Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.887
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(17): 3186-3200.e17, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35907403

RESUMO

Upon stress, eukaryotes typically reprogram their translatome through GCN2-mediated phosphorylation of the eukaryotic translation initiation factor, eIF2α, to inhibit general translation initiation while selectively translating essential stress regulators. Unexpectedly, in plants, pattern-triggered immunity (PTI) and response to other environmental stresses occur independently of the GCN2/eIF2α pathway. Here, we show that while PTI induces mRNA decapping to inhibit general translation, defense mRNAs with a purine-rich element ("R-motif") are selectively translated using R-motif as an internal ribosome entry site (IRES). R-motif-dependent translation is executed by poly(A)-binding proteins (PABPs) through preferential association with the PTI-activating eIFiso4G over the repressive eIF4G. Phosphorylation by PTI regulators mitogen-activated protein kinase 3 and 6 (MPK3/6) inhibits eIF4G's activity while enhancing PABP binding to the R-motif and promoting eIFiso4G-mediated defense mRNA translation, establishing a link between PTI signaling and protein synthesis. Given its prevalence in both plants and animals, the PABP/R-motif translation initiation module may have a broader role in reprogramming the stress translatome.


Assuntos
Fator de Iniciação Eucariótico 4G , Proteínas de Ligação a Poli(A) , Animais , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Biossíntese de Proteínas , Purinas , RNA Mensageiro/metabolismo
2.
Annu Rev Biochem ; 90: 321-348, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33770447

RESUMO

Influenza virus RNA-dependent RNA polymerase (FluPol) transcribes the viral RNA genome in the infected cell nucleus. In the 1970s, researchers showed that viral transcription depends on host RNA polymerase II (RNAP II) activity and subsequently that FluPol snatches capped oligomers from nascent RNAP II transcripts to prime its own transcription. Exactly how this occurs remains elusive. Here, we review recent advances in the mechanistic understanding of FluPol transcription and early events in RNAP II transcription that are relevant to cap-snatching. We describe the known direct interactions between FluPol and the RNAP II C-terminal domain and summarize the transcription-related host factors that have been found to interact with FluPol. We also discuss open questions regarding how FluPol may be targeted to actively transcribing RNAP II and the exact context and timing of cap-snatching, which is presumed to occur after cap completion but before the cap is sequestered by the nuclear cap-binding complex.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Orthomyxoviridae/enzimologia , RNA Polimerase Dependente de RNA/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo , Humanos , Orthomyxoviridae/patogenicidade , Proteínas de Ligação ao Cap de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética
3.
Cell ; 184(1): 184-193.e10, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33232691

RESUMO

Transcription of SARS-CoV-2 mRNA requires sequential reactions facilitated by the replication and transcription complex (RTC). Here, we present a structural snapshot of SARS-CoV-2 RTC as it transitions toward cap structure synthesis. We determine the atomic cryo-EM structure of an extended RTC assembled by nsp7-nsp82-nsp12-nsp132-RNA and a single RNA-binding protein, nsp9. Nsp9 binds tightly to nsp12 (RdRp) NiRAN, allowing nsp9 N terminus inserting into the catalytic center of nsp12 NiRAN, which then inhibits activity. We also show that nsp12 NiRAN possesses guanylyltransferase activity, catalyzing the formation of cap core structure (GpppA). The orientation of nsp13 that anchors the 5' extension of template RNA shows a remarkable conformational shift, resulting in zinc finger 3 of its ZBD inserting into a minor groove of paired template-primer RNA. These results reason an intermediate state of RTC toward mRNA synthesis, pave a way to understand the RTC architecture, and provide a target for antiviral development.


Assuntos
RNA-Polimerase RNA-Dependente de Coronavírus/química , Microscopia Crioeletrônica , RNA Mensageiro/química , RNA Viral/química , SARS-CoV-2/química , Proteínas do Complexo da Replicase Viral/química , Sequência de Aminoácidos , Coronavirus/química , Coronavirus/classificação , Coronavirus/enzimologia , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Metiltransferases/metabolismo , Modelos Moleculares , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/enzimologia , Alinhamento de Sequência , Transcrição Gênica , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
4.
Cell ; 181(4): 877-893.e21, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32304664

RESUMO

Influenza polymerase uses unique mechanisms to synthesize capped and polyadenylated mRNAs from the genomic viral RNA (vRNA) template, which is packaged inside ribonucleoprotein particles (vRNPs). Here, we visualize by cryoelectron microscopy the conformational dynamics of the polymerase during the complete transcription cycle from pre-initiation to termination, focusing on the template trajectory. After exiting the active site cavity, the template 3' extremity rebinds into a specific site on the polymerase surface. Here, it remains sequestered during all subsequent transcription steps, forcing the template to loop out as it further translocates. At termination, the strained connection between the bound template 5' end and the active site results in polyadenylation by stuttering at uridine 17. Upon product dissociation, further conformational changes release the trapped template, allowing recycling back into the pre-initiation state. Influenza polymerase thus performs transcription while tightly binding to and protecting both template ends, allowing efficient production of multiple mRNAs from a single vRNP.


Assuntos
Vírus da Influenza A/genética , Transcrição Gênica/genética , Replicação Viral/genética , Domínio Catalítico , Simulação por Computador , Microscopia Crioeletrônica/métodos , Genoma Viral/genética , Humanos , Vírus da Influenza A/metabolismo , Influenza Humana/genética , Influenza Humana/virologia , Nucleotidiltransferases/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Relação Estrutura-Atividade
5.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32559462

RESUMO

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Assuntos
Capuzes de RNA/genética , Infecções por Vírus de RNA/genética , Proteínas Recombinantes de Fusão/genética , Regiões 5' não Traduzidas/genética , Animais , Bovinos , Linhagem Celular , Cricetinae , Cães , Humanos , Vírus da Influenza A/metabolismo , Camundongos , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Fases de Leitura Aberta/genética , Capuzes de RNA/metabolismo , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transcrição Gênica/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
6.
Cell ; 176(6): 1367-1378.e8, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30773319

RESUMO

The root cap surrounding the tip of plant roots is thought to protect the delicate stem cells in the root meristem. We discovered that the first layer of root cap cells is covered by an electron-opaque cell wall modification resembling a plant cuticle. Cuticles are polyester-based protective structures considered exclusive to aerial plant organs. Mutations in cutin biosynthesis genes affect the composition and ultrastructure of this cuticular structure, confirming its cutin-like characteristics. Strikingly, targeted degradation of the root cap cuticle causes a hypersensitivity to abiotic stresses during seedling establishment. Furthermore, lateral root primordia also display a cuticle that, when defective, causes delayed outgrowth and organ deformations, suggesting that it facilitates lateral root emergence. Our results show that the previously unrecognized root cap cuticle protects the root meristem during the critical phase of seedling establishment and promotes the efficient formation of lateral roots.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Coifa/metabolismo , Coifa/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Lipídeos de Membrana/biossíntese , Lipídeos de Membrana/metabolismo , Meristema/metabolismo , Mutação , Raízes de Plantas/citologia , Plântula/genética , Plântula/crescimento & desenvolvimento
7.
Cell ; 177(4): 852-864.e14, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982597

RESUMO

It is largely unclear whether genes that are naturally embedded in lamina-associated domains (LADs) are inactive due to their chromatin environment or whether LADs are merely secondary to the lack of transcription. We show that hundreds of human promoters become active when moved from their native LAD position to a neutral context in the same cells, indicating that LADs form a repressive environment. Another set of promoters inside LADs is able to "escape" repression, although their transcription elongation is attenuated. By inserting reporters into thousands of genomic locations, we demonstrate that escaper promoters are intrinsically less sensitive to LAD repression. This is not simply explained by promoter strength but by the interplay between promoter sequence and local chromatin features that vary strongly across LADs. Enhancers also differ in their sensitivity to LAD chromatin. This work provides a general framework for the systematic understanding of gene regulation by repressive chromatin.


Assuntos
Regulação da Expressão Gênica/genética , Lâmina Nuclear/genética , Regiões Promotoras Genéticas/genética , Cromatina/genética , Cromatina/metabolismo , Expressão Gênica/genética , Genoma Humano/genética , Genômica , Humanos , Células K562
8.
Annu Rev Cell Dev Biol ; 34: 427-450, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30125139

RESUMO

The nephron is a multifunctional filtration device equipped with an array of sophisticated sensors. For appropriate physiological function in the human and mouse, nephrons must be stereotypically arrayed in large numbers, and this essential structural property that defines the kidney is determined during its fetal development. This review explores the process of nephron determination in the fetal kidney, providing an overview of the foundational literature in the field as well as exploring new developments in this dynamic research area. Mechanisms that ensure that a large number of nephrons can be formed from a small initial number of progenitor cells are central to this process, and the question of how the nephron progenitor cell population balances epithelial differentiation with renewal in the progenitor state is a subject of particular interest. Key growth factor signaling pathways and transcription factor networks are discussed.


Assuntos
Diferenciação Celular/genética , Desenvolvimento Fetal/genética , Rim/crescimento & desenvolvimento , Néfrons/crescimento & desenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Rim/metabolismo , Néfrons/metabolismo , Organogênese/genética , Transdução de Sinais/genética , Células-Tronco/citologia
9.
Mol Cell ; 84(11): 2119-2134.e5, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848691

RESUMO

Protein synthesis is metabolically costly and must be tightly coordinated with changing cellular needs and nutrient availability. The cap-binding protein eIF4E makes the earliest contact between mRNAs and the translation machinery, offering a key regulatory nexus. We acutely depleted this essential protein and found surprisingly modest effects on cell growth and recovery of protein synthesis. Paradoxically, impaired protein biosynthesis upregulated genes involved in the catabolism of aromatic amino acids simultaneously with the induction of the amino acid biosynthetic regulon driven by the integrated stress response factor GCN4. We further identified the translational control of Pho85 cyclin 5 (PCL5), a negative regulator of Gcn4, that provides a consistent protein-to-mRNA ratio under varied translation environments. This regulation depended in part on a uniquely long poly(A) tract in the PCL5 5' UTR and poly(A) binding protein. Collectively, these results highlight how eIF4E connects protein synthesis to metabolic gene regulation, uncovering mechanisms controlling translation during environmental challenges.


Assuntos
Aminoácidos , Fator de Iniciação 4E em Eucariotos , Regulação Fúngica da Expressão Gênica , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Regiões 5' não Traduzidas , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli(A)/genética
10.
Mol Cell ; 83(21): 3921-3930.e7, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37890482

RESUMO

The enzymatic activity of the SARS-CoV-2 nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain is essential for viral propagation, with three distinct activities associated with modification of the nsp9 N terminus, NMPylation, RNAylation, and deRNAylation/capping via a GDP-polyribonucleotidyltransferase reaction. The latter two activities comprise an unconventional mechanism for initiating viral RNA 5' cap formation, while the role of NMPylation is unclear. The structural mechanisms for these diverse enzymatic activities have not been properly delineated. Here, we determine high-resolution cryoelectron microscopy (cryo-EM) structures of catalytic intermediates for the NMPylation and deRNAylation/capping reactions, revealing diverse nucleotide binding poses and divalent metal ion coordination sites to promote its repertoire of activities. The deRNAylation/capping structure explains why GDP is a preferred substrate for the capping reaction over GTP. Altogether, these findings enhance our understanding of the promiscuous coronaviral NiRAN domain, a therapeutic target, and provide an accurate structural platform for drug development.


Assuntos
COVID-19 , Nucleotidiltransferases , Humanos , Nucleotidiltransferases/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Microscopia Crioeletrônica , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA