Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 665: 988-998, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574587

RESUMO

In applications utilizing Covalent Organic Frameworks (COFs) for adsorption, the interplay between crystallinity (vis-à-vis surface area) and active sites still remains ambiguous. To address this, the present study introduces three isoreticular COFs-COP-N18 (covalent organic polymer with short-range order), COF-N18 (COF having long-range order), and COF-N27 (semicrystalline COF with pyridyl heteroatoms)-to explore this duality. Through systematic variations in structural order, pore volume, and pore-wall nitrogen content, we aim to establish a structure-activity relationship (SAR) for these COFs via adsorption and catalysis, using CO2 and I2 as probes. Our investigation highlights the positive influence of crystallinity, surface area, and pore volume in adsorption as well as catalysis. However, the presence of heteroatoms manifests complex behavior in CO2 adsorption and CO2 cycloaddition reactions with epoxides. COF-N18 and COF-N27 showed comparable CO2 uptake capacities at different temperatures (273, 293, and 313 K) and ∼1 bar pressure. Additionally, CO2 cycloaddition reactions were performed with substrates possessing different polarities (epichlorohydrin, 1,2-epoxydodecane) to elucidate the role of COF surface polarity. Further investigation into iodine adsorption was performed to understand the impact of COF structural features on the modes of adsorption and adsorption kinetics. Improvements in COF-crystallinity results in faster average iodine uptake rate at 80% (K80% = 1.79 g/h) by COF-N18. Whereas, heteroatom doping slows down iodine adsorption kinetics (0.35 g/h) by prolonging the adsorption process up to 72 h. Overall, this study advances our understanding of COFs as adsorbents and catalysts, providing key insights into their SAR while emphasizing structural fine-tuning as a key factor for impactful environmental applications.

2.
Mar Pollut Bull ; 170: 112626, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34153859

RESUMO

Intertidal microbial communities occur as biofilms or microphytobenthos (MPB) which are sediment-attached assemblages of bacteria, protozoa, fungi, algae, diatoms embedded in extracellular polymeric substances. Despite their global occurrence, they have not been reviewed in light of their structural and functional characteristics. This paper reviews the importance of such microbial communities and their importance in carbon dioxide sequestration as well as pollutant bioremediation. Global annual benthic microalgal productivity was 500 million tons of carbon, 50% of which contributed towards the autochthonous carbon fixation in the estuaries. Primary production by MPB was 27-234 gCm-2y-1 in the estuaries of Asia, Europe and the United States. Mechanisms of heavy metal removal remain to be tested in intertidal communities. Cyanobacteria facilitate hydrocarbon degradation in intertidal biofilms and microbial mats by supporting the associated sulfate-reducing bacteria and aerobic heterotrophs. Physiological cooperation between the microorganisms in intertidal communities imparts enhanced ability to utilize polycyclic aromatic hydrocarbon pollutants by these microorganisms than mono-species communities. Future research may be focused on biochemical characteristics of intertidal mats and biofilms, pollutant-microbial interactions and ecosystem influences.


Assuntos
Cianobactérias , Diatomáceas , Poluentes Ambientais , Microbiota , Dióxido de Carbono
3.
Food Chem ; 187: 431-6, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25977047

RESUMO

Experiments were conducted in open-top chambers to assess the effect of atmospheric CO2 enrichment (E-CO2) on the quality of grains in chickpea (Cicer arietinum L.) crop. Physical attributes of the grains was not affected, but the hydration and swelling capacities of the flour increased. Increase in carbohydrates and reduction in protein made the grains more carbonaceous (higher C:N) under E-CO2. Among other mineral nutrients, K, Ca and Zn concentrations decreased, while P, Mg, Cu, Fe, Mn and B concentrations did not change. The pH, bulk density and cooking time of chickpea flour remained unaffected, although the water absorption capacity of flour increased and oil absorption reduced. Results suggest that E-CO2 could affect the grain quality adversely and nutritional imbalance in grains of chickpea might occur.


Assuntos
Dióxido de Carbono/análise , Dióxido de Carbono/farmacologia , Cicer/química , Cicer/crescimento & desenvolvimento , Aminoácidos/análise , Cicer/efeitos dos fármacos , Culinária , Carboidratos da Dieta/análise , Qualidade dos Alimentos , Valor Nutritivo , Fenol/análise , Proteínas de Vegetais Comestíveis/análise , Prolina/análise , Sementes/química , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento
4.
Bioengineered ; 6(1): 26-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25488725

RESUMO

Bioconversion of hemicellulosic hydrolysate into ethanol plays a pivotal role in the overall success of biorefineries. For the efficient fermentative conversion of hemicellulosic hydrolysates into ethanol, the use of immobilized cells system could provide the enhanced ethanol productivities with significant time savings. Here, we investigated the effect of 2 important factors (e.g., cell concentration and stirring) on ethanol production from sugarcane bagasse hydrolysate using the yeast Scheffersomyces stipitis immobilized in calcium alginate matrix. A 2(2) full factorial design of experiment was performed considering the process variables- immobilized cell concentration (3.0, 6.5 and 10.0 g/L) and stirring (100, 200 and 300 rpm). Statistical analysis showed that stirring has the major influence on ethanol production. Maximum ethanol production (8.90 g/l) with ethanol yield (Yp/s) of 0.33 g/g and ethanol productivity (Qp) of 0.185 g/l/h was obtained under the optimized process conditions (10.0 g/L of cells and 100 rpm).


Assuntos
Etanol/metabolismo , Polissacarídeos/metabolismo , Saccharomycetales/química , Saccharomycetales/metabolismo , Células Imobilizadas/química , Células Imobilizadas/metabolismo , Fermentação , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA