RESUMO
Trastuzumab is the first-line therapy for human epidermal growth factor receptor 2-positive (HER2+) breast cancer, but often patients develop acquired resistance. Although other agents are in clinical use to treat trastuzumab-resistant (TR) breast cancer; still, the patients develop recurrent metastatic disease. One of the primary mechanisms of acquired resistance is the shedding/loss of the HER2 extracellular domain, where trastuzumab binds. We envisioned any new agent acting downstream of the HER2 should overcome trastuzumab resistance. The mixed lineage kinase 3 (MLK3) activation by trastuzumab is necessary for promoting cell death in HER2+ breast cancer. We designed nanoparticles loaded with MLK3 agonist ceramide (PPP-CNP) and tested their efficacy in sensitizing TR cell lines, patient-derived organoids, and patient-derived xenograft (PDX). The PPP-CNP activated MLK3, its downstream JNK kinase activity, and down-regulated AKT pathway signaling in TR cell lines and PDX. The activation of MLK3 and down-regulation of AKT signaling by PPP-CNP induced cell death and inhibited cellular proliferation in TR cells and PDX. The apoptosis in TR cells was dependent on increased CD70 protein expression and caspase-9 and caspase-3 activities by PPP-CNP. The PPP-CNP treatment alike increased the expression of CD70, CD27, cleaved caspase-9, and caspase-3 with a concurrent tumor burden reduction of TR PDX. Moreover, the expressions of CD70 and ceramide levels were lower in TR than sensitive HER2+ human breast tumors. Our in vitro and preclinical animal models suggest that activating the MLK3-CD70 axis by the PPP-CNP could sensitize/overcome trastuzumab resistance in HER2+ breast cancer.
Assuntos
Antineoplásicos Imunológicos , Neoplasias da Mama , Ligante CD27 , Resistencia a Medicamentos Antineoplásicos , MAP Quinase Quinase Quinases , Nanopartículas , Trastuzumab , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Ligante CD27/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Ceramidas/química , Feminino , Humanos , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/análise , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , MAP Quinase Quinase Quinase 11 Ativada por MitógenoRESUMO
In CD70-expressing tumors, the interaction of CD70 on tumor cells with its lymphocyte receptor, CD27, is thought to play a role in immunosuppression in the tumor microenvironment and elevated serum levels of soluble CD27 (sCD27). Previous studies showed that CD70 is expressed in nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-related malignancy. However, the association between intratumoral CD70/CD27 expression and serum levels of sCD27 in NPC remains unclear. In the present study, we show that CD70 is primarily expressed by tumor cells in NPC and that CD27-positive lymphocytes infiltrate around tumor cells. NPC patients with CD27-positive lymphocytes had significantly better prognosis than patients lacking these cells. In addition, high CD70 expression by tumor cells tended to be correlated with shorter survival in NPC patients with CD27-positive lymphocytes. Serum sCD27 levels were significantly increased in patients with NPC and provided good diagnostic accuracy for discriminating patients from healthy individuals. The concentration of serum sCD27 in patients with CD70-positive NPC with CD27-positive lymphocytes was significantly higher than in patients with tumors negative for CD70 and/or CD27, indicating that the intratumoral CD70/CD27 interaction boosts the release of sCD27. Furthermore, positive expression of CD70 by NPC cells was significantly correlated with EBV infection. Our results suggest that CD70/CD27-targeted immunotherapies may be promising treatment options and that sCD27 may become an essential tool for evaluating the applicability of these therapies by predicting the intratumoral CD70/CD27 interaction in NPC.
Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Biomarcadores , Ligante CD27/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Carcinoma Nasofaríngeo , Microambiente Tumoral , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismoRESUMO
In this study, we investigated CD70 as a promising target for renal cell carcinoma (RCC) therapy and developed a potent chimeric antigen receptor T (CAR-T) cells for potential clinical testing. CD70, found to be highly expressed in RCC tumors, was associated with decreased survival. We generated CAR-T cells expressing VHH sequence of various novel nanobodies from immunized alpaca and a single-chain variable fragment (scFv) derived from human antibody (41D12). In our in vitro experiments, anti-CD70 CAR-T cells effectively eliminated CD70-positive tumor cells while sparing CD70-negative cells. The nanobody-based CAR-T cells demonstrated significantly higher production of cytokines such as IL-2, IFN-γ and TNF-É during co-culture, indicating their potential for enhanced functionality. In xenograft mouse model, these CAR-T cells exhibited remarkable anti-tumor activity, leading to the eradication of RCC tumor cells. Importantly, human T cell expansion after infusion was significantly higher in the VHH groups compared to the scFv CAR-T group. Upon re-challenging mice with RCC tumor cells, the VHH CAR-T treated group remained tumor-free, suggesting a robust and long-lasting anti-tumor response. These findings provide strong support for the potential of nanobody-based CD70 CAR-T cells as a promising therapeutic option for RCC. This warrants further development and consideration for future clinical trials and applications.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Carcinoma de Células Renais/terapia , Linfócitos T , Linhagem Celular Tumoral , Neoplasias Renais/terapia , Imunoterapia Adotiva , Ensaios Antitumorais Modelo de Xenoenxerto , Ligante CD27RESUMO
PURPOSE: The cluster of differentiation (CD70) is a potential biomarker of clear cell renal cell carcinoma (ccRCC). This study aims to develop CD70-targeted immuno-positron emission tomography/computed tomography (immunoPET/CT) imaging tracers and explore the diagnostic value in preclinical studies and the potential value in detecting metastases in ccRCC patients. METHODS: Four novel CD70-specific single-domain antibodies (sdAbs) were produced and labelled with 18F by the aluminium fluoride restrained complexing agent (AlF-RESCA) method to develop radiotracers. The visualisation properties of the tracers were evaluated in a subcutaneous ccRCC patient-derived xenograft (PDX) model. In a registered prospective clinical trial (NCT06148220), six patients with pathologically confirmed RCC were included and underwent immunoPET/CT examination exploiting one of the developed tracers (i.e., [18F]RCCB6). RESULTS: We engineered four sdAbs (His-tagged RCCB3 and RCCB6, His-tag-free RB3 and RB6) specifically targeting recombinant human CD70 without cross-reactivity to murine CD70. ImmunoPET/CT imaging with [18F]RCCB3 and [18F]RCCB6 demonstrated a high tumour-to-background ratio in a subcutaneous ccRCC PDX model, with the latter showing better diagnostic potential supported by higher tumour uptake and lower bone accumulation. In comparison, [18F]RB6, developed by sequence optimisation, has significantly lower kidney accumulation than that of [18F]RCCB6. In a pilot translational study, [18F]RCCB6 immunoPET/CT displayed ccRCC metastases in multiple patients and demonstrated improved imaging contrast and diagnostic value than 18F-FDG PET/CT in a patient with ccRCC. CONCLUSION: The work successfully developed a series of CD70-targeted immunoPET/CT imaging tracers. Of them, [18F]RCCB6 clearly and specifically identified inoculated ccRCCs in preclinical studies. Clinical translation of [18F]RCCB6 suggests potential for identifying recurrence and/or metastasis in ccRCC patients.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias Renais/diagnóstico por imagem , Feminino , Masculino , Radioisótopos de Flúor/química , Animais , Camundongos , Pessoa de Meia-Idade , Anticorpos de Domínio Único , Idoso , Linhagem Celular Tumoral , Distribuição TecidualRESUMO
INTRODUCTION: Over the past decade, classifications using immune cell infiltration have been applied to many types of tumors; however, mesotheliomas have been less frequently evaluated. METHODS: In this study, 60 well-characterized pleural mesotheliomas (PMs) were evaluated immunohistochemically for the characteristics of immune cells within tumor microenvironment (TME) using 10 immunohistochemical markers: CD3, CD4, CD8, CD56, CD68, CD163, FOXP3, CD27, PD-1, and TIM-3. For further characterization of PMs, hierarchical clustering analyses using these 10 markers were performed. RESULTS: Among the immune cell markers, CD3 (p < 0.0001), CD4 (p = 0.0016), CD8 (p = 0.00094), CD163+ (p = 0.042), and FOXP3+ (p = 0.025) were significantly associated with an unfavorable clinical outcome. Immune checkpoint receptor expressions on tumor-infiltrating lymphocytes such as PD-1 (p = 0.050), CD27 (p = 0.014), and TIM-3 (p = 0.0098) were also associated with unfavorable survival. Hierarchical clustering analyses identified three groups showing specific characteristics and significant associations with patient survival (p = 0.016): the highest number of immune cells (ICHigh); the lowest number of immune cells, especially CD8+ and CD163+ cells (ICLow); and intermediate number of immune cells (ICInt). ICHigh tumors showed significantly higher expression of PD-L1 (p = 0.00038). Cox proportional hazard model identified ICHigh [hazard ratio (HR) = 2.90] and ICInt (HR = 2.97) as potential risk factors compared with ICLow. Tumor CD47 (HR = 2.36), tumor CD70 (HR = 3.04), and tumor PD-L1 (HR = 3.21) expressions were also identified as potential risk factors for PM patients. CONCLUSION: Our findings indicate immune checkpoint and/or immune cell-targeting therapies against CD70-CD27 and/or CD47-SIRPA axes may be applied for PM patients in combination with PD-L1-PD-1 targeting therapies in accordance with their tumor immune microenvironment characteristics.
Assuntos
Biomarcadores Tumorais , Linfócitos do Interstício Tumoral , Neoplasias Pleurais , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Análise por Conglomerados , Neoplasias Pleurais/imunologia , Neoplasias Pleurais/patologia , Linfócitos do Interstício Tumoral/imunologia , Mesotelioma/imunologia , Mesotelioma/patologia , Adulto , Mesotelioma Maligno/imunologia , Mesotelioma Maligno/patologia , Idoso de 80 Anos ou mais , Prognóstico , Imuno-HistoquímicaRESUMO
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers worldwide, with high morbidity and mortality rates. The evidence for the tumor-supporting capacities of cancer-associated fibroblasts (CAFs) that modulate cancer cell proliferation, invasion, metastasis, and tumor immunity, including in CRC, has been attracting attention. The present study examined the expression status of CD70 and POSTN in CRC and analyzed their association with clinicopathological features and clinical outcomes. In the present study, in total 15% (40/269) and 44% (119/269) of cases exhibited CD70 and POSTN expression on CAFs, respectively. Co-expression of CD70 and POSTN was detected in 8% (21/269) of patients. Fluorescent immunohistochemistry identified the co-expression of CD70 and POSTN with FAP and PDPN, respectively. ACTA2 was not co-expressed with CD70 or POSTN in CRC CAFs. CRC with CD70+/POSTN+ status in CAFs was significantly associated with distant organ metastasis (p = 0.0020) or incomplete resection status (p = 0.0011). CD70+/POSTN+ status tended to associate with advanced pT stage (p = 0.032) or peritoneal metastasis (p = 0.0059). Multivariate Cox hazards regression analysis identified CD70+/POSTN+ status in CAFs [hazard ratio (HR) = 3.78] as a potential independent risk factor. In vitro experiments revealed the activated phenotypes of colonic fibroblasts induced by CD70 and POSTN, while migration and invasion assays identified enhanced migration and invasion of CRC cells co-cultured with CD70- and POSTN-expressing colonic fibroblasts. On the basis of our observations, CD70 and POSTN immunohistochemistry can be used in the prognostication of CRC patients. CRC CAFs may be a promising target in the treatment of CRC patients.
Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos/metabolismo , Imuno-Histoquímica , Proliferação de Células , Neoplasias Colorretais/patologia , Moléculas de Adesão Celular/metabolismo , Ligante CD27/metabolismoRESUMO
We present the results of a phase 1 study that evaluated the safety, pharmacokinetics, pharmacodynamics, immunogenicity, and preliminary disease response to cusatuzumab, a novel anti-CD70 monoclonal antibody, in combination with azacitidine, in newly diagnosed acute myeloid leukemia Japanese participants who were not candidates for intensive treatment. In this multicenter, single-arm study, six participants were enrolled and treated. Only in cycle 1, participants received cusatuzumab monotherapy on day 14. Subsequently, cusatuzumab was administered intravenously on days 3 and 17 at 20 mg/kg in combination with azacitidine (75 mg/m2 ) on days 1-7 of each 28-day cycle. All six participants had at least one treatment-emergent adverse event, and the most common treatment-emergent adverse events (all grades) were leukopenia (four participants [66.7%]) and constipation (three participants [50.0%]). No dose-limiting toxicity was observed during the study period. The combination of cusatuzumab and azacitidine is generally well tolerated in Japanese participants, and further exploration of this combination is warranted.
Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Azacitidina/uso terapêutico , População do Leste Asiático , Resultado do Tratamento , Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêuticoRESUMO
The immune checkpoint molecule CD70 and its receptor CD27 constitute the signal transduction axis, which is abnormally expressed in many solid tumors and is crucial for T cell co-stimulation and immune escape. Tumor cells regulate CD27 expression in the tumor microenvironment by expressing CD70, which promotes immune escape. Although current research evidence suggests a link between CD70 and tumors, no pan-cancer analysis is available. Using the Cancer Genome Atlas, Gene Expression Omnibus datasets, and online databases, we first explored the potential carcinogenic role of the CD70-CD27 signaling axis in human malignancies. Furthermore, qRT-PCR, Western blot, immunohistochemistry, and a T cell-mediated tumor cell killing assay were used to assess the biological function of the CD70-CD27 signaling axis. CD70 expression is upregulated in most cancers and has an obvious correlation with the prognosis of tumor patients. The expression of CD70 and CD27 is associated with the level of regulatory T cell (Treg) infiltration. In addition, T cell receptor signaling pathways, PI3K-AKT, NF-κB, and TNF signaling pathways are also involved in CD70-mediated immune escape. CD70 mainly regulates tumor immune escape by regulating T cell-mediated tumor killing, with Tregs possibly being its primary T cell subset. Our first pan-cancer study provides a relatively comprehensive understanding of the carcinogenic role of the CD70-CD27 signaling axis in different tumors.
Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Ligante CD27/genética , Ligante CD27/metabolismo , Imunidade , Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Microambiente Tumoral , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismoRESUMO
The engagement of CD27 on lymphocytes with its ligand, CD70, on tumors is believed to mediate tumor immune evasion and the elevation of serum soluble CD27 (sCD27) levels in patients with CD70-positive malignancies. We previously showed that CD70 is expressed in extranodal natural killer/T-cell lymphoma, nasal type (ENKL), an Epstein-Barr virus (EBV)-related malignancy. However, little is known about serum sCD27 expression and its association with the clinical characteristics of, and the CD27/CD70 interaction in, ENKL. In the present study, we show that serum sCD27 is significantly elevated in the sera of patients with ENKL. The levels of serum sCD27 provided excellent diagnostic accuracy for discriminating patients with ENKL from healthy subjects, correlated positively with the levels of other diagnostic markers (lactate dehydrogenase, soluble interleukin-2 receptor, and EBV-DNA), and decreased significantly following treatment. Elevated serum sCD27 levels also correlated significantly with advanced clinical stage and tended to correspond with shorter survival, in patients with ENKL. Immunohistochemistry indicated that CD27-positive tumor-infiltrating immune cells exist adjacent to CD70-positive lymphoma cells. In addition, serum sCD27 levels in patients with CD70-positive ENKL were significantly higher than those in patients with CD70-negative ENKL, suggesting that the intra-tumoral CD27/CD70 interaction boosts the release of sCD27 in serum. Furthermore, the EBV-encoded oncoprotein latent membrane protein 1 upregulated CD70 expression in ENKL cells. Our results suggest that sCD27 may serve as a novel diagnostic biomarker and also may serve as a tool for evaluating the applicability of CD27/CD70-targeted therapies by predicting intra-tumoral CD70 expression and CD27/CD70 interaction in ENKL.
Assuntos
Infecções por Vírus Epstein-Barr , Linfoma de Células T , Humanos , Ligante CD27 , Herpesvirus Humano 4/metabolismo , Biomarcadores , Células Matadoras Naturais/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose TumoralRESUMO
BACKGROUND: Acute myeloid leukemia (AML) treatment remains challenging. CD70 was reported as a promising AML-specific antigen. Preclinically, CAR T-cell with single-chain-variable fragment (scFv) or truncated CD27 targeting CD70 has been reported to treat AML. However, various disadvantages including spontaneous exhaustion, proteinase-mediated loss of functional receptors, and high immunogenicity, limited its further application to clinical settings. Alternatively, the single-variable domain on heavy chain (VHH), also known as nanobodies, with comparable binding ability and specificity, provides an optional solution. METHOD: We generated CD70 knocked-out novel nanobody-based anti-CD70-CAR T-cells (nb70CAR-T) with two different VHHs for antigen detection. Next, we detected the CD70 expression on primary AML blasts by flow cytometry and associated the efficacy of nb70CAR-T with the target antigen density. Finally, epigenetic modulators were investigated to regulate the CD70 expression on AML cells to promote the functionality of nb70CAR-T. RESULTS: Our nb70CAR-T exhibited expected tumoricidal functionality against CD70-expressed cell lines and primary AML blasts. However, CD70 expression in primary AML blasts was not consistently high and nb70CAR-T potently respond to an estimated 40.4% of AML patients when the CD70 expression level was over a threshold of 1.6 (MFI ratio). Epigenetic modulators, Decitabine and Chidamide can up-regulate CD70 expression on AML cells, enhancing the treatment efficacy of nb70CAR-T. CONCLUSION: CD70 expression in AML blasts was not fully supportive of its role in AML targeted therapy as reported. The combinational use of Chidamide and Decitabine with nb70CAR-T could provide a new potential for the treatment of AML.
Assuntos
Leucemia Mieloide Aguda , Humanos , Decitabina/farmacologia , Aminopiridinas/metabolismo , Imunoterapia Adotiva , Linfócitos TRESUMO
BACKGROUND: Chimeric antigen receptor-modified T cells (CAR T-cells) have shown exhilarative clinical efficacy for hematological malignancies. However, a shared antigen pool between healthy and malignant T-cells remains a concept to be technically and clinically explored for CAR T-cell therapy in T-cell cancers. No guidelines for engineering CAR T-cells targeting self-expressed antigens are currently available. METHOD: Based on anti-CD70 CAR (CAR-70) T-cells, we constructed CD70 knock-out and wild-type CAR (CAR-70KO and CAR-70WT) T-cells and evaluated their manufacturing and anti-tumor capability. Single-cell RNA sequencing and TCR sequencing were performed to further reveal the underlying differences between the two groups of CAR T-cells. RESULTS: Our data showed that the disruption of target genes in T-cells before CAR transduction advantaged the expansion and cell viability of CAR T-cells during manufacturing periods, as well as the degranulation, anti-tumor efficacy, and proliferation potency in response to tumor cells. Meanwhile, more naïve and central memory phenotype CAR+ T-cells, with higher TCR clonal diversity, remained in the final products in KO samples. Gene expression profiles revealed a higher activation and exhaustion level of CAR-70WT T-cells, while signaling transduction pathway analysis identified a higher level of the phosphorylation-related pathway in CAR-70KO T-cells. CONCLUSION: This study evidenced that CD70 stimulation during manufacturing process induced early exhaustion of CAR-70 T-cells. Knocking-out CD70 in T-cells prevented the exhaustion and led to a better-quality CAR-70 T-cell product. Our research will contribute to good engineering CAR T-cells targeting self-expressed antigens.
Assuntos
Receptores de Antígenos Quiméricos , Transcriptoma , Linhagem Celular Tumoral , Linfócitos T , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/genéticaRESUMO
Mesenchymal stem cells (MSCs) have been widely applied to the regeneration of damaged tissue and the modulation of immune response. The purity of MSC preparation and the delivery of MSCs to a target region are critical factors for success in therapeutic application. In order to define the molecular identity of an MSC, the gene expression pattern of a human bone marrow-derived mesenchymal stem cell (hBMSC) was compared with that of a human embryonic fibroblast (hEF) by competitive hybridization of a microarray. A total of 270 and 173 genes were two-fold up- and down-regulated with FDR < 0.05 in the hBMSC compared to the hEF, respectively. The overexpressed genes in the hBMSC over the hEF, including transcription factors, were enriched for biological processes such as axial pattern formation, face morphogenesis and skeletal system development, which could be expected from the differentiation potential of MSCs. CD70 and CD339 were identified as additional CD markers that were up-regulated in the hBMSC over the hEF. The differential expression of CD70 and CD339 might be exploited to distinguish hEF and hBMSC. CMKLR1, a chemokine receptor, was up-regulated in the hBMSC compared to the hEF. RARRES2, a CMKLR1 ligand, stimulated specific migration of the hBMSC, but not of the hEF. RARRES2 manifested as ~two-fold less effective than SDF-1α in the directional migration of the hBMSC. The expression of CMKLR1 was decreased upon the osteoblastic differentiation of the hBMSC. However, the RARRES2-loaded 10% HA-silk scaffold did not recruit endogenous cells to the scaffold in vivo. The RARRES2−CMKLR1 axis could be employed in recruiting systemically delivered or endogenous MSCs to a specific target lesion.
RESUMO
BACKGROUND: The clinical benefit of cusatuzumab, a CD70-directed monoclonal antibody with enhanced effector functions, was investigated in patients with relapsed/refractory (R/R) cutaneous T-cell lymphoma (CTCL). METHODS: In this cohort expansion of the ARGX-110-1201 study, 27 patients with R/R CTCL received cusatuzumab at 1 (n = 11) or 5 mg/kg (n = 16) once every 3 weeks to investigate its safety, dose, and exploratory efficacy. The pharmacokinetics, immunogenicity, CD70 expression, and CD70/CD27 biology were also assessed. RESULTS: The most common adverse events included infusion-related reactions, pyrexia, and asthenia. Eighteen serious adverse events (grade 1-3) were reported in 11 patients; 1 of these (vasculitis) was considered drug-related. For 8 of the 11 patients receiving 1 mg/kg, anti-drug antibodies (ADAs) affected the minimal concentration, and this resulted in undetectable cusatuzumab concentrations at the end of treatment and, in some cases, a loss of response. This effect was greatly reduced in the patients receiving 5 mg/kg. The overall response rate was 23%; this included 1 complete response and 5 partial responses (PRs) in 26 of the 27 evaluable patients. In addition, 9 patients achieved stable disease. The mean duration on cusatuzumab was 5.2 months, and the median duration was 2.5 months. Patients with Sézary syndrome (SS) achieved a 60% PR rate with a dosage of 5 mg/kg and a 33% PR rate with a dosage of 1 mg/kg; this resulted in an overall response rate of 50% for patients with SS at both doses. CONCLUSIONS: Cusatuzumab was well tolerated, and antitumor activity was observed at both 1 and 5 mg/kg in highly pretreated patients with R/R CTCL. The observed dose-dependent effect on exposure supports the use of 5 mg/kg for future development.
Assuntos
Anticorpos Monoclonais , Antineoplásicos , Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Anticorpos Monoclonais/efeitos adversos , Antineoplásicos/uso terapêutico , Ligante CD27 , Humanos , Linfoma Cutâneo de Células T/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neoplasias Cutâneas/tratamento farmacológico , Resultado do TratamentoRESUMO
Even with progressive combination treatments, the prognosis of patients with glioblastoma (GBM) remains extremely poor. OV is one of the new promising therapeutic strategies to treat human GBM. OVs stimulate immune cells to release cytokines such as IFN-γ during oncolysis, further improve tumor microenvironment (TME) and enhance therapeutic efficacy. IFN-γ plays vital role in the apoptosis of tumor cells and recruitment of tumor-infiltrating T cells. We hypothesized that oncolytic herpes simplex virus-1 (oHSV-1) enhanced the antitumor efficacy of novel CD70-specific chimeric antigen receptor (CAR) T cells by T cell infiltration and IFN-γ release. In this study, oHSV-1 has the potential to stimulate IFN-γ secretion of tumor cells rather than T cell secretion and lead to an increase of T cell activity, as well as CD70-specific CAR T cells can specifically recognize and kill tumor cells in vitro. Specifically, combinational therapy with CD70-specific CAR T and oHSV-1 promotes tumor degradation by enhancing pro-inflammatory circumstances and reducing anti-inflammatory factors in vitro. More importantly, combined therapy generated potent antitumor efficacy, increased the proportion of T cells and natural killer cells in TME, and reduced regulatory T cells and transformed growth factor-ß1 expression in orthotopic xenotransplanted animal model of GBM. In summary, we reveal that oHSV-1 enhance the therapeutic efficacy of CD70-spefific CAR T cells by intratumoral T cell infiltration and IFN-γ release, supporting the use of CAR T therapy in GBM therapeutic strategies.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Receptores de Antígenos Quiméricos , Animais , Neoplasias Encefálicas/patologia , Ligante CD27 , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Interferon gama , Microambiente TumoralRESUMO
Cyclophosphamide plus fludarabine (C/F) are currently used to improve the expansion and effectiveness of adoptive cell therapy (ACT). However, these chemotherapeutics cause pan-leukopenia and adverse events, suggesting that safer and more effective conditioning treatments are needed to improve ACT outcomes. Previously, we reported that varlilumab, a CD27-targeting antibody, mediates Treg -preferential T cell depletion, CD8-T cell dominant costimulation, and systemic immune activation in hCD27 transgenic mice and cancer patients. We reasoned that the activities induced by varlilumab may provide an effective conditioning regimen for ACT. Varlilumab pretreatment of hCD27 +/+mCD27 - /- mice resulted in prominent proliferation of transferred T cells isolated from wild-type mice. These studies uncovered a critical role for CD27 signaling for the expansion of transferred T cells, as transfer of T cells from CD27 deficient mice or treatment with a CD70 blocking antibody greatly reduced their proliferation. In this model, varlilumab depletes endogenous hCD27+/+ T cells and blocks their subsequent access to CD70, allowing for more CD70 costimulation available to the mCD27 +/+ transferred T cells. CD27-targeted depletion led to a greater expansion of transferred T cells compared to C/F conditioning and resulted in longer median survival and more cures than C/F conditioning in the E.G7 tumor model receiving OT-I cell therapy. We propose that translation of this work could be achieved through engineering of T cells for ACT to abrogate varlilumab binding but preserve CD70 ligation. Thus, varlilumab could be an option to chemotherapy as a conditioning regimen for ACT.
Assuntos
Transferência Adotiva , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/química , Neoplasias/terapia , Linfócitos T/citologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/química , Animais , Ligante CD27/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Proliferação de Células , Sistema Imunitário , Imunoterapia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias/metabolismo , Transdução de Sinais , Condicionamento Pré-Transplante , Resultado do TratamentoRESUMO
Extracellular ATP is known to promote Th17 cell differentiation in the intestinal lamina propria by stimulating CD70+CD11clow dendritic cells (DCs) via P2X receptors (P2XRs). Recent studies have also shown that Th17 cells enhance antitumor immunity by directly promoting proliferation of cytotoxic T lymphocytes (CTLs). These finding led us to test a P2XR agonist, αß-methylene ATP (αß-ATP), as a mucosal vaccine adjuvant to promote CTL responses through Th17 induction. We demonstrated that (i) CD70+CD11clow DCs were present in the nasal lamina propria and expressed P2X1R, P2X2R and P2X4R; (ii) CD70+CD11clow DCs isolated from the nasal lamina propria enhanced Th17 cell differentiation of cocultured splenic CD4+ T cells upon stimulation with αß-ATP; (iii) mice intranasally immunized with ovalbumin (OVA) and αß-ATP had increased OVA-specific Th17 cells and CTLs in the nasal lamina propria and regional lymph nodes; (iv) mice intranasally immunized with OVA and αß-ATP also had elevated resistance to E.G7-OVA tumor growth compared with those intranasally immunized with OVA alone; (v) suramin, a broad-range inhibitor of P2 receptors, suppressed the increases of OVA-specific Th17 cells and CTLs in mice intranasally immunized with OVA and αß-ATP; and (vi) suramin also abrogated the enhanced antitumor immunity of mice intranasally immunized with OVA and αß-ATP against E.G7-OVA. Collectively, αß-ATP may be a promising mucosal adjuvant that promotes antigen-specific CTL responses via CD70+CD11clow DC-mediated Th17 induction.
Assuntos
Adjuvantes de Vacinas/uso terapêutico , Células Dendríticas/imunologia , Melanoma Experimental/terapia , Ovalbumina/administração & dosagem , Agonistas do Receptor Purinérgico P2X/farmacologia , Linfócitos T Citotóxicos/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Ligante CD27/metabolismo , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Imunização , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Ativação Linfocitária/imunologia , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X/imunologia , Suramina/farmacologia , Células Th17/imunologiaRESUMO
BACKGROUND: Cytomegalovirus (CMV) infection leads to effector memory CD8+ T cell expansion and is associated with immune dysfunction in older adults. However, the molecular alterations of CMV-specific CD8+ T cells in CMV infected healthy young and middle-aged adults has not been fully characterized. RESULTS: We compared CD8+ T cells specific for a CMV epitope (pp65495-503, NLV) and an influenza A virus (IAV) epitope (M158-66, GIL) from the same young and middle-aged healthy adults with serum positive for anti-CMV IgG. Compared to the IAV-specific CD8+ T cells, CMV-specific CD8+ T cells contained more differentiated effector memory (TEM and TEMRA) cells. Isolated CMV-specific central memory (TCM) but not naïve (TN) cells had a significant reduced activation-induced expansion in vitro compared to their IAV-specific counterparts. Furthermore, we found that CD70 expression was reduced in CMV-specific CD28+CD8+ TCM and that CD70+ TCM had better expansion in vitro than did CD70- TCM. Mechanistically, we showed that CD70 directly enhanced MAPK phosphorylation and CMV-specific CD8+ TCM cells had a reduced MAPK signaling upon activation. Lastly, we showed that age did not exacerbate reduced CD70 expression in CMV- specific CD8+ TCM cells. CONCLUSION: Our findings showed that CMV infection causes mild expansion of CMV-NLV-specific CD8+ T cells, reduced CD70 expression and signaling, and proliferation of CMV-NLV-specific CD8+ TCM cells in young and middle-aged healthy adults and revealed an age-independent and CMV infection-specific impact on CD8+ memory T cells.
RESUMO
CD70 is overexpressed in a variety of solid and hematological tumors and plays a role in tumor proliferation and evasion of immune surveillance. Targeting and blocking its binding to the receptor CD27 have the potential to treat CD70-dependent tumors. To generate novel CD70 blocking agents, we screen a human CD70-immunized camel VHH phage display library and isolate two blocking nanobodies against human CD70 targeting different epitopes. Upon enrichment by three rounds of biopanning, two strategies are employed to identify CD70 blockers. One named affinity selection is used for detecting clones with CD70 binding by conventional PE-ELISA. However, no clone with a blocking effect is obtained from 188 enriched clones by this method. The alternative strategy named competitive selection is based on the inhibiting capacity of CD70-CD27 binding by enriched VHHs. By this method, two clones, Nb-2B3 and Nb-3B6, with strong blocking capacity are obtained from 20 enriched VHHs, suggesting the efficiency of this strategy. Furthermore, Nb-2B3 and Nb-3B6 specifically bind to CD70-positive SKOV3 and Raji cells at low concentrations. Meanwhile, Nb-2B3 has no competitive effect on the binding of Nb-3B6 to CD70, and vice versa, indicating that they target two different epitopes on CD70. Our data show that nanobodies Nb-2B3 and Nb-3B6 are potential attractive theranostic agents for CD70-expressing cancers.
Assuntos
Neoplasias , Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/farmacologia , Epitopos , Biblioteca Gênica , Ensaio de Imunoadsorção Enzimática , Ligante CD27RESUMO
The majority of clear cell renal cell carcinomas (ccRCCs) are characterized by mutations in the Von Hippel−Lindau (VHL) tumor suppressor gene, which leads to the stabilization and accumulation of the HIF2α transcription factor that upregulates key oncogenic pathways that promote glucose metabolism, cell cycle progression, angiogenesis, and cell migration. Although FDA-approved HIF2α inhibitors for treating VHL disease-related ccRCC are available, these therapies are associated with significant toxicities such as anemia and hypoxia. To improve ccRCC-specific drug delivery, peptide amphiphile micelles (PAMs) were synthesized incorporating peptides targeted to the CD70 marker expressed by ccRCs and anti-HIF2α siRNA, and the ability of HIF2α-CD27 PAMs to modulate HIF2α and its downstream targets was evaluated in human ccRCC patient-derived cells. Cell cultures were derived from eight human ccRCC tumors and the baseline mRNA expression of HIF2A and CD70, as well as the HIF2α target genes SLC2A1, CCND1, VEGFA, CXCR4, and CXCL12 were first determined. As expected, each gene was overexpressed by at least 63% of all samples compared to normal kidney proximal tubule cells. Upon incubation with HIF2α-CD27 PAMs, a 50% increase in ccRCC-binding was observed upon incorporation of a CD70-targeting peptide into the PAMs, and gel shift assays demonstrated the rapid release of siRNA (>80% in 1 h) under intracellular glutathione concentrations, which contributed to ~70% gene knockdown of HIF2α and its downstream genes. Further studies demonstrated that knockdown of the HIF2α target genes SLC2A1, CCND1, VEGFA, CXCR4, and CXCL12 led to inhibition of their oncogenic functions of glucose transport, cell proliferation, angiogenic factor release, and cell migration by 50−80%. Herein, the development of a nanotherapeutic strategy for ccRCC-specific siRNA delivery and its potential to interfere with key oncogenic pathways is presented.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , RNA Interferente Pequeno/genética , Micelas , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ligante CD27/genética , Ligante CD27/metabolismoRESUMO
This study aimed to investigate the cytotoxicity of a cluster of differentiation 70 antibody-drug conjugate (CD70-ADC) against ovarian cancer in in vitro and in vivo xenograft models. CD70 expression was assessed in clinical samples by immunohistochemical analysis. Western blotting and fluorescence-activated cell sorting analyses were used to determine CD70 expression in the ovarian cancer cell lines A2780 and SKOV3, and in the cisplatin-resistant ovarian cancer cell lines A2780cisR and SKOV3cisR. CD70 expression after cisplatin exposure was determined in A2780 cells transfected with mock- or nuclear factor (NF)-κB-p65-small interfering RNA. We developed an ADC with an anti-CD70 monoclonal antibody linked to monomethyl auristatin F and investigated its cytotoxic effect. We examined 63 ovarian cancer clinical samples; 43 (68.3%) of them expressed CD70. Among patients with advanced stage disease (n = 50), those who received neoadjuvant chemotherapy were more likely to exhibit high CD70 expression compared to those who did not (55.6% [15/27] vs 17.4% [4/23], P < .01). CD70 expression was confirmed in A2780cisR, SKOV3, and SKOV3cisR cells. Notably, CD70 expression was induced after cisplatin treatment in A2780 mock cells but not in A2780-NF-κB-p65-silenced cells. CD70-ADC was cytotoxic to A2780cisR, SKOV3, and SKOV3cisR cells, with IC50 values ranging from 0.104 to 0.341 nmol/L. In A2780cisR and SKOV3cisR xenograft models, tumor growth in CD70-ADC treated mice was significantly inhibited compared to that in the control-ADC treated mice (A2780cisR: 32.0 vs 1639.0 mm3 , P < .01; SKOV3cisR: 232.2 vs 584.9 mm3 , P < .01). Platinum treatment induced CD70 expression in ovarian cancer cells. CD70-ADC may have potential therapeutic implications in the treatment of CD70 expressing ovarian cancer.