Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Immunity ; 54(9): 2101-2116.e6, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34469775

RESUMO

Tissue macrophages are immune cells whose phenotypes and functions are dictated by origin and niches. However, tissues are complex environments, and macrophage heterogeneity within the same organ has been overlooked so far. Here, we used high-dimensional approaches to characterize macrophage populations in the murine liver. We identified two distinct populations among embryonically derived Kupffer cells (KCs) sharing a core signature while differentially expressing numerous genes and proteins: a major CD206loESAM- population (KC1) and a minor CD206hiESAM+ population (KC2). KC2 expressed genes involved in metabolic processes, including fatty acid metabolism both in steady-state and in diet-induced obesity and hepatic steatosis. Functional characterization by depletion of KC2 or targeted silencing of the fatty acid transporter Cd36 highlighted a crucial contribution of KC2 in the liver oxidative stress associated with obesity. In summary, our study reveals that KCs are more heterogeneous than anticipated, notably describing a subpopulation wired with metabolic functions.


Assuntos
Antígenos CD36/metabolismo , Células de Kupffer/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Estresse Oxidativo/fisiologia , Animais , Camundongos
2.
Immunity ; 50(6): 1439-1452.e5, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31178352

RESUMO

Hematopoietic stem cells (HSCs) are generated from specialized endothelial cells of the embryonic aorta. Inflammatory factors are implicated in regulating mouse HSC development, but which cells in the aorta-gonad-mesonephros (AGM) microenvironment produce these factors is unknown. In the adult, macrophages play both pro- and anti-inflammatory roles. We sought to examine whether macrophages or other hematopoietic cells found in the embryo prior to HSC generation were involved in the AGM HSC-generative microenvironment. CyTOF analysis of CD45+ AGM cells revealed predominance of two hematopoietic cell types, mannose-receptor positive macrophages and mannose-receptor negative myeloid cells. We show here that macrophage appearance in the AGM was dependent on the chemokine receptor Cx3cr1. These macrophages expressed a pro-inflammatory signature, localized to the aorta, and dynamically interacted with nascent and emerging intra-aortic hematopoietic cells (IAHCs). Importantly, upon macrophage depletion, no adult-repopulating HSCs were detected, thus implicating a role for pro-inflammatory AGM-associated macrophages in regulating the development of HSCs.


Assuntos
Diferenciação Celular , Desenvolvimento Embrionário , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/metabolismo , Animais , Biomarcadores , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Imunofluorescência , Imunofenotipagem , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Células Mieloides/citologia , Células Mieloides/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(6): e2313185121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38300872

RESUMO

Efficient removal of fibrillar collagen is essential for adaptive subcutaneous adipose tissue (SAT) expansion that protects against ectopic lipid deposition during weight gain. Here, we used mice to further define the mechanism for this collagenolytic process. We show that loss of collagen type-1 (CT1) and increased CT1-fragment levels in expanding SAT are associated with proliferation of resident M2-like macrophages that display increased CD206-mediated engagement in collagen endocytosis compared to chow-fed controls. Blockage of CD206 during acute high-fat diet-induced weight gain leads to SAT CT1-fragment accumulation associated with elevated inflammation and fibrosis markers. Moreover, these SAT macrophages' engagement in collagen endocytosis is diminished in obesity associated with elevated levels collagen fragments that are too short to assemble into triple helices. We show that such short fragments provoke M2-macrophage proliferation and fibroinflammatory changes in fibroblasts. In conclusion, our data delineate the importance of a macrophage-collagen fragment axis in physiological SAT expansion. Therapeutic targeting of this process may be a means to prevent pathological adipose tissue remodeling, which in turn may reduce the risk for obesity-related metabolic disorders.


Assuntos
Obesidade , Aumento de Peso , Camundongos , Animais , Obesidade/metabolismo , Aumento de Peso/fisiologia , Macrófagos/metabolismo , Colágeno/metabolismo , Inflamação/metabolismo , Colágeno Tipo I/metabolismo , Gordura Subcutânea/metabolismo , Gordura Subcutânea/patologia , Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos
4.
J Hepatol ; 81(2): 207-217, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38508241

RESUMO

BACKGROUND & AIMS: Hepatic stellate cells (HSCs) are the key drivers of fibrosis in metabolic dysfunction-associated steatohepatitis (MASH), the fastest growing cause of hepatocellular carcinoma (HCC) worldwide. HSCs are heterogenous, and a senescent subset of HSCs is implicated in hepatic fibrosis and HCC. Administration of anti-uPAR (urokinase-type plasminogen activator receptor) CAR T cells has been shown to deplete senescent HSCs and attenuate fibrosis in murine models. However, the comprehensive features of senescent HSCs in MASH, as well as their cellular ontogeny have not been characterized; hence, we aimed to comprehensively characterize and define the origin of HSCs in human and murine MASH. METHODS: To comprehensively characterize the phenotype and ontogeny of senescent HSCs in human and murine MASH, we integrated senescence-associated beta galactosidase activity with immunostaining, flow cytometry and single-nucleus RNA sequencing (snRNAseq). We integrated the immunohistochemical profile with a senescence score applied to snRNAseq data to characterize senescent HSCs and mapped the evolution of uPAR expression in MASH. RESULTS: Using pseudotime trajectory analysis, we establish that senescent HSCs arise from activated HSCs. While uPAR is expressed in MASH, the magnitude and cell-specificity of its expression evolve with disease stage. In early disease, uPAR is more specific to activated and senescent HSCs, while it is also expressed by myeloid-lineage cells, including Trem2+ macrophages and myeloid-derived suppressor cells, in late disease. Furthermore, we identify novel surface proteins expressed on senescent HSCs in human and murine MASH that could be exploited as therapeutic targets. CONCLUSIONS: These data define features of HSC senescence in human and murine MASH, establishing an important blueprint to target these cells as part of future antifibrotic therapies. IMPACT AND IMPLICATIONS: Hepatic stellate cells (HSCs) are the primary drivers of scarring in chronic liver diseases. As injury develops, a subset of HSCs become senescent; these cells are non-proliferative and pro-inflammatory, thereby contributing to worsening liver injury. Here we show that senescent HSCs are expanded in MASH (metabolic dysfunction-associated steatohepatitis) in humans and mice, and we trace their cellular origin from the activated HSC subset. We further characterize expression of uPAR (urokinase plasminogen activated receptor), a protein that marks senescent HSCs, and report that uPAR is also expressed by activated HSCs in early injury, and in immune cells as liver injury advances. We have integrated high-resolution single-nucleus RNA sequencing with immunostaining and flow cytometry to identify five other novel proteins expressed by senescent HSCs, including mannose receptor CD206, which will facilitate future therapeutic development.


Assuntos
Senescência Celular , Células Estreladas do Fígado , Fenótipo , Células Estreladas do Fígado/metabolismo , Senescência Celular/fisiologia , Animais , Humanos , Camundongos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL
5.
Eur J Nucl Med Mol Imaging ; 51(8): 2216-2228, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38532026

RESUMO

PURPOSE: Aluminum fluoride-18-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid-conjugated mannosylated dextran derivative (Al[18F]F-NOTA-D10CM) is a new tracer for PET imaging. We report here on in vitro and in vivo validation of the tracer's ability to target the macrophage mannose receptor CD206. METHODS: First, the uptake of intravenously (i.v.) administered Al[18F]F-NOTA-D10CM was compared between wild-type (WT) and CD206-/- knockout (KO) mice. C57BL/6N mice were injected with complete Freund's adjuvant (CFA) in the left hind leg and the uptake of Al[18F]F-NOTA-D10CM after i.v. or intradermal (i.d.) injection was studied at 5 and 14 days after CFA induction of inflammation. Healthy C57BL/6N mice were studied as controls. Mice underwent PET/CT on consecutive days with [18F]FDG, i.v. Al[18F]F-NOTA-D10CM, and i.d. Al[18F]F-NOTA-D10CM. After the last imaging, Al[18F]F-NOTA-D10CM was i.v. injected for an ex vivo biodistribution study and autoradiography of inflamed tissues. Blood plasma samples were analyzed using high-performance liquid chromatography. To evaluate the specificity of Al[18F]F-NOTA-D10CM binding, an in vitro competitive displacement study was performed on inflamed tissue sections using autoradiography. CD206 expression was assessed by immunohistochemical staining. RESULTS: Compared with WT mice, the uptake of Al[18F]F-NOTA-D10CM was significantly lower in several CD206-/- KO mice tissues, including liver (SUV 8.21 ± 2.51 vs. 1.06 ± 0.16, P < 0.001) and bone marrow (SUV 1.63 ± 0.37 vs. 0.22 ± 0.05, P < 0.0001). The uptake of i.v. injected Al[18F]F-NOTA-D10CM was significantly higher in inflamed ankle joint (SUV 0.48 ± 0.13 vs. 0.18 ± 0.05, P < 0.0001) and inflamed foot pad skin (SUV 0.41 ± 0.10 vs. 0.04 ± 0.01, P < 0.0001) than in the corresponding tissues in healthy mice. The i.d.-injected Al[18F]F-NOTA-D10CM revealed differences between CFA-induced lymph node activation and lymph nodes in healthy mice. Ex vivo γ-counting, autoradiography, and immunohistochemistry supported the results, and a decrease of ~ 80% in the binding of Al[18F]F-NOTA-D10CM in the displacement study with excess NOTA-D10CM confirmed that tracer binding was specific. At 60 min after i.v. injection, an average 96.70% of plasma radioactivity was derived from intact Al[18F]F-NOTA-D10CM, indicating good in vivo stability. The uptake of Al[18F]F-NOTA-D10CM into inflamed tissues was positively associated with the area percentage of CD206-positive staining. CONCLUSION: The uptake of mannosylated dextran derivative Al[18F]F-NOTA-D10CM correlated with CD206 expression and the tracer appears promising for inflammation imaging.


Assuntos
Dextranos , Radioisótopos de Flúor , Lectinas Tipo C , Receptor de Manose , Lectinas de Ligação a Manose , Receptores de Superfície Celular , Animais , Camundongos , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Lectinas de Ligação a Manose/metabolismo , Distribuição Tecidual , Dextranos/química , Manose/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Marcação por Isótopo , Compostos Heterocíclicos com 1 Anel
6.
Biochemistry (Mosc) ; 89(5): 839-852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38880645

RESUMO

Tumor-associated macrophages (TAMs) are an important component of the tumor microenvironment (TME) and the most abundant population of immune cells infiltrating a tumor. TAMs can largely determine direction of anti-tumor immune response by promoting it or, conversely, contribute to formation of an immunosuppressive TME that allows tumors to evade immune control. Through interactions with tumor cells or other cells in the microenvironment and, as a result of action of anti-cancer therapy, macrophages can enter senescence. In this review, we have attempted to summarize information available in the literature on the role of senescent macrophages in tumors. With the recent development of senolytic therapeutic strategies aimed at removing senescent cells from an organism, it seems important to discuss functions of the senescent macrophages and potential role of the senolytic drugs in reprogramming TAMs to enhance anti-tumor immune response and improve efficacy of cancer treatment.


Assuntos
Senescência Celular , Neoplasias , Microambiente Tumoral , Macrófagos Associados a Tumor , Microambiente Tumoral/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Animais , Macrófagos/imunologia , Macrófagos/metabolismo , Biomarcadores Tumorais/metabolismo
7.
Breast Cancer Res Treat ; 198(1): 11-22, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36622544

RESUMO

PURPOSE: The number of M1-like and M2-like tumour-associated macrophages (TAMs) and their ratio can play a role in breast cancer development and progression. Early clinical trials using macrophage targeting compounds are currently ongoing. However, the most optimal detection method of M1-like and M2-like macrophage subsets and their clinical relevance in breast cancer is still unclear. We aimed to optimize the assessment of TAM subsets in different breast cancer subtypes, and therefore related TAM subset numbers and ratio to clinicopathological characteristics and clinical outcome. METHODS: Tissue microarrays of 347 consecutive primary Luminal-A, Luminal-B, HER2-positive and triple-negative tumours of patients with early-stage breast cancer were serially sectioned and immunohistochemically stained for the pan-macrophage marker CD68 and the M2-like macrophage markers CD163, CSF-1R and CD206. TAM numbers were quantified using a digital image analysis algorithm. M1-like macrophage numbers were calculated by subtracting M2-like TAM numbers from the total TAM number. RESULTS: M2-like markers CD163 and CSF-1R showed a moderate positive association with each other and with CD68 (r ≥ 0.47), but only weakly with CD206 (r ≤ 0.06). CD68 + , CD163 + and CSF-1R + macrophages correlated with tumour grade in Luminal-B tumours (P < 0.001). Total or subset TAM numbers did not correlate with disease outcome in any breast cancer subtype. CONCLUSION: In conclusion, macrophages and their subsets can be detected by means of a panel of TAM markers and are related to unfavourable clinicopathological characteristics in Luminal-B breast cancer. However, their impact on outcome remains unclear. Preferably, this should be determined in prospective series.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Macrófagos Associados a Tumor/patologia , Prognóstico , Macrófagos/patologia , Antígenos de Diferenciação Mielomonocítica
8.
Respir Res ; 24(1): 309, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082274

RESUMO

Alpha-1-antitrypsin deficiency (AATD) is a genetic disorder associated with a 5-tenfold decrease in lung levels of alpha-1-antitrypsin (AAT) and an increased risk for obstructive lung disease. α-defensins are cationic broad-spectrum cytotoxic and pro-inflammatory peptides found in the azurophilic granules of neutrophils. The concentration of α-defensins is less than 30 nM in the bronchoalveolar lavage fluid of healthy controls but is up to 6 µM in AATD individuals with significant lung function impairment. Alveolar macrophages are generally classified into pro-inflammatory (M1) or anti-inflammatory (M2) subsets that play distinct roles in the initiation and resolution of inflammation. Therefore, monocyte-macrophage differentiation should be tightly controlled to maintain lung integrity. In this study, we determined the effect of α-defensins on monocyte-macrophage differentiation and identified the molecular mechanism of this effect. The results of this study demonstrate that 2.5 µM of α-defensins inhibit the phosphorylation of ERK1/2 and STAT3 and suppress the expression of M2 macrophage markers, CD163 and CD206. In addition, a scratch assay shows that the high concentration of α-defensins inhibits cell movement by ~ 50%, and the phagocytosis assay using flow cytometry shows that α-defensins significantly reduce the bacterial phagocytosis rate of monocyte-derived macrophages (MDMs). To examine whether exogenous AAT is able to alleviate the inhibitory effect of α-defensins on macrophage function, we incubated MDMs with AAT prior to α-defensin treatment and demonstrate that AAT improves the migratory ability and phagocytic ability of MDMs compared with MDMs incubated only with α-defensins. Taken together, this study suggests that a high concentration of α-defensins inhibits the activation of ERK/STAT3 signaling, negatively regulates the expression of M2 macrophage markers, and impairs innate immune function of macrophages.


Assuntos
Deficiência de alfa 1-Antitripsina , alfa-Defensinas , Humanos , Monócitos/metabolismo , alfa-Defensinas/metabolismo , Macrófagos/metabolismo , Deficiência de alfa 1-Antitripsina/metabolismo , Macrófagos Alveolares/metabolismo , Fator de Transcrição STAT3/metabolismo
9.
Brain Behav Immun ; 112: 220-234, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315702

RESUMO

Originally identified in fibroblasts, Protease Inhibitor (PI)16 was recently shown to be crucial for the development of neuropathic pain via effects on blood-nerve barrier permeability and leukocyte infiltration, though its impact on inflammatory pain has not been established. Using the complete Freund's Adjuvant inflammatory pain model, we show that Pi16-/- mice are protected against sustained inflammatory pain. Accordingly, intrathecal delivery of a PI16 neutralizing antibody in wild-type mice prevented sustained CFA pain. In contrast to neuropathic pain models, we did not observe any changes in blood-nerve barrier permeability due to PI16 deletion. Instead, Pi16-/- mice display reduced macrophage density in the CFA-injected hindpaw. Furthermore, there was a significant bias toward CD206hi (anti-inflammatory) macrophages in the hindpaw and associated dorsal root ganglia. Following CFA, intrathecal depletion of CD206+ macrophages using mannosylated clodronate liposomes promoted sustained pain in Pi16-/- mice. Similarly, an IL-10 neutralizing antibody also promoted sustained CFA pain in the Pi16-/ when administered intrathecally. Collectively, our results point to fibroblast-derived PI16 mediating substantial differences in macrophage phenotype in the pain neuroaxis under conditions of inflammation. The co-expression of PI16 alongside fibroblast markers in human DRG raise the likelihood that a similar mechanism operates in human inflammatory pain states. Collectively, our findings may have implications for targeting fibroblast-immune cell crosstalk for the treatment of chronic pain.


Assuntos
Dor Crônica , Neuralgia , Camundongos , Humanos , Animais , Inflamação , Macrófagos , Fibroblastos , Anticorpos Neutralizantes/farmacologia , Gânglios Espinais , Hiperalgesia , Proteínas de Transporte , Glicoproteínas
10.
Virol J ; 20(1): 51, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966345

RESUMO

BACKGROUND: Multiple sclerosis (MS) is characterized by neuroinflammation and demyelination orchestrated by activated neuroglial cells, CNS infiltrating leukocytes, and their reciprocal interactions through inflammatory signals. An inflammatory stimulus triggers inducible nitric oxide synthase (NOS2), a pro-inflammatory marker of microglia/macrophages (MG/Mφ) to catalyze sustained nitric oxide production. NOS2 during neuroinflammation, has been associated with MS disease pathology; however, studies dissecting its role in demyelination are limited. We studied the role of NOS2 in a recombinant ß-coronavirus-MHV-RSA59 induced neuroinflammation, an experimental animal model mimicking the pathological hallmarks of MS: neuroinflammatory demyelination and axonal degeneration. OBJECTIVE: Understanding the role of NOS2 in murine-ß-coronavirus-MHV-RSA59 demyelination. METHODS: Brain and spinal cords from mock and RSA59 infected 4-5-week-old MHV-free C57BL/6 mice (WT) and NOS2-/- mice were harvested at different disease phases post infection (p.i.) (day 5/6-acute, day 9/10-acute-adaptive and day 30-chronic phase) and compared for pathological outcomes. RESULTS: NOS2 was upregulated at the acute phase of RSA59-induced disease in WT mice and its deficiency resulted in severe disease and reduced survival at the acute-adaptive transition phase. Low survival in NOS2-/- mice was attributed to (i) high neuroinflammation resulting from increased accumulation of macrophages and neutrophils and (ii) Iba1 + phagocytic MG/Mφ mediated-early demyelination as observed at this phase. The phagocytic phenotype of CNS MG/Mφ was confirmed by significantly higher mRNA transcripts of phagocyte markers-CD206, TREM2, and Arg1 and double immunolabelling of Iba1 with MBP and PLP. Further, NOS2 deficiency led to exacerbated demyelination at the chronic phase as well. CONCLUSION: Taken together the results imply that the immune system failed to control the disease progression in the absence of NOS2. Thus, our observations highlight a protective role of NOS2 in murine-ß-coronavirus induced demyelination.


Assuntos
Infecções por Coronavirus , Doenças Desmielinizantes , Vírus da Hepatite Murina , Óxido Nítrico Sintase Tipo II , Animais , Camundongos , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina/metabolismo , Doenças Neuroinflamatórias , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores Imunológicos , Infecções por Coronavirus/patologia
11.
Mol Pharm ; 20(5): 2415-2425, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014648

RESUMO

Tumor-associated macrophages (TAMs) are large phagocytic cells that play numerous roles in cancer biology and are an important component of the relationship between immune system response and tumor progression. The peptide, RP832c, targets the Mannose Receptor (CD206) expressed on M2-like macrophages and is cross-reactive to both human and murine CD206. Additionally, it exhibits therapeutic properties through its ability to shift the population of TAMs from an M2-like (protumor) toward an M1-like phenotype (antitumor) and has demonstrated promise in inhibiting tumor resistance in PD-L1 unresponsive melanoma murine models. In addition, it has shown inhibition in bleomycin-induced pulmonary fibrosis through interactions with CD206 macrophages.1,2 Our work aims to develop a novel CD206 positron emission tomography (PET) imaging probe based on RP832c (Kd = 5.64 µM) as a direct, noninvasive method for the assessment of TAMs in mouse models of cancer. We adapted RP832c to incorporate the chelator DOTA to allow for radiolabeling with the PET isotope 68Ga (t1/2 = 68 min; ß+ = 89%). In vitro stability studies were conducted in mouse serum up to 3 h. The in vitro binding characteristics of [68Ga]RP832c to CD206 were determined by a protein plate binding assay and Surface Plasmon Resonance (SPR). PET imaging and biodistribution studies were conducted in syngeneic tumor models. Stability studies in mouse serum demonstrated that 68Ga remained complexed up to 3 h (less than 1% free 68Ga). Binding affinity studies demonstrated high binding of [68Ga]RP832c to mouse CD206 protein and that the binding of the tracer was able to be blocked significantly when incubated with a blocking solution of native RP832c. PET imaging and biodistribution studies in syngeneic tumor models demonstrated uptake in tumor and CD206 expressing organs of [68Ga]RP832c. A significant correlation was found between the percentage of CD206 present in each tumor imaged with [68Ga]RP832c and PET imaging mean standardized uptake values in a CT26 mouse model of cancer. The data shows that [68Ga]RP832c represents a promising candidate for macrophage imaging in cancer and other diseases.


Assuntos
Radioisótopos de Gálio , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Radioisótopos de Gálio/química , Macrófagos/metabolismo , Neoplasias/metabolismo , Peptídeos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual , Receptor de Manose/metabolismo
12.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762541

RESUMO

Microglial cells are the key regulators of inflammation during retinal degeneration (RD) and are conventionally classified as M1 or M2. However, whether the M1/M2 classification exactly reflects the functional classification of microglial cells in the retina remains debatable. We examined the spatiotemporal changes of microglial cells in the blue-LED and NaIO3-induced RD mice models using M1/M2 markers and functional genes. TUNEL assay was performed to detect photoreceptor cell death, and microglial cells were labeled with anti-IBA1, P2RY12, CD86, and CD206 antibodies. FACS was used to isolate microglial cells with anti-CD206 and CD86 antibodies, and qRT-PCR was performed to evaluate Il-10, Il-6, Trem-2, Apoe, and Lyz2 expression. TUNEL-positive cells were detected in the outer nuclear layer (ONL) from 24 h to 72 h post-RD induction. At 24 h, P2RY12 was decreased and CD86 was increased, and CD86/CD206 double-labeled cells occupied the dominant population at 72 h. And CD86/CD206 double-labeled cells showed a significant increase in Apoe, Trem2, and Lyz2 levels but not in those of Il-6 and Il-10. Our results demonstrate that microglial cells in active RD cannot be classified as M1 or M2, and the majority of microglia express both CD86 and CD206, which are involved in phagocytosis rather than inflammation.


Assuntos
Microglia , Degeneração Retiniana , Camundongos , Animais , Microglia/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Modelos Animais de Doenças , Fagocitose/genética , Inflamação/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
13.
J Infect Dis ; 226(10): 1823-1833, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-35856671

RESUMO

BACKGROUND: Persistent immune activation is thought to contribute to heightened atherosclerotic cardiovascular disease (ASCVD) risk among people with human immunodeficiency virus (PWH). METHODS: Participants (≥18 years) with or without human immunodeficiency virus (HIV) and without history of clinical ASCVD were enrolled. We hypothesized that increased macrophage-specific arterial infiltration would relate to plaque composition and systemic immune activation among PWH. We applied a novel targeted molecular imaging approach (technetium-99m [99mTc]-tilmanocept single photon emission computed tomography [SPECT]/CT) and comprehensive immune phenotyping. RESULTS: Aortic 99mTc-tilmanocept uptake was significantly higher among PWH (n = 20) than participants without HIV (n = 10) with similar 10-year ASCVD risk (P = .02). Among PWH, but not among participants without HIV, noncalcified aortic plaque volume related directly to aortic 99mTc-tilmanocept uptake at different uptake thresholds. An interaction (P = .001) was seen between HIV status and noncalcified plaque volume, but not calcified plaque (P = .83). Systemic levels of caspase-1 (P = .004), CD14-CD16+ (nonclassical/patrolling/homing) monocytes (P = .0004) and CD8+ T cells (P = .005) related positively and CD4+/CD8+ T-cell ratio (P = .02) inversely to aortic 99mTc-tilmanocept uptake volume. CONCLUSIONS: Macrophage-specific arterial infiltration was higher among PWH and related to noncalcified aortic plaque volume only among PWH. Key systemic markers of immune activation relating to macrophage-specific arterial infiltration may contribute to heightened ASCVD risk among PWH. CLINICAL TRIALS REGISTRATION: NCT02542371.


Assuntos
Aterosclerose , Infecções por HIV , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Infecções por HIV/tratamento farmacológico , Macrófagos , HIV
14.
J Biol Chem ; 296: 100368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33545173

RESUMO

The human mannose receptor expressed on macrophages and hepatic endothelial cells scavenges released lysosomal enzymes, glycopeptide fragments of collagen, and pathogenic microorganisms and thus reduces damage following tissue injury. The receptor binds mannose, fucose, or N-acetylglucosamine (GlcNAc) residues on these targets. C-type carbohydrate-recognition domain 4 (CRD4) of the receptor contains the site for Ca2+-dependent interaction with sugars. To investigate the details of CRD4 binding, glycan array screening was used to identify oligosaccharide ligands. The strongest signals were for glycans that contain either Manα1-2Man constituents or fucose in various linkages. The mechanisms of binding to monosaccharides and oligosaccharide substructures present in many of these ligands were examined in multiple crystal structures of CRD4. Binding of mannose residues to CRD4 results primarily from interaction of the equatorial 3- and 4-OH groups with a conserved principal Ca2+ common to almost all sugar-binding C-type CRDs. In the Manα1-2Man complex, supplementary interactions with the reducing mannose residue explain the enhanced affinity for this disaccharide. Bound GlcNAc also interacts with the principal Ca2+ through equatorial 3- and 4-OH groups, whereas fucose residues can bind in several orientations, through either the 2- and 3-OH groups or the 3- and 4-OH groups. Secondary contacts with additional sugars in fucose-containing oligosaccharides, such as the Lewis-a trisaccharide, provide enhanced affinity for these glycans. These results explain many of the biologically important interactions of the mannose receptor with both mammalian glycoproteins and microbes such as yeast and suggest additional classes of ligands that have not been previously identified.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Sítios de Ligação , Carboidratos/química , Carboidratos/fisiologia , Cristalografia por Raios X/métodos , Dissacarídeos/metabolismo , Glicopeptídeos/metabolismo , Glicoproteínas/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Lectinas Tipo C/fisiologia , Ligantes , Manose/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Lectinas de Ligação a Manose/fisiologia , Glicoproteínas de Membrana/fisiologia , Monossacarídeos/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Conformação Proteica , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/fisiologia , Receptores Imunológicos/fisiologia
15.
Glia ; 70(9): 1720-1733, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35567352

RESUMO

Microglia play many critical roles in neural development. Recent single-cell RNA-sequencing studies have found diversity of microglia both across different stages and within the same stage in the developing brain. However, how such diversity is controlled during development is poorly understood. In this study, we first found the expression of the macrophage mannose receptor CD206 in early-stage embryonic microglia on mouse brain sections. This expression showed a sharp decline between E12.5 and E13.5 across the central nervous system. We next tested the roles of the microglia-expressed zinc finger transcription factor SALL1 in this early transition of gene expression. By deleting Sall1 specifically in microglia, we found that many microglia continued to express CD206 when it is normally downregulated. In addition, the mutant microglia continued to show less ramified morphology in comparison with controls even into postnatal stages. Thus, SALL1 is required for early microglia to transition into a more mature status during development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Microglia , Neurogênese , Fatores de Transcrição , Dedos de Zinco , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Microglia/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Dedos de Zinco/fisiologia
16.
BMC Immunol ; 23(1): 55, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36376784

RESUMO

BACKGROUND: Antineutrophil Cytoplasmic Antibodies (ANCA) associated glomerulonephritis (AGN) is a group of autoimmune diseases and mono-macrophages are involved in its glomerular injuries. In this study, we aim to investigate the role of CD206+ mono-macrophages in AGN. METHODS: 27 AGN patients (14 active AGN, 13 remissive AGN) together with healthy controls (n = 9), disease controls (n = 6) and kidney function adjusted controls (n = 9) from Department of Nephrology, Ruijin hospital were recruited. Flow cytometry was used to study proportion of CD206+ cells in peripheral blood. Immunohistochemistry for CD206 staining was performed and CD206 expression was scored in different kidney regions. Serum soluble CD206 (sCD206) was measured by enzyme-linked immunosorbent assay (ELISA). We also generated murine myeloperoxidase (MPO) (muMPO) ANCA by immunizing Mpo-/- mice. Mouse bone marrow-derived macrophages (BMDMs) from wild C57BL/6 mice and peripheral blood mononuclear cell (PBMC) derived macrophages from healthy donors were treated with MPO ANCA with or without its inhibitor AZD5904 to investigate the effects of MPO-ANCA on CD206 expression. RESULTS: The proportion of peripheral CD206+CD68+ cells in active AGN patients were significantly higher than that in remissive patients (p < 0.001), healthy controls (p < 0.001) and kidney function adjusted controls (p < 0.001). Serum sCD206 level in active AGN patients was higher than that in healthy controls (p < 0.05) and remissive patients (p < 0.01). Immunohistochemistry showed CD206 was highly expressed in different kidney regions including fibrinoid necrosis or crescent formation, glomeruli, periglomerular and tubulointerstitial compartment in active AGN patients in comparison with disease controls. Further studies showed MPO ANCA could induce CD206 expression in BMDMs and PBMC derived macrophages and such effects could be reversed by its inhibitor AZD5904. CONCLUSION: ANCA could induce CD206 expression on mono-macrophages and CD206+ mono-macrophages are activated in AGN. CD206 might be involved in the pathogenesis of AAV and may be a potential target for the disease.


Assuntos
Anticorpos Anticitoplasma de Neutrófilos , Glomerulonefrite , Animais , Camundongos , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Peroxidase/metabolismo
17.
Biochemistry (Mosc) ; 87(1): 54-69, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35491020

RESUMO

Computer modeling of complexation of mono- and oligosaccharide ligands with the main (fourth) carbohydrate-binding domain of the mannose receptor CD206 (CRD4), as well as with the model receptor concanavalin A (ConA), was carried out for the first time, using methods of molecular dynamics and neural network analysis. ConA was shown to be a relevant model of CD206 (CRD4) due to similarity of the structural organization of the binding sites and high correlation of the values of free energies of complexation between the literature data and computer modeling (r > 0.9). Role of the main factors affecting affinity of the ligand-receptor interactions is discussed: the number and nature of carbohydrate residues, presence of Me-group in the O1 position, type of the glycoside bond in dimannose. Complexation of ConA and CD206 with ligands is shown to be energetically caused by electrostatic interactions (E) of the charged residues (Asn, Asp, Arg) with oxygen and hydrogen atoms in carbohydrates; contributions of hydrophobic and van der Waals components is lower. Possibility of the additional stabilization of complexes due to the CH-π stacking interactions of Tyr with the Man plane is discussed. The role of calcium and manganese ions in binding ligands has been studied. The values of free energies of complexation calculated in the course of molecular dynamics simulation correlate with experimental data (published for the model ConA): correlation coefficient r = 0.68. The Pafnucy neural network was trained based on the set of PDBbind2020 ligand-receptor complexes, which significantly increased accuracy of the energy predictions to r = 0.8 and 0.82 for CD206 and ConA receptors, respectively. A model of normalization of the complexation energy values for calculating the relevant values of ΔGbind, Kd is proposed. Based on the developed technique, values of the dissociation constants of a series of CD206 complexes with nine carbohydrate ligands of different structures were determined, which were not previously known. The obtained data open up possibilities for using computer modeling for the development of optimal drug carriers capable of active macrophage targeting, and also determine the limits of applicability of using ConA as a relevant model for studying parameters of the CD206 binding to various carbohydrate ligands.


Assuntos
Lectinas , Receptor de Manose , Carboidratos , Concanavalina A/química , Concanavalina A/metabolismo , Humanos , Lectinas/metabolismo , Ligantes , Simulação de Dinâmica Molecular
18.
J Oral Rehabil ; 49(2): 228-236, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34398484

RESUMO

BACKGROUND: Dental pulp tissues are rich in pain-related afferent nerve fibers, which originate from primary sensory neurons in the trigeminal ganglion (TG). The mechanisms of central nervous system (CNS) underlying ectopic pain following peripheral inflammation have been reported that the macrophages as inflammatory and immunologic mediators in the TG play an important role in the process of pulpitis and hyperalgesia. OBJECTIVE(S): To observe the polarization response and dynamic distribution of macrophages in the TG during the development of dental pulp inflammation. METHODS: A rat model of pulpitis was established using complete Freund's adjuvant (CFA). Hematoxylin-eosin (HE), immunohistochemistry (IHC), immunofluorescence (IF), toluidine blue (TB) staining, and RT-qPCR were performed to observe the expression of macrophage-related factors in the TG. RESULTS: The results of IHC staining showed that M2 macrophages labeled with CD206 were observed in the TG of both the control and CFA groups. The statistical analysis indicated that the number of CD206-positive macrophages in the TG increased significantly at 24 h after CFA-induced pulpitis, reached a peak at 2 weeks, and then returned to the normal level after 6 weeks. The ratio of M2/M1 in the CFA groups was significantly lower than that in the control group from 24 to 72 h, and this pattern was reversed at 2 weeks after CFA-induced pulpitis; then, the ratio increased significantly and was maintained at a high level for 4 weeks. RT-qPCR results showed that the expression of IL-10 in the TG increased significantly from 1 to 4 weeks after CFA-induced pulpitis. CONCLUSION: The trend of M2 macrophages was opposite to that of M1 macrophages in the TG during the process of pulpitis induced by CFA, which is consistent with the expression of macrophage-related cytokines. Macrophage polarization in the TG may participate in the neuroinflammation response induced by dental pulpitis.


Assuntos
Pulpite , Gânglio Trigeminal , Animais , Macrófagos , Doenças Neuroinflamatórias , Ratos , Ratos Sprague-Dawley
19.
J Stroke Cerebrovasc Dis ; 31(4): 106307, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35093629

RESUMO

OBJECTIVE: Ischemic stroke is one of the most common diseases with high mortality and disability. This study was intended to investigate the mechanism of resveratrol (RES) regulating microglia activation through the CD147/matrix metalloproteinase-9 (MMP-9) pathway on ischemic stroke. METHODS: The middle cerebral artery occlusion (MCAO) mouse model and oxygen and glucose deprivation (OGD) cell model were established. The behavioral defects, neuronal damage, cerebral infarction volume, and histopathological changes were assessed in MCAO mice. The activation of pro-inflammatory microglia CD86+/Iba-1+ and anti-inflammatory microglia CD206+/Iba-1+ was detected. The expressions of pro-inflammatory microglia markers (CD11b, CD16) and cytokines (TNF-α, IL-1ß, and IL-6) were measured. The activation of the CD147/MMP-9 pathway was detected and its effect on microglia activation was assessed. RESULTS: After RES administration, the neuronal dysfunction, infarct volume, and morphological changes of neurons were improved in MCAO mice. Meanwhile, the motivation of pro-inflammatory microglia and the release of inflammatory factors were repressed. RES suppressed the stimulation of OGD/R microglia and the release of inflammatory factors. The expression of CD147 and MMP-9 in primary microglia was up-regulated. Inhibition of CD147 can reduce pro-inflammatory microglia activation by inhibiting MMP-9 expression. RES inhibited the CD147/MMP-9 axis in OGD/R microglia, and overexpression of CD147 partially reversed the inhibitory effect of RES on the activation and release of inflammatory factors in OGD/R microglia. CONCLUSION: RES restrained the stimulation of pro-inflammatory microglia by down-regulating the CD147/MMP-9 axis, and thus protected against ischemic brain injury.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Animais , Isquemia Encefálica/patologia , Humanos , Infarto da Artéria Cerebral Média/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Microglia/patologia , Resveratrol/metabolismo , Resveratrol/farmacologia
20.
J Biol Chem ; 295(36): 12727-12738, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690608

RESUMO

Inhalation of the ambient air pollutant ozone causes lung inflammation and can suppress host defense mechanisms, including impairing macrophage phagocytosis. Ozone reacts with cholesterol in the lung to form oxysterols, like secosterol A and secosterol B (SecoA and SecoB), which can form covalent adducts on cellular proteins. How oxysterol-protein adduction modifies the function of lung macrophages is unknown. Herein, we used a proteomic screen to identify lung macrophage proteins that form adducts with ozone-derived oxysterols. Functional ontology analysis of the adductome indicated that protein binding was a major function of adducted proteins. Further analysis of specific proteins forming adducts with SecoA identified the phagocytic receptors CD206 and CD64. Adduction of these receptors with ozone-derived oxysterols impaired ligand binding and corresponded with reduced macrophage phagocytosis. This work suggests a novel mechanism for the suppression of macrophage phagocytosis following ozone exposure through the generation of oxysterols and the formation of oxysterol-protein adducts on phagocytic receptors.


Assuntos
Pulmão/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Oxisteróis/metabolismo , Ozônio/metabolismo , Fagocitose , Receptores de IgG/metabolismo , Receptores Imunológicos/metabolismo , Colesterol/análogos & derivados , Colesterol/metabolismo , Humanos , Pulmão/citologia , Macrófagos/citologia , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA