0.3%, consisting of 4 positive cases; 3 goats and 1 cattle. Less than 10% of all the animals sampled showed clinical signs such as diarrhea and respiratory distress except for high temperature which occurred in > 1000 of the animals. However, none of the 4 BCoV positive animals manifested any clinical signs of the infection at the time of sample collection. Bayesian majority-rule cladogram comparing partial and full length BCoV RdRp genes obtained in the study to data from the GenBank revealed that the sequences obtained from this study formed one large monophyletic group with those from different species and countries. The goat sequences were similar to each other and clustered within the same clade. No major variations were thus observed between our isolates and those from elsewhere. CONCLUSIONS: Given that Ghana predominantly practices the extensive and semi-intensive systems of animal rearing, our study highlights the potential for spillover of BCoV to small ruminants in settings with mixed husbandry and limited separation between species.


Assuntos
Doenças dos Bovinos/virologia , Infecções por Coronavirus/veterinária , Coronavirus Bovino/isolamento & purificação , Doenças das Cabras/virologia , Doenças dos Ovinos/virologia , Animais , Sequência de Bases , Teorema de Bayes , Bovinos , Doenças dos Bovinos/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Coronavirus Bovino/genética , Diarreia/veterinária , Gana/epidemiologia , Doenças das Cabras/epidemiologia , Cabras , Filogenia , Prevalência , RNA Polimerase Dependente de RNA/genética , Síndrome do Desconforto Respiratório/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Ovinos , Doenças dos Ovinos/epidemiologia
18.
Trop Anim Health Prod ; 52(4): 1811-1820, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31927690

RESUMO

Calf diarrhea causes severe economic losses in the cattle industry worldwide. This study investigated the prevalence of bovine coronavirus (BCoV), bovine norovirus (BNoV), bovine group A rotavirus (BoRVA), and bovine torovirus (BToV) in calves aged ≤ 60 days, regardless of diarrhea, across nine different regions in the Republic of Korea (ROK) and reported associations between these viruses and diarrhea. Fecal samples were collected rectally from 689 calves: normal (n = 360) and diarrheic (n = 329). BNoV (84/689, 12.2%) was the most prevalent regardless of diarrhea, followed by BCoV (37/689, 5.4%), BToV (15/689, 2.2%), and BoRVA (13/689, 1.9%). Although BCoV (P = 0.032) and BoRVA (P = 0.007) were significantly associated with diarrhea in pre-weaned calves, BNoV and BToV showed no association. Infection by the four pathogens had no relationship with calf age; BoRVA was detected only in calves aged < 30 days, but this finding was not statistically significant. Phylogenetic analysis revealed that BCoV isolates obtained in this study were distinct from the other known BCoVs, and all BNoV isolates belonged to GIII.2 genotype; genetic variations in BNoVs are present in the ROK. BoRVA isolates distributed in the ROK were assigned to G6P[5]. Within the P[5] genotype, our isolates were divided into two lineages: P[5]-III and P[5]-VIII. P[5]- VIII lineage was dominant in pre-weaned Korean native calves. Our BToV isolates were more closely related to a European isolate, B145, than to Japanese isolates. Here, BNoV was frequently identified in calves, suggesting its non-significant contribution to calf diarrhea, whereas BCoV and BoRVA were responsible for calf diarrhea in the ROK. Consequently, our results highlight the importance of rapid diagnosis against these viruses in calf diarrhea.


Assuntos
Doenças dos Bovinos/virologia , Diarreia/veterinária , Fezes/virologia , Vírus de RNA/isolamento & purificação , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Diarreia/virologia , Vigilância da População , Vírus de RNA/classificação , Vírus de RNA/genética , República da Coreia/epidemiologia
19.
Trop Anim Health Prod ; 52(6): 2809-2816, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32681447

RESUMO

Bovine coronaviruses are spread all over the world. They cause two types of clinical manifestations in cattle either an enteric, calf diarrhoea and winter dysentery in adult cattle, or respiratory in all age groups of cattle. The role of coronaviruses in respiratory infections is still a hot topic of discussion since they have been isolated from sick as well as healthy animals and replication of disease is rarely successful. Bovine coronavirus infection is characterised by high morbidity but low mortality. The laboratory diagnosis is typically based on serological or molecular methods. There is no registered drug for the treatment of virus infections in cattle and we are limited to supportive therapy and preventative measures. The prevention of infection is based on vaccination, biosecurity, management and hygiene. This paper will cover epidemiology, taxonomy, pathogenesis, clinical signs, diagnosis, therapy, economic impact and prevention of coronavirus infections in cattle.


Assuntos
Doenças dos Bovinos/virologia , Infecções por Coronavirus/veterinária , Coronavirus Bovino , Animais , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/terapia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/terapia , Coronavirus Bovino/classificação , Coronavirus Bovino/isolamento & purificação , Coronavirus Bovino/fisiologia , Diarreia/veterinária , Diarreia/virologia , Enterocolite Necrosante/veterinária , Enterocolite Necrosante/virologia , Infecções Respiratórias/veterinária , Infecções Respiratórias/virologia , Vacinação/veterinária
20.
Equine Vet Educ ; 32(Suppl 11): 33-36, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32427191

RESUMO

Equine coronavirus (ECoV) is considered an emerging enteric virus with reported morbidity rates ranging from 10 to 83% and fatality rates ranging from 7 to 27% in adult horses; a vaccine for ECoV is currently not available. This study investigated the safety, humoral response and viral shedding in horses inoculated with a commercially available modified-live bovine coronavirus (BCoV) vaccine. Twelve healthy adult horses were vaccinated twice, 3 weeks apart, either orally, intranasally or intrarectally. Two healthy unvaccinated horses served as sentinel controls. Following each vaccine administration, horses were monitored daily for physical abnormalities whilst the onset and duration of BCoV shedding was determined by quantitative PCR (qPCR) in nasal secretions and faeces. Whole blood was collected every 3 weeks to determine BCoV-specific antibody response. With the exception of transient and self-limiting changes in faecal character observed in seven vaccinated and one control horse, no additional abnormal clinical findings were found in the study horses. Following the first and second vaccine administration, two and one horse, respectively, tested qPCR-positive for BCoV in nasal secretions 1-day post intranasal vaccination. No vaccinated horses tested qPCR-positive for BCoV in faeces following each vaccine administration. One of the two horses that shed BCoV seroconverted to BCoV after the first vaccine administration and an additional two vaccinated horses (oral and intrarectal) seroconverted to BCoV after the second vaccine administration. In conclusion, the results show that the modified-live BCoV is safe to administer to horses via various routes, causes minimal virus shedding and results in detectable antibodies to BCoV in 27% of the vaccinates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA