Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Comput Biol Med ; 170: 108032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310805

RESUMO

COVID-19, known as Coronavirus Disease 2019 primarily targets the respiratory system and can impact the cardiovascular system, leading to a range of cardiorespiratory complications. The current forefront in analyzing the dynamical characteristics of physiological systems and aiding clinical decision-making involves the integration of entropy-based complexity techniques with artificial intelligence. Entropy-based measures offer promising prospects for identifying disturbances in cardiorespiratory control system (CRCS) among COVID-19 patients by assessing the oxygen saturation variability (OSV) signals. In this investigation, we employ scale-based entropy (SBE) methods, including multiscale entropy (MSE), multiscale permutation entropy (MPE), and multiscale fuzzy entropy (MFE), to characterize the dynamical characteristics of OSV signals. These measurements serve as features for the application of traditional machine learning (ML) and deep learning (DL) approaches in the context of classifying OSV signals from COVID-19 patients during their illness and subsequent recovery. We use the Beurer PO-80 pulse oximeter which non-invasively acquired OSV and pulse rate data from COVID-19 infected patients during the active infection phase and after a two-month recovery period. The dataset comprises of 88 recordings collected from 44 subjects(26 men and 18 women), both during their COVID-19 illness and two months post-recovery. Prior to analysis, data preprocessing is performed to remove artifacts and outliers. The application of SBE measures to OSV signals unveils a reduction in signal complexity during the course of COVID-19. Leveraging these SBE measures as feature sets, we employ two DL techniques, namely the radial basis function network (RBFN) and RBFN with dynamic delay algorithm (RBFNDDA), for the classification of OSV data collected during and after COVID-19 recovery. To evaluate the classification performance, we employ standard metrics such as sensitivity, specificity, false positive rate (FPR), and the area under the receiver operator characteristic curve (AUC). Among the three scale-based entropy measures, MFE outperformed MSE and MPE by achieving the highest classification performance using RBFN with 13 best features having sensitivity (0.84), FPR (0.30), specificity (0.70) and AUC (0.77). The outcomes of our study demonstrate that SBE measures combined with DL methods offer a valuable approach for categorizing OSV signals obtained during and after COVID-19, ultimately aiding in the detection of CRCS dysfunction.


Assuntos
COVID-19 , Aprendizado Profundo , Masculino , Humanos , Feminino , Entropia , Inteligência Artificial , Eletroencefalografia/métodos
2.
J Infect Public Health ; 17(4): 601-608, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377633

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a respiratory illness that leads to severe acute respiratory syndrome and various cardiorespiratory complications, contributing to morbidity and mortality. Entropy analysis has demonstrated its ability to monitor physiological states and system dynamics during health and disease. The main objective of the study is to extract information about cardiorespiratory control by conducting a complexity analysis of OSV signals using scale-based entropy measures following a two-month timeframe after recovery. METHODS: This prospective study collected data from subjects meeting specific criteria, using a Beurer PO-80 pulse oximeter to measure oxygen saturation (SpO2) and pulse rate. Excluding individuals with a history of pulmonary/cardiovascular issues, the study analyzed 88 recordings from 44 subjects (26 men, 18 women, mean age 45.34 ± 14.40) during COVID-19 and two months post-recovery. Data preprocessing and scale-based entropy analysis were applied to assess OSV signals. RESULTS: The study found a significant difference in mean OSV during illness (95.08 ± 0.15) compared to post-recovery (95.59 ± 1.03), indicating reduced cardiorespiratory dynamism during COVID-19. Multiscale entropy analyses (MSE, MPE, MFE) confirmed lower entropy values during illness across all time scales, particularly at higher scales. Notably, the maximum distinction between illness and recovery phases was seen at specific time scales and similarity criteria for each entropy measure, showing statistically significant differences. CONCLUSIONS: The study demonstrates that the loss of complexity in OSV signals, quantified using scale-based entropy measures, has the potential to detect malfunctioning of cardiorespiratory control in COVID-19 patients. This finding suggests that OSV signals could serve as a valuable indicator for assessing the cardiorespiratory status of COVID-19 patients and monitoring their recovery progress.


Assuntos
COVID-19 , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Saturação de Oxigênio , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA