Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Immunity ; 56(6): 1255-1268.e5, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37059107

RESUMO

In early life, susceptibility to invasive infection skews toward a small subset of microbes, whereas other pathogens associated with diseases later in life, including Streptococcus pneumoniae (Spn), are uncommon among neonates. To delineate mechanisms behind age-dependent susceptibility, we compared age-specific mouse models of invasive Spn infection. We show enhanced CD11b-dependent opsonophagocytosis by neonatal neutrophils improved protection against Spn during early life. The augmented function of neonatal neutrophils was mediated by higher CD11b surface expression at the population level due to dampened efferocytosis, which also resulted in more CD11bhi "aged" neutrophils in peripheral blood. Dampened efferocytosis during early life could be attributed to the lack of CD169+ macrophages in neonates and reduced systemic expressions of multiple efferocytic mediators, including MerTK. On experimentally impairing efferocytosis later in life, CD11bhi neutrophils increased and protection against Spn improved. Our findings reveal how age-dependent differences in efferocytosis determine infection outcome through the modulation of CD11b-driven opsonophagocytosis and immunity.


Assuntos
Neutrófilos , Fagocitose , Camundongos , Animais , Humanos , Macrófagos/metabolismo , Streptococcus pneumoniae , c-Mer Tirosina Quinase
2.
Immunity ; 50(1): 225-240.e4, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635238

RESUMO

Infants have a higher risk of developing allergic asthma than adults. However, the underlying mechanism remains unknown. We show here that sensitization of mice with house-dust mites (HDMs) in the presence of low-dose lipopolysaccharide (LPS) prevented T helper 2 (Th2) cell allergic responses in adult, but not infant, mice. Mechanistically, adult CD11b+ migratory dendritic cells (mDCs) upregulated the transcription factor T-bet in response to tumor necrosis factor-α (TNF-α), which was rapidly induced after HDM + LPS sensitization. Consequently, adult CD11b+ mDCs produced interleukin-12 (IL-12), which prevented Th2 cell development by promoting T-bet upregulation in responding T cells. Conversely, infants failed to induce TNF-α after HDM + LPS sensitization. Therefore, CD11b+ mDCs failed to upregulate T-bet and did not secrete IL-12 and Th2 cell responses normally developed in infant mice. Thus, the availability of TNF-α dictates the ability of CD11b+ mDCs to suppress allergic Th2-cell responses upon dose-dependent endotoxin sensitization and is a key mediator governing susceptibility to allergic airway inflammation in infant mice.


Assuntos
Células Dendríticas/fisiologia , Hipersensibilidade/imunologia , Inflamação/imunologia , Células Th2/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Animais , Animais Recém-Nascidos , Antígenos de Dermatophagoides , Diferenciação Celular , Humanos , Imunização , Lactente , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pyroglyphidae/imunologia , Proteínas com Domínio T/metabolismo
3.
EMBO Rep ; 25(6): 2550-2570, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38730209

RESUMO

Transmembrane protein 268 (TMEM268) is a novel, tumor growth-related protein first reported by our laboratory. It interacts with the integrin subunit ß4 (ITGB4) and plays a positive role in the regulation of the ITGB4/PLEC signaling pathway. Here, we investigated the effects and mechanism of TMEM268 in anti-infectious immune response in mice. Tmem268 knockout in mice aggravated cecal ligation and puncture-induced sepsis, as evidenced by higher bacterial burden in various tissues and organs, congestion, and apoptosis. Moreover, Tmem268 deficiency in mice inhibited phagocyte adhesion and migration, thus decreasing phagocyte infiltration at the site of infection and complement-dependent phagocytosis. Further findings indicated that TMEM268 interacts with CD11b and inhibits its degradation via the endosome-lysosome pathway. Our results reveal a positive regulatory role of TMEM268 in ß2 integrin-associated anti-infectious immune responses and signify the potential value of targeting the TMEM268-CD11b signaling axis for the maintenance of immune homeostasis and immunotherapy for sepsis and related immune disorders.


Assuntos
Antígeno CD11b , Proteínas de Membrana , Camundongos Knockout , Sepse , Transdução de Sinais , Animais , Humanos , Camundongos , Antígeno CD11b/metabolismo , Antígeno CD11b/genética , Adesão Celular/genética , Movimento Celular/genética , Regulação para Baixo , Endossomos/metabolismo , Deleção de Genes , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Fagócitos/metabolismo , Fagócitos/imunologia , Fagocitose , Sepse/genética , Sepse/imunologia , Sepse/metabolismo
4.
Stem Cells ; 42(5): 403-415, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310524

RESUMO

Polymorphonuclear neutrophils (PMNs), the predominant immune cell type in humans, have long been known as first-line effector cells against bacterial infections mainly through phagocytosis and production of reactive oxygen species (ROS). However, recent research has unveiled novel and pivotal roles of these abundant but short-lived granulocytes in health and disease. Human mesenchymal stromal/stem cells (MSCs), renowned for their regenerative properties and modulation of T lymphocytes from effector to regulatory phenotypes, exhibit complex and context-dependent interactions with PMNs. Regardless of species or source, MSCs strongly abrogate PMN apoptosis, a critical determinant of PMN function, except if PMNs are highly stimulated. MSCs also have the capacity to fine-tune PMN activation, particularly in terms of CD11b expression and phagocytosis. Moreover, MSCs can modulate numerous other PMN functions, spanning migration, ROS production, and neutrophil extracellular trap (NET) formation/NETosis, but directionality is remarkably dependent on the underlying context: in normal nondiseased conditions, MSCs enhance PMN migration and ROS production, whereas in inflammatory conditions, MSCs reduce both these functions and NETosis. Furthermore, the state of the MSCs themselves, whether isolated from diseased or healthy donors, and the specific secreted products and molecules, can impact interactions with PMNs; while healthy MSCs prevent PMN infiltration and NETosis, MSCs isolated from patients with cancer promote these functions. This comprehensive analysis highlights the intricate interplay between PMNs and MSCs and its profound relevance in healthy and pathological conditions, shedding light on how to best strategize the use of MSCs in the expanding list of diseases with PMN involvement.


Assuntos
Células-Tronco Mesenquimais , Neutrófilos , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Fagocitose
5.
J Biol Chem ; 299(4): 103024, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796515

RESUMO

CD47 is a ubiquitously expressed cell surface integrin-associated protein. Recently, we have demonstrated that integrin Mac-1 (αMß2, CD11b/CD18, CR3), the major adhesion receptor on the surface of myeloid cells, can be coprecipitated with CD47. However, the molecular basis for the CD47-Mac-1 interaction and its functional consequences remain unclear. Here, we demonstrated that CD47 regulates macrophage functions directly interacting with Mac-1. In particular, adhesion, spreading, migration, phagocytosis, and fusion of CD47-deficient macrophages were significantly decreased. We validated the functional link between CD47 and Mac-1 by coimmunoprecipitation analysis using various Mac-1-expressing cells. In HEK293 cells expressing individual αM and ß2 integrin subunits, CD47 was found to bind both subunits. Interestingly, a higher amount of CD47 was recovered with the free ß2 subunit than in the complex with the whole integrin. Furthermore, activating Mac-1-expressing HEK293 cells with phorbol 12-myristate 13-acetate (PMA), Mn2+, and activating antibody MEM48 increased the amount of CD47 in complex with Mac-1, suggesting CD47 has a greater affinity for the extended integrin conformation. Notably, on the surface of cells lacking CD47, fewer Mac-1 molecules could convert into an extended conformation in response to activation. Additionally, we identified the binding site in CD47 for Mac-1 in its constituent IgV domain. The complementary binding sites for CD47 in Mac-1 were localized in integrin epidermal growth factor-like domains 3 and 4 of the ß2 and calf-1 and calf-2 domains of the αM subunits. These results indicate that Mac-1 forms a lateral complex with CD47, which regulates essential macrophage functions by stabilizing the extended integrin conformation.


Assuntos
Antígeno CD47 , Antígeno de Macrófago 1 , Humanos , Antígenos CD18/metabolismo , Antígeno CD47/genética , Adesão Celular/fisiologia , Células HEK293 , Antígeno de Macrófago 1/metabolismo , Macrófagos/metabolismo , Antígeno CD11b/metabolismo
6.
Curr Issues Mol Biol ; 46(4): 2946-2960, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38666914

RESUMO

Targeting the FLT3 receptor and the IL-1R associated kinase 4 as well as the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The FLT3 and IRAK4 inhibitor emavusertib (CA4948), the MCL1 inhibitor S63845, the BCL2 inhibitor venetoclax, and the HSP90 inhibitor PU-H71 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells in vitro. AML cells represented all major morphologic and molecular subtypes, including FLT3-ITD and NPM1 mutant AML cell lines and a variety of patient-derived AML cells. Emavusertib in combination with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in MOLM-13 cells. In primary AML cells, the response to emavusertib was associated with the presence of the FLT3 gene mutation with an allelic ratio >0.5 and the presence of NPM1 gene mutations. S63845 was effective in all tested AML cell lines and primary AML samples. Blast cell percentage was positively associated with the response to CA4948, S63845, and venetoclax, with elevated susceptibility of primary AML with blast cell fraction >80%. Biomarkers of the response to venetoclax included the blast cell percentage and bone marrow infiltration rate, as well as the expression levels of CD11b, CD64, and CD117. Elevated susceptibility to CA4948 combination treatments with S63845 or PU-H71 was associated with FLT3-mutated AML and CD34 < 30%. The combination of CA4948 and BH3-mimetics may be effective in the treatment in FLT3-mutated AML with differential target specificity for MCL1 and BCL2 inhibitors. Moreover, the combination of CA4948 and PU-H71 may be a candidate combination treatment in FLT3-mutated AML.

7.
J Neuroinflammation ; 21(1): 144, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822334

RESUMO

Cumulative evidence has established that Interferon (IFN)-γ has both pathogenic and protective roles in Multiple Sclerosis and the animal model, Experimental Autoimmune Encephalomyelitis (EAE). However, the underlying mechanisms to the beneficial effects of IFN-γ are not well understood. In this study, we found that IFN-γ exerts therapeutic effects on chronic, relapsing-remitting, and chronic progressive EAE models. The frequency of regulatory T (Treg) cells in spinal cords from chronic EAE mice treated with IFN-γ was significantly increased with no effect on Th1 and Th17 cells. Consistently, depletion of FOXP3-expressing cells blocked the protective effects of IFN-γ, indicating that the therapeutic effect of IFN-γ depends on the presence of Treg cells. However, IFN-γ did not trigger direct in vitro differentiation of Treg cells. In vivo administration of blocking antibodies against either interleukin (IL)-10, transforming growth factor (TGF)-ß or program death (PD)-1, revealed that the protective effects of IFN-γ in EAE were also dependent on TGF-ß and PD-1, but not on IL-10, suggesting that IFN-γ might have an indirect role on Treg cells acting through antigen-presenting cells. Indeed, IFN-γ treatment increased the frequency of a subset of splenic CD11b+ myeloid cells expressing TGF-ß-Latency Associated Peptide (LAP) and program death ligand 1 (PD-L1) in a signal transducer and activator of transcription (STAT)-1-dependent manner. Furthermore, splenic CD11b+ cells from EAE mice preconditioned in vitro with IFN-γ and myelin oligodendrocyte glycoprotein (MOG) peptide exhibited a tolerogenic phenotype with the capability to induce conversion of naïve CD4+ T cells mediated by secretion of TGF-ß. Remarkably, adoptive transfer of splenic CD11b+ cells from IFN-γ-treated EAE mice into untreated recipient mice ameliorated clinical symptoms of EAE and limited central nervous system infiltration of mononuclear cells and effector helper T cells. These results reveal a novel cellular and molecular mechanism whereby IFN-γ promotes beneficial effects in EAE by endowing splenic CD11b+ myeloid cells with tolerogenic and therapeutic activities.


Assuntos
Antígeno CD11b , Encefalomielite Autoimune Experimental , Interferon gama , Camundongos Endogâmicos C57BL , Células Mieloides , Baço , Animais , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Camundongos , Interferon gama/metabolismo , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Baço/imunologia , Antígeno CD11b/metabolismo , Feminino , Glicoproteína Mielina-Oligodendrócito/toxicidade , Glicoproteína Mielina-Oligodendrócito/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Fatores de Transcrição Forkhead/metabolismo , Modelos Animais de Doenças
8.
Clin Exp Immunol ; 216(3): 252-261, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38310540

RESUMO

Psoriasis is a chronic inflammatory skin disease with a characteristic isomorphic reaction, i.e. the Köbner reaction, induced by slight epidermal trauma. In this study, the tape-stripping technique was used to induce the development of Köbner reaction in 18 subjects with psoriasis. Eight subjects developed a positive reaction. To study the early cellular changes, skin biopsies were taken at the baseline and subsequent time points of 2 h, 1 d, 3 d, and 7 d for the immunostaining of complement C3c, iC3b, and cells expressing complement receptor 3 (CD11b/CD18; a receptor of iC3b) or CD14. The results show that the positive Köbner reaction is associated with rapid (2 h-1 d) and sustained (3-7 d) increase in the expression of epidermal C3c and iC3b and dermal C3c. In addition, there was a positive correlation between CD11b+ and CD14+ cells in baseline and 2 h-1 d biopsies with a subsequent increase in CD11b+ and CD14+ cells in 3-7 d biopsies in the Köbner-positive group. In the Köbner-negative group, only a transient increase in epidermal iC3b at 2 h-1 d, as well as rapid (2 h-1 d) and sustained increase (3-7 d) in dermal iC3b and CD14+ cells, was observed. In experiments with cultured monolayer keratinocytes, a slight cell damage already at 30 mJ/cm2 ultraviolet B irradiation led to increased expression of C3c, but not iC3b. Therefore, there are marked differences between Köbner groups in respect to the expression of C3c, iC3b, and cells expressing CD11b or CD14. Of note is the rapid and sustained increase in epidermal C3c and iC3b in the positive Köbner reaction.


Assuntos
Antígeno CD11b , Complemento C3b , Receptores de Lipopolissacarídeos , Psoríase , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Psoríase/imunologia , Psoríase/metabolismo , Feminino , Antígeno CD11b/metabolismo , Adulto , Pessoa de Meia-Idade , Complemento C3b/metabolismo , Complemento C3b/imunologia , Pele/patologia , Pele/imunologia , Pele/metabolismo , Pele/efeitos da radiação , Biópsia , Epiderme/metabolismo , Epiderme/imunologia , Epiderme/patologia
9.
Virol J ; 21(1): 158, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004752

RESUMO

BACKGROUND: West Nile virus (WNV) is a rapidly spreading mosquito-borne virus accounted for neuroinvasive diseases. An insight into WNV-host factors interaction is necessary for development of therapeutic approaches against WNV infection. CD11b has key biological functions and been identified as a therapeutic target for several human diseases. The purpose of this study was to determine whether CD11b was implicated in WNV infection. METHODS: SH-SY5Y cells with and without MEK1/2 inhibitor U0126 or AKT inhibitor MK-2206 treatment were infected with WNV. CD11b mRNA levels were assessed by real-time PCR. WNV replication and expression of stress (ATF6 and CHOP), pro-inflammatory (TNF-α), and antiviral (IFN-α, IFN-ß, and IFN-γ) factors were evaluated in WNV-infected SH-SY5Y cells with CD11b siRNA transfection. Cell viability was determined by MTS assay. RESULTS: CD11b mRNA expression was remarkably up-regulated by WNV in a time-dependent manner. U0126 but not MK-2206 treatment reduced the CD11b induction by WNV. CD11b knockdown significantly decreased WNV replication and protected the infected cells. CD11b knockdown markedly increased TNF-α, IFN-α, IFN-ß, and IFN-γ mRNA expression induced by WNV. ATF6 mRNA expression was reduced upon CD11b knockdown following WNV infection. CONCLUSION: These results demonstrate that CD11b is involved in maintaining WNV replication and modulating inflammatory as well as antiviral immune response, highlighting the potential of CD11b as a target for therapeutics for WNV infection.


Assuntos
Antígeno CD11b , Replicação Viral , Vírus do Nilo Ocidental , Humanos , Replicação Viral/efeitos dos fármacos , Vírus do Nilo Ocidental/fisiologia , Vírus do Nilo Ocidental/imunologia , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Linhagem Celular Tumoral , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/virologia , Neuroblastoma/imunologia , Neuroblastoma/virologia , Interações Hospedeiro-Patógeno/imunologia , Sobrevivência Celular/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética
10.
Immun Ageing ; 21(1): 22, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570827

RESUMO

Human old aged unmutated chronic lymphocytic leukemia U-CLL are the TCL1+ZAP70+CD5+ B cells. Since CD5 makes the BCR signaling tolerance, ZAP70 increased in U-CLL not only TCL1+ alone. In mice, TCL1 (TCL1A) is the negative from neonate to old aged, as TC-. VH8-12/Vk21-5 is the anti-thymocyte/Thy-1 autoreactive ATA B cell. When ATA µκTg generation in mice, ATA B cells are the neonate generated CD5+ B cells in B-1, and in the middle age, CD5+ can be down or continuously CD5+, then, old aged CLL/lymphoma generation with increased CD11b in TC-ZAP70-CD5- or TC-ZAP70+CD5+. In this old aged TC-ATA B microarray analysis showed most similar to human CLL and U-CLL, and TC-ZAP70+CD5+ showed certain higher present as U-CLL. Original neonate ATA B cells showed with several genes down or further increase in old aged tumor, and old aged T-bet+CD11c+, CTNNB1hi, HMGBhi, CXCR4hi, DPP4hi and decreased miR181b. These old aged increased genes and down miR181b are similar to human CLL. Also, in old age ATA B cell tumor, high CD38++CD44++, increased Ki67+ AID+, and decreased CD180- miR15Olow are similar to U-CLL. In this old aged ATA B, increased TLR7,9 and Wnt10b. TC+Tg generated with ATAµκTg mice occurred middle age tumor as TC+ZAP70-CD5+ or TC+ZAP70+CD5+, with high NF-kB1, TLR4,6 and Wnt5b,6 without increased CD11b. Since neonatal state to age with TC+Tg continuously, middle age CLL/lymphoma generation is not similar to old aged generated, however, some increased in TC+ZAP70+ are similar to the old age TC- ATA B tumor. Then, TC- ATA B old age tumor showed some difference to human CLL. ATA B cells showed CD11b+CD22++, CD24 down, and hepcidin Hamp2++ with iron down. This mouse V8-12 similar to human V2-5, and V2-5 showed several cancers with macrophages/neutrophils generated hepcidin+ ironlow or some showed hepcidin- iron+ with tumor, and mouse V8-12 with different Vk19-17 generate MZ B cells strongly increased macrophage++ in old aged and generated intestine/colon tumor. Conclusion, neonate generated TC-ATA B1 cells in old aged tumor generation are CD11b+ in the leukemia CLL together with lymphoma cancer with hepcidin-related Hamp2++ in B-1 cell generation to control iron.

11.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649207

RESUMO

Tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) also has an immunological function to suppress T cell activation in inflammatory circumstances, including graft-versus-host disease (GVHD), a fatal complication after allogeneic bone marrow transplantation (allo-BMT). Although the mononuclear cell expression of IDO1 has been associated with improved outcomes in GVHD, the underlying mechanisms remain unclear. Herein, we used IDO-deficient (Ido1-/-) BMT to understand why myeloid IDO limits the severity of GVHD. Hosts with Ido1-/- BM exhibited increased lethality, with enhanced proinflammatory and reduced regulatory T cell responses compared with wild type (WT) allo-BMT controls. Despite the comparable expression of the myeloid-derived suppressor cell (MDSC) mediators, arginase-1, inducible nitric oxide synthase, and interleukin 10, Ido1-/- Gr-1+CD11b+ cells from allo-BMT or in vitro BM culture showed compromised immune-suppressive functions and were skewed toward the Ly6ClowLy6Ghi subset, compared with the WT counterparts. Importantly, Ido1-/-Gr-1+CD11b+ cells exhibited elevated levels of reactive oxygen species (ROS) and neutrophil numbers. These characteristics were rescued by human IDO1 with intact heme-binding and catalytic activities and were recapitulated by the treatment of WT cells with the IDO1 inhibitor L1-methyl tryptophan. ROS scavenging by N-acetylcysteine reverted the Ido1-/-Gr-1+CD11b+ composition and function to an MDSC state, as well as improved the survival of GVHD hosts with Ido1-/- BM. In summary, myeloid-derived IDO1 enhances GVHD survival by regulating ROS levels and limiting the ability of Gr-1+CD11b+ MDSCs to differentiate into proinflammatory neutrophils. Our findings provide a mechanistic insight into the immune-regulatory roles of the metabolic enzyme IDO1.


Assuntos
Transplante de Medula Óssea , Doença Enxerto-Hospedeiro/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Células Supressoras Mieloides/imunologia , Espécies Reativas de Oxigênio/imunologia , Aloenxertos , Animais , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Camundongos , Camundongos Knockout
12.
J Biol Chem ; 298(8): 102168, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35738398

RESUMO

The integrin receptor αMß2 mediates phagocytosis of complement-opsonized objects, adhesion to the extracellular matrix, and transendothelial migration of leukocytes. However, the mechanistic aspects of αMß2 signaling upon ligand binding are unclear. Here, we present the first atomic structure of the human αMß2 headpiece fragment in complex with the nanobody (Nb) hCD11bNb1 at a resolution of 3.2 Å. We show that the receptor headpiece adopts the closed conformation expected to exhibit low ligand affinity. The crystal structure indicates that in the R77H αM variant, associated with systemic lupus erythematosus, the modified allosteric relationship between ligand binding and integrin outside-inside signaling is due to subtle conformational effects transmitted over a distance of 40 Å. Furthermore, we found the Nb binds to the αI domain of the αM subunit in an Mg2+-independent manner with low nanomolar affinity. Biochemical and biophysical experiments with purified proteins demonstrated that the Nb acts as a competitive inhibitor through steric hindrance exerted on the thioester domain of complement component iC3b attempting to bind the αM subunit. Surprisingly, we show that the Nb stimulates the interaction of cell-bound αMß2 with iC3b, suggesting that it may represent a novel high-affinity proteinaceous αMß2-specific agonist. Taken together, our data suggest that the iC3b-αMß2 complex may be more dynamic than predicted from the crystal structure of the core complex. We propose a model based on the conformational spectrum of the receptor to reconcile these observations regarding the functional consequences of hCD11bNb1 binding to αMß2.


Assuntos
Complemento C3b , Antígeno de Macrófago 1 , Antígenos CD18/metabolismo , Complemento C3b/metabolismo , Humanos , Integrinas , Leucócitos/metabolismo , Ligantes , Antígeno de Macrófago 1/metabolismo
13.
Lab Invest ; 103(8): 100179, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37224922

RESUMO

In critically ill patients infected with SARS-CoV-2, early leukocyte recruitment to the respiratory system was found to be orchestrated by leukocyte trafficking molecules accompanied by massive secretion of proinflammatory cytokines and hypercoagulability. Our study aimed to explore the interplay between leukocyte activation and pulmonary endothelium in different disease stages of fatal COVID-19. Our study comprised 10 COVID-19 postmortem lung specimens and 20 control lung samples (5 acute respiratory distress syndrome, 2 viral pneumonia, 3 bacterial pneumonia, and 10 normal), which were stained for antigens representing the different steps of leukocyte migration: E-selectin, P-selectin, PSGL-1, ICAM1, VCAM1, and CD11b. Image analysis software QuPath was used for quantification of positive leukocytes (PSGL-1 and CD11b) and endothelium (E-selectin, P-selectin, ICAM1, VCAM1). Expression of IL-6 and IL-1ß was quantified by RT-qPCR. Expression of P-selectin and PSGL-1 was strongly increased in the COVID-19 cohort compared with all control groups (COVID-19:Controls, 17:23, P < .0001; COVID-19:Controls, 2:75, P < .0001, respectively). Importantly, P-selectin was found in endothelial cells and associated with aggregates of activated platelets adherent to the endothelial surface in COVID-19 cases. In addition, PSGL-1 staining disclosed positive perivascular leukocyte cuffs, reflecting capillaritis. Moreover, CD11b showed a strongly increased positivity in COVID-19 compared with all controls (COVID-19:Controls, 2:89; P = .0002), indicating a proinflammatory immune microenvironment. Of note, CD11b exhibited distinct staining patterns at different stages of COVID-19 disease. Only in cases with very short disease course, high levels of IL-1ß and IL-6 mRNA were observed in lung tissue. The striking upregulation of PSGL-1 and P-selectin reflects the activation of this receptor-ligand pair in COVID-19, increasing the efficiency of initial leukocyte recruitment, thus promoting tissue damage and immunothrombosis. Our results show that endothelial activation and unbalanced leukocyte migration play a central role in COVID-19 involving the P-selectin-PSGL-1 axis.


Assuntos
COVID-19 , Selectina-P , Humanos , Selectina-P/genética , Selectina-P/metabolismo , Plaquetas/metabolismo , Células Endoteliais/metabolismo , Interleucina-6/metabolismo , SARS-CoV-2 , Leucócitos/metabolismo , Endotélio/metabolismo
14.
Angiogenesis ; 26(2): 233-248, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36371548

RESUMO

A wide range of cardiac symptoms have been observed in COVID-19 patients, often significantly influencing the clinical outcome. While the pathophysiology of pulmonary COVID-19 manifestation has been substantially unraveled, the underlying pathomechanisms of cardiac involvement in COVID-19 are largely unknown. In this multicentre study, we performed a comprehensive analysis of heart samples from 24 autopsies with confirmed SARS-CoV-2 infection and compared them to samples of age-matched Influenza H1N1 A (n = 16), lymphocytic non-influenza myocarditis cases (n = 8), and non-inflamed heart tissue (n = 9). We employed conventional histopathology, multiplexed immunohistochemistry (MPX), microvascular corrosion casting, scanning electron microscopy, X-ray phase-contrast tomography using synchrotron radiation, and direct multiplexed measurements of gene expression, to assess morphological and molecular changes holistically. Based on histopathology, none of the COVID-19 samples fulfilled the established diagnostic criteria of viral myocarditis. However, quantification via MPX showed a significant increase in perivascular CD11b/TIE2 + -macrophages in COVID-19 over time, which was not observed in influenza or non-SARS-CoV-2 viral myocarditis patients. Ultrastructurally, a significant increase in intussusceptive angiogenesis as well as multifocal thrombi, inapparent in conventional morphological analysis, could be demonstrated. In line with this, on a molecular level, COVID-19 hearts displayed a distinct expression pattern of genes primarily coding for factors involved in angiogenesis and epithelial-mesenchymal transition (EMT), changes not seen in any of the other patient groups. We conclude that cardiac involvement in COVID-19 is an angiocentric macrophage-driven inflammatory process, distinct from classical anti-viral inflammatory responses, and substantially underappreciated by conventional histopathologic analysis. For the first time, we have observed intussusceptive angiogenesis in cardiac tissue, which we previously identified as the linchpin of vascular remodeling in COVID-19 pneumonia, as a pathognomic sign in affected hearts. Moreover, we identified CD11b + /TIE2 + macrophages as the drivers of intussusceptive angiogenesis and set forward a putative model for the molecular regulation of vascular alterations.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Miocardite , Humanos , Remodelação Vascular , SARS-CoV-2 , Inflamação
15.
Cancer Immunol Immunother ; 72(3): 719-731, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36053290

RESUMO

In the tumor microenvironment (TME), one of the major functions of tumor-recruited CD11b+ cells are the suppression of the T-cell-mediated anti-tumor immune response. ß-glucan could convert the phenotype of tumor-recruited CD11b+ cells from the suppressive to the promotive, and enhanced their anti-tumor effects. However, ß-glucan could enhance the PD-1/PD-L1 expression on CD11b+ cells, while PD-1 could inhibit macrophage phagocytosis and PD-L1 could induce a co-inhibitory signal in T-cells and lead to T-cell apoptosis and anergy. These protumor effects may be reversed by PD-1/PD-L1 block therapy. In the present study, we focused on the efficacy of ß-glucan anti-tumor therapy combined with anti-PD-L1 mAb treatment, and the mechanism of their synergistic effects could be fully verified. We verified the effect of ß-glucan (i.e., inflammatory cytokine secretion of TNF-α, IL-12, IL-6, IL-1ß and the expression of immune checkpoint PD-1/PD-L1) in naïve mouse peritoneal exudate CD11b+ cells. In our mouse melanoma model, treatment with a PD-L1 blocking antibody with ß-glucan synergized tumor regression. After treatment with ß-glucan and anti-PD-L1 mAb antibody, tumor infiltrating leukocyte (TILs) not only showed a competent T-cell function (CD107a, perforin, IL-2, IFN-γ and Ki67) and CTL population, but also showed enhanced tumor-recruited CD11b+ cell activity (IL-12, IL-6, IL-1ß and PD-1). This effect was also verified in the peritoneal exudate CD11b+ cells of tumor-bearing mice. PD-1/PD-L1 blockade therapy enhanced the ß-glucan antitumor effects via the blockade of tumor-recruited CD11b+ cell immune checkpoints in the melanoma model.


Assuntos
Interleucina-6 , Melanoma , Animais , Camundongos , Receptor de Morte Celular Programada 1 , Anticorpos Monoclonais/farmacologia , Interleucina-12/farmacologia , Antígeno B7-H1 , Microambiente Tumoral , Linhagem Celular Tumoral
16.
Int Immunol ; 34(5): 249-262, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34971392

RESUMO

Activated B cells can enter germinal centers (GCs) for affinity maturation to produce high-affinity antibodies. However, which activated B cells will enter GCs remains unknown. Here, we found a small population of CD11b+IgA+ B cells located outside of GCs in murine Peyer's patches (PPs). After injection of the CD11b+IgA+ PP B cells into a PP of a recipient mouse, they entered GCs forty hours later. They expressed GC surface markers and pre-GC B cell genes, suggesting that CD11b provides a novel surface marker of pre-GC IgA+ B cells in murine PPs. Furthermore, independently of dendritic cell activation, CD11b expression on B cells can be induced by bacterial antigens, such as pam3CSK4 and heat-killed Escherichia coli in vitro. In addition, mice orally administered with pam3CSK4 or heat-killed E. coli increased the number of PP GC B cells within two days, and enhanced the mucosal antigen-specific IgA response. Our results demonstrate that the induction of CD11b on B cells is a promising marker for selecting an effective mucosal vaccine adjuvant.


Assuntos
Antígeno CD11b/imunologia , Integrinas , Nódulos Linfáticos Agregados , Animais , Escherichia coli , Centro Germinativo , Imunoglobulina A , Integrinas/metabolismo , Camundongos
17.
Cell Mol Neurobiol ; 43(3): 1369-1384, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35864429

RESUMO

Seasonal changes in peripheral inflammation are well documented in both humans and animal models, but seasonal changes in neuroinflammation, especially the impact of seasonal lighting environment on neuroinflammation remain unclear. To address this question, the present study examined the effects of environmental lighting conditions on neuroinflammation in a diurnal rodent model, Nile grass rats (Arvicanthis niloticus). Male and female grass rats were housed in either bright (brLD) or dim (dimLD) light during the day to simulate a summer or winter light condition, respectively. After 4 weeks, microglia markers Iba-1 and CD11b, as well as pro-inflammatory cytokines TNF-α and IL-6, were examined in the anterior cingulate cortex (ACC), basolateral amygdala (BLA), and dorsal hippocampus (dHipp). The results revealed that winter-like dim light during the day leads to indicators of increased neuroinflammation in a brain site- and sex-specific manner. Specifically, relatively few changes in the neuroinflammatory markers were observed in the ACC, while numerous changes were found in the BLA and dHipp. In the BLA, winter-like dimLD resulted in hyper-ramified microglia morphology and increased expression of the pro-inflammatory cytokine IL-6, but only in males. In the dHipp, dimLD led to a higher number and hyper-ramified morphology of microglia as well as increased expression of CD11b and TNF-α, but only in females. Neuroinflammatory state is thus influenced by environmental light, differently in males and females, and could play a role in sex differences in the prevalence and symptoms of psychiatric or neurological disorders that are influenced by season or other environmental light conditions. Diurnal Nile grass rats were housed under bright or dim light during the day for 4 weeks, simulating seasonal fluctuations in daytime lighting environment. Dim light housing resulted in hyper-ramified morphology of microglia (scale bar, 15 µm) and altered expression of pro-inflammatory cytokines (TNF-α) in a sex- and brain region-specific manner.


Assuntos
Encéfalo , Iluminação , Microglia , Doenças Neuroinflamatórias , Doenças Neuroinflamatórias/etiologia , Murinae , Modelos Animais , Masculino , Feminino , Animais , Encéfalo/fisiopatologia , Encéfalo/efeitos da radiação , Antígeno CD11b/análise , Antígeno CD11b/genética , Biomarcadores/análise , Regulação da Expressão Gênica/efeitos da radiação , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/genética , Interleucina-6/análise , Interleucina-6/genética , Fatores Sexuais , Microglia/metabolismo , Microglia/efeitos da radiação
18.
Cell Mol Neurobiol ; 43(1): 423-429, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34761332

RESUMO

Sex is a key biological variable in traumatic brain injury (TBI) and plays a significant role in neuroinflammatory responses. However, the molecular mechanisms contributing to this sexually dimorphic neuroinflammatory response remain elusive. Here we describe a significant and previously unreported tissue enrichment and sex-specific alteration of a set of inflammatory microRNAs (miRNAs) in CD11b+ cells of brain and bone marrow isolated from naïve mice as well as mice subjected to TBI. Our data from naïve mice demonstrated that expression levels of miR-146a-5p and miR-150-5p were relatively higher in brain CD11b+ cells, and that miR-155-5p and miR-223-3p were highly enriched in bone marrow CD11b+ cells. Furthermore, while miR-150-5p and miR-155-5p levels were higher in male brain CD11b+ cells, no significant sexual difference was observed for miR-146a-5p and miR-223-3p. However, TBI resulted in sex-specific differential responses of these miRNAs in brain CD11b+ cells. Specifically, miR-223-3p levels in brain CD11b+ cells were markedly elevated in both sexes in response to TBI at 3 and 24 h, with levels in females being significantly higher than males at 24 h. We then focused on analyzing several miR-223-3p targets and inflammation-related marker genes following injury. Corresponding to the greater elevation of miR-223-3p in females, the miR-223-3p targets, TRAF6 and FBXW7 were significantly reduced in females compared to males. Interestingly, anti-inflammatory genes ARG1 and IL4 were higher in females after TBI than in males. These observations suggest miR-223-3p and other inflammatory responsive miRNAs may play a key role in sex-specific neuroinflammatory response following TBI.


Assuntos
Lesões Encefálicas Traumáticas , MicroRNAs , Animais , Feminino , Masculino , Camundongos , Medula Óssea/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
19.
FASEB J ; 36(3): e22173, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104001

RESUMO

Dysregulated chronic inflammation plays a crucial role in the pathophysiology of atherosclerosis and may be a result of impaired resolution. Thus, restoring levels of specialized pro-resolving mediators (SPMs) to promote the resolution of inflammation has been proposed as a therapeutic strategy for patients with atherosclerosis, in addition to standard clinical care. Herein, we evaluated the effects of the SPM lipids, lipoxin A4 (LXA4 ) and lipoxin B4 (LXB4 ), on neutrophils isolated from patients with atherosclerosis compared with healthy controls. Patients displayed altered endogenous SPM production, and we demonstrated that lipoxin treatment in whole blood from atherosclerosis patients attenuates neutrophil oxidative burst, a key contributor to atherosclerotic development. We found the opposite effect in neutrophils from healthy controls, indicating a potential mechanism whereby lipoxins aid the endogenous neutrophil function in health but reduce its excessive activation in disease. We also demonstrated that lipoxins attenuated upregulation of the high-affinity conformation of the CD11b/CD18 integrin, which plays a central role in clot activation and atherosclerosis. Finally, LXB4 enhanced lymphatic transmigration of human neutrophils isolated from patients with atherosclerosis. This finding is noteworthy, as impaired lymphatic function is now recognized as an important contributor to atherosclerosis. Although both lipoxins modulated neutrophil function, LXB4 displayed more potent effects than LXA4 in humans. This study highlights the therapeutic potential of lipoxins in atherosclerotic disease and demonstrates that the effect of these SPMs may be specifically tailored to the need of the individual.


Assuntos
Aterosclerose/metabolismo , Integrinas/metabolismo , Lipoxinas/metabolismo , Neutrófilos/metabolismo , Explosão Respiratória/fisiologia , Idoso , Feminino , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade
20.
Exp Parasitol ; 252: 108585, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437683

RESUMO

Trichinella parasites have developed specific mechanisms allowing successful completion of their life cycle. These mechanisms are in a great part involved in immunomodulation and studying them may provide a valuable insight into the functioning of the immune system. Trichinella products may be also used as potential therapeutic agents to treat immune diseases. This study investigates the immunomodulatory potential of recombinant multi cystatin-like protein (CLP) derived from T. britovi to determine whether CLP has anti-inflammatory properties in vitro. CLP is a highly antigenic glycoprotein present in Trichinella excetory-secretory (ES) products. AlphaFold structure prediction confirms that it consists of three type-two cystatin-like domains. Mouse splenocytes were stimulated in vitro with lipopolysaccharide (LPS) and co-stimulated with recombinant CLP. The culture supernatants were collected and tested for secreted cytokine levels using ELISA. CLP was found to reduce LPS-induced secretion of inflammatory cytokines TNFα and IL-6. On the contrary, in some experimental groups, co-stimulation with CLP resulted in increased secretion of the regulatory cytokine IL-10. The obtained results indicate that CLP has anti-inflammatory properties and future research on its function is advisable, specifically in the context of the therapy of inflammatory disorders.


Assuntos
Cistatinas , Trichinella spiralis , Trichinella , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Baço/metabolismo , Citocinas/metabolismo , Cistatinas/farmacologia , Cistatinas/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/metabolismo , Imunomodulação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA