Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Mol Evol ; 92(4): 505-524, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39026042

RESUMO

Gene duplication followed by nucleotide differentiation is one of the simplest mechanisms to develop new functions for genes. However, the evolutionary processes underlying the divergence of multigene families remain controversial. We used multigene families found within the diversity of toxic proteins in centipede venom to test two hypotheses related to venom evolution: the two-speed mode of venom evolution and the rapid accumulation of variation in exposed residues (RAVER) model. The two-speed mode of venom evolution proposes that different types of selection impact ancient and younger venomous lineages with negative selection being the predominant form in ancient lineages and positive selection being the dominant form in younger lineages. The RAVER hypothesis proposes that, instead of different types of selection acting on different ages of venomous lineages, the different types of selection will selectively contribute to amino acid variation based on whether the residue is exposed to the solvent where it can potentially interact directly with toxin targets. This hypothesis parallels the longstanding understanding of protein evolution that suggests that residues found within the structural or active regions of the protein will be under negative or purifying selection, and residues that do not form part of these areas will be more prone to positive selection. To test these two hypotheses, we compared the venom of 26 centipedes from the order Scolopendromorpha from six currently recognized species from across North America using both transcriptomics and proteomics. We first estimated their phylogenetic relationships and uncovered paraphyly among the genus Scolopendra and evidence for cryptic diversity among currently recognized species. Using our phylogeny, we then characterized the diverse venom components from across the identified clades using a combination of transcriptomics and proteomics. We conducted selection-based analyses in the context of predicted three-dimensional properties of the venom proteins and found support for both hypotheses. Consistent with the two-speed hypothesis, we found a prevalence of negative selection across all proteins. Consistent with the RAVER hypothesis, we found evidence of positive selection on solvent-exposed residues, with structural and less-exposed residues showing stronger signal for negative selection. Through the use of phylogenetics, transcriptomics, proteomics, and selection-based analyses, we were able to describe the evolution of venom from an ancient venomous lineage and support principles of protein evolution that directly relate to multigene family evolution.


Assuntos
Artrópodes , Evolução Molecular , Filogenia , Seleção Genética , Animais , Artrópodes/genética , Venenos de Artrópodes/genética , Venenos de Artrópodes/química , Família Multigênica , Peçonhas/genética , Peçonhas/química , América do Norte , Duplicação Gênica , Modelos Moleculares , Conformação Proteica
2.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(2): 194-200, 2024 Apr 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38268403

RESUMO

OBJECTIVES: To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom, and to determine its sequence and structure. METHODS: Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom, and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording. The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry; its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry; its structure was established based on iterative thread assembly refinement online analysis. RESULTS: A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8, and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSGDSRLKD-OH. Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell, with 1.0 µmol/L SsTx-P2 suppressing 95% current of Kv4.1 channel. Its structure showed that SsTx-P2 shared a conserved helical structure. CONCLUSIONS: The study has isolated a novel peptide SsTx-P2 from centipede venom, which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.


Assuntos
Sequência de Aminoácidos , Venenos de Artrópodes , Canais de Potássio Shal , Animais , Humanos , Venenos de Artrópodes/química , Venenos de Artrópodes/farmacologia , Dados de Sequência Molecular , Peptídeos/farmacologia , Peptídeos/isolamento & purificação , Peptídeos/química , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/isolamento & purificação , Bloqueadores dos Canais de Potássio/química , Canais de Potássio Shal/antagonistas & inibidores , Quilópodes/química
3.
Zhonghua Nan Ke Xue ; 29(8): 751-754, 2023 Aug.
Artigo em Zh | MEDLINE | ID: mdl-38619525

RESUMO

Centipede is an important traditional Chinese medicine with a long history of clinical application and a wide range of effects, and its use in the field of andrology is also expanding.In this study, the drug experience and clinical research progress of centipede in erectile dysfunction, chronic prostatitis, prostate cancer, varicocele, chronic epididymitis, epididymal nodules, functional non-ejaculation, scrotal eczema and other diseases were reviewed.


Assuntos
Andrologia , Epididimite , Disfunção Erétil , Masculino , Animais , Humanos , Quilópodes , Epididimo
4.
J Biol Chem ; 297(3): 101076, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34391777

RESUMO

Inwardly rectifying potassium channels (Kirs) are important drug targets, with antagonists for the Kir1.1, Kir4.1, and pancreatic Kir6.2/SUR1 channels being potential drug candidates for treating hypertension, depression, and diabetes, respectively. However, few peptide toxins acting on Kirs are identified and their interacting mechanisms remain largely elusive yet. Herein, we showed that the centipede toxin SsTx-4 potently inhibited the Kir1.1, Kir4.1, and Kir6.2/SUR1 channels with nanomolar to submicromolar affinities and intensively studied the molecular bases for toxin-channel interactions using patch-clamp analysis and site-directed mutations. Other Kirs including Kir2.1 to 2.4, Kir4.2, and Kir7.1 were resistant to SsTx-4 treatment. Moreover, SsTx-4 inhibited the inward and outward currents of Kirs with different potencies, possibly caused by a K+ "knock-off" effect, suggesting the toxin functions as an out pore blocker physically occluding the K+-conducting pathway. This conclusion was further supported by a mutation analysis showing that M137 located in the outer vestibule of the Kir6.2/ΔC26 channel was the key residue mediating interaction with SsTx-4. On the other hand, the molecular determinants within SsTx-4 for binding these Kir channels only partially overlapped, with K13 and F44 being the common key residues. Most importantly, K11A, P15A, and Y16A mutant toxins showed improved affinity and/or selectivity toward Kir6.2, while R12A mutant toxin had increased affinity for Kir4.1. To our knowledge, SsTx-4 is the first characterized peptide toxin with Kir4.1 inhibitory activity. This study provides useful insights for engineering a Kir6.2/SUR1 channel-specific antagonist based on the SsTx-4 template molecule and may be useful in developing new antidiabetic drugs.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Toxinas Biológicas/metabolismo , Animais , Quilópodes/enzimologia , Quilópodes/metabolismo , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Toxinas Biológicas/toxicidade
5.
J Wound Care ; 31(7): 586-588, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35797257

RESUMO

OBJECTIVE: The purpose of this study is to demonstrate that hyperbaric oxygen therapy (HBOT) is an option for the management of rapidly progressive tissue necrosis after centipede bites in patients with diabetes. METHOD: In this case report, we introduce a patient with diabetes with soft tissue necrosis and secondary infection due to a centipede bite, who was treated with a multidisciplinary approach including HBOT. RESULTS: In this case study, HBOT, applied in the treatment of rapidly developing cellulitis after a centipede bite in a patient with diabetes, accelerated wound healing. Deep soft tissue infection stopped progression to necrotising fasciitis and prevented possible amputation, and facilitated the patient's return to social life in a short time. CONCLUSION: HBOT can be used in combination with other local and systemic, due to its anti-venom effect and treatment of extremity-threatening infection.


Assuntos
Diabetes Mellitus , Pé Diabético , Oxigenoterapia Hiperbárica , Amputação Cirúrgica , Animais , Quilópodes , Pé Diabético/terapia , Humanos , Necrose/terapia
6.
Int J Mol Sci ; 23(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35806107

RESUMO

Centipedes are one of the most ancient and successful living venomous animals. They have evolved spooky venoms to deter predators or hunt prey, and are widely distributed throughout the world besides Antarctica. Neurotoxins are the most important virulence factor affecting the function of the nervous system. Ion channels and receptors expressed in the nervous system, including NaV, KV, CaV, and TRP families, are the major targets of peptide neurotoxins. Insight into the mechanism of neurotoxins acting on ion channels contributes to our understanding of the function of both channels and centipede venoms. Meanwhile, the novel structure and selective activities give them the enormous potential to be modified and exploited as research tools and biological drugs. Here, we review the centipede venom peptides that act on ion channels.


Assuntos
Venenos de Artrópodes , Artrópodes , Animais , Venenos de Artrópodes/química , Artrópodes/química , Quilópodes , Canais Iônicos , Neurotoxinas/farmacologia , Peptídeos/química , Peptídeos/farmacologia
7.
Molecules ; 27(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35889297

RESUMO

Venoms are a complex cocktail of biologically active molecules, including peptides, proteins, polyamide, and enzymes widely produced by venomous organisms. Through long-term evolution, venomous animals have evolved highly specific and diversified peptides and proteins targeting key physiological elements, including the nervous, blood, and muscular systems. Centipedes are typical venomous arthropods that rely on their toxins primarily for predation and defense. Although centipede bites are frequently reported, the composition and effect of centipede venoms are far from known. With the development of molecular biology and structural biology, the research on centipede venoms, especially peptides and proteins, has been deepened. Therefore, we summarize partial progress on the exploration of the bioactive peptides and proteins in centipede venoms and their potential value in pharmacological research and new drug development.


Assuntos
Venenos de Artrópodes , Artrópodes , Animais , Venenos de Artrópodes/química , Venenos de Artrópodes/farmacologia , Artrópodes/química , Quilópodes , Peptídeos/química , Proteínas/química , Peçonhas/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(7): 1646-1651, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29358396

RESUMO

Centipedes can subdue giant prey by using venom, which is metabolically expensive to synthesize and thus used frugally through efficiently disrupting essential physiological systems. Here, we show that a centipede (Scolopendra subspinipes mutilans, ∼3 g) can subdue a mouse (∼45 g) within 30 seconds. We found that this observation is largely due to a peptide toxin in the venom, SsTx, and further established that SsTx blocks KCNQ potassium channels to exert the lethal toxicity. We also demonstrated that a KCNQ opener, retigabine, neutralizes the toxicity of a centipede's venom. The study indicates that centipedes' venom has evolved to simultaneously disrupt cardiovascular, respiratory, muscular, and nervous systems by targeting the broadly distributed KCNQ channels, thus providing a therapeutic strategy for centipede envenomation.


Assuntos
Venenos de Artrópodes/toxicidade , Artrópodes/fisiologia , Canais de Potássio KCNQ/antagonistas & inibidores , Doenças do Sistema Nervoso/induzido quimicamente , Comportamento Predatório/efeitos dos fármacos , Anormalidades do Sistema Respiratório/induzido quimicamente , Animais , Anticonvulsivantes/farmacologia , Carbamatos/farmacologia , Camundongos , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Fenilenodiaminas/farmacologia , Anormalidades do Sistema Respiratório/tratamento farmacológico , Anormalidades do Sistema Respiratório/metabolismo
9.
Allergol Int ; 70(1): 121-128, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32680616

RESUMO

BACKGROUND: Allergic reactions have been observed following both direct centipede bites and the clinical use of centipede-containing medicines, such as traditional Chinese medicines utilizing Scolopendra subspinipes mutilans; however, no natural centipede allergen has yet been characterized. METHODS: An allergen was purified from S. s. mutilans venom using Superdex 75 gel filtration and RESOURCE S ion chromatography, and its primary structure was determined via a combination of LC-MS-MS, MALDI-TOF/TOF and protein sequencing techniques. Its potential allergenicity was evaluated by immunoblotting, ELISAs, skin prick tests (SPTs) and mast cell activation assays. RESULTS: A novel allergen Sco m 5 (210 amino acids long) was successfully purified from crude S. s. mutilans venom. Sco m 5 could promote the degranulation of a human mast cell line, HMC-1. Among centipede-allergic patients, Sco m 5 showed an 83.3% IgE-binding frequency and a 66.7% positive reaction frequency, as detected by immunoblotting and SPTs, respectively. Sco m 5 IgE-binding frequencies of common Chinese population was found to be 9%-16%. Sera positive for Sco m 5 IgE-binding was cross-reactive against venom from the wasp Vespa mandaeinia. CONCLUSIONS: The present study isolated and characterized a novel allergen termed as Sco m 5 from the centipede S. s. mutilans. The use of Sco m 5 to identify centipede-allergic individuals could be important, given the high potential allergenicity of Sco m 5 among the general Chinese population, along with the likely possibility of cross-reactivity against wasp venom among centipede-allergic patients.


Assuntos
Alérgenos/imunologia , Alérgenos/isolamento & purificação , Quilópodes/imunologia , Alérgenos/química , Sequência de Aminoácidos , Animais , Cromatografia por Troca Iônica , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática , Hipersensibilidade/diagnóstico , Hipersensibilidade/imunologia , Imunoglobulina E/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Testes Cutâneos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
10.
Zhongguo Zhong Yao Za Zhi ; 46(3): 635-637, 2021 Feb.
Artigo em Zh | MEDLINE | ID: mdl-33645030

RESUMO

Three compounds, including scolosprine C(1), uracil(2) and hypoxanthine(3), were isolated and purified from the ethyl acetate fraction of centipede by silica gel normal-phase column chromatography, reversed-phase medium pressure preparation chromatography, and high-pressure semi-preparative HPLC. The structure was elucidated through a combination of spectroscopic analyses [such as nuclear magnetic resonance(NMR) and mass spectrometry(MS)] and literature review. Among them, compound 1 was a new quinoline alkaloid. In previous reports, we have described the isolation and structure elucidation of one new and two known quinoline alkaloids. In this paper, we would report the isolation and structure elucidation of scolosprine C in detail.


Assuntos
Alcaloides , Artrópodes , Quinolinas , Animais , Quilópodes
11.
Biofouling ; 36(2): 126-137, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32093497

RESUMO

Microbial biofilms are associated with persistent infections because of their high tolerance to antimicrobial agents and host defenses. The effects of centipede oil from Scolopendra subspinipes mutilans and its main components were investigated to identify non-toxic biofilm inhibitors. Centipede oil and linoleic acid at 20 µg ml-1 markedly inhibited biofilm formation by two fluconazole-resistant Candida albicans strains and three Staphylococcus aureus strains without affecting their planktonic cell growth. Also, both centipede oil and linoleic acid inhibited hyphal growth and cell aggregation by C. albicans. In addition, centipede oil and linoleic acid showed anti-biofilm activities against mixed C. albicans and S. aureus biofilms. Transcriptomic analysis showed that centipede oil and linoleic acid downregulated the expressions of several hypha/biofilm-related genes in C. albicans and α-hemolysin in S. aureus. Furthermore, both compounds effectively reduced C. albicans virulence in a nematode infection model with minimal toxicity.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Ácido Linoleico/farmacologia , Óleos Voláteis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Anti-Infecciosos/toxicidade , Artrópodes/química , Biofilmes/crescimento & desenvolvimento , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/microbiologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Hifas/crescimento & desenvolvimento , Ácido Linoleico/toxicidade , Testes de Sensibilidade Microbiana , Óleos Voláteis/toxicidade , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Virulência/efeitos dos fármacos
12.
Proc Natl Acad Sci U S A ; 112(13): 4026-31, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25775536

RESUMO

Venom represents one of the most extreme manifestations of a chemical arms race. Venoms are complex biochemical arsenals, often containing hundreds to thousands of unique protein toxins. Despite their utility for prey capture, venoms are energetically expensive commodities, and consequently it is hypothesized that venom complexity is inversely related to the capacity of a venomous animal to physically subdue prey. Centipedes, one of the oldest yet least-studied venomous lineages, appear to defy this rule. Although scutigeromorph centipedes produce less complex venom than those secreted by scolopendrid centipedes, they appear to rely heavily on venom for prey capture. We show that the venom glands are large and well developed in both scutigerid and scolopendrid species, but that scutigerid forcipules lack the adaptations that allow scolopendrids to inflict physical damage on prey and predators. Moreover, we reveal that scolopendrid venom glands have evolved to accommodate a much larger number of secretory cells and, by using imaging mass spectrometry, we demonstrate that toxin production is heterogeneous across these secretory units. We propose that the differences in venom complexity between centipede orders are largely a result of morphological restrictions of the venom gland, and consequently there is a strong correlation between the morphological and biochemical complexity of this unique venom system. The current data add to the growing body of evidence that toxins are not expressed in a spatially homogenous manner within venom glands, and they suggest that the link between ecology and toxin evolution is more complex than previously thought.


Assuntos
Venenos de Artrópodes/química , Artrópodes/genética , Glândulas Exócrinas/fisiologia , Animais , Venenos de Artrópodes/análise , Artrópodes/química , Evolução Biológica , Glândulas Exócrinas/ultraestrutura , Imageamento por Ressonância Magnética , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Peptídeos/química , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Mecânico
13.
J Pept Sci ; 23(5): 384-391, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28247497

RESUMO

Pain is a major symptom of many diseases and results in enormous pressures on human body or society. Currently, clinically used analgesic drugs, including opioids and nonsteroidal anti-inflammatory drugs, have adverse reactions, and thus, the development of new types of analgesic drug candidates is urgently needed. Animal venom peptides have proven to have potential as new types of analgesic medicine. In this research, we describe the isolation and characterization of an analgesic peptide from the crude venom of centipede, Scolopendra subspinipes mutilans. The amino acid sequence of this peptide was identical with SsmTX-I that was previously reported as a specific Kv2.1 ion channel blocker. Our results revealed that SsmTX-I was produced by posttranslational processing of a 73-residue prepropeptide. The intramolecular disulfide bridge motifs of SsmTX-I was Cys1-Cys3 and Cys2-Cys4. Functional assay revealed that SsmTX-I showed potential analgesic activities in formalin-induced paw licking, thermal pain, and acetic acid-induced abdominal writhing mice models. Our research provides the first report of cDNA sequences, disulfide motif, successful synthesis, and analgesic potential of SsmTX-I for the development of pain-killing drugs. It indicates that centipede peptide toxins could be a treasure trove for the search of novel analgesic drug candidates. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Analgésicos/síntese química , Venenos de Artrópodes/genética , Artrópodes/metabolismo , Canais de Potássio Shab/antagonistas & inibidores , Sequência de Aminoácidos , Analgésicos/química , Analgésicos/farmacologia , Animais , Venenos de Artrópodes/química , Venenos de Artrópodes/farmacologia , Artrópodes/genética , Clonagem Molecular , Dissulfetos/química , Humanos , Camundongos , Modelos Animais , Manejo da Dor
14.
Mol Biol Evol ; 31(8): 2124-48, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24847043

RESUMO

Despite the staggering diversity of venomous animals, there seems to be remarkable convergence in regard to the types of proteins used as toxin scaffolds. However, our understanding of this fascinating area of evolution has been hampered by the narrow taxonomical range studied, with entire groups of venomous animals remaining almost completely unstudied. One such group is centipedes, class Chilopoda, which emerged about 440 Ma and may represent the oldest terrestrial venomous lineage next to scorpions. Here, we provide the first comprehensive insight into the chilopod "venome" and its evolution, which has revealed novel and convergent toxin recruitments as well as entirely new toxin families among both high- and low molecular weight venom components. The ancient evolutionary history of centipedes is also apparent from the differences between the Scolopendromorpha and Scutigeromorpha venoms, which diverged over 430 Ma, and appear to employ substantially different venom strategies. The presence of a wide range of novel proteins and peptides in centipede venoms highlights these animals as a rich source of novel bioactive molecules. Understanding the evolutionary processes behind these ancient venom systems will not only broaden our understanding of which traits make proteins and peptides amenable to neofunctionalization but it may also aid in directing bioprospecting efforts.


Assuntos
Venenos de Artrópodes/metabolismo , Artrópodes/classificação , Artrópodes/metabolismo , Evolução Molecular , Animais , Venenos de Artrópodes/genética , Genômica/métodos , Família Multigênica , Filogenia
15.
Biochim Biophys Acta ; 1828(11): 2745-50, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23896552

RESUMO

The centipede Scolopendra subspinipes mutilans has been a medically important arthropod species by using it as a traditional medicine for the treatment of various diseases. In this study, we derived a novel lactoferricin B like peptide (LBLP) from the whole bodies of adult centipedes, S. s. mutilans, and investigated the antifungal effect of LBLP. LBLP exerted an antifungal and fungicidal activity without hemolysis. To investigate the antifungal mechanism of LBLP, a membrane study with propidium iodide was first conducted against Candida albicans. The result showed that LBLP caused fungal membrane permeabilization. The assays of the three dimensional flow cytometric contour plot and membrane potential further showed cell shrinkage and membrane depolarization by the membrane damage. Finally, we confirmed the membrane-active mechanism of LBLP by synthesizing model membranes, calcein and FITC-dextran loaded large unilamellar vesicles. These results showed that the antifungal effect of LBLP on membrane was due to the formation of pores with radii between 0.74nm and 1.4nm. In conclusion, this study suggests that LBLP exerts a potent antifungal activity by pore formation in the membrane, eventually leading to fungal cell death.


Assuntos
Antifúngicos/farmacologia , Artrópodes , Lactoferrina/farmacologia , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Antifúngicos/química , Fluoresceínas/metabolismo , Hemólise/efeitos dos fármacos , Cinética , Lactoferrina/química , Lactoferrina/isolamento & purificação , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/isolamento & purificação , Homologia de Sequência de Aminoácidos
16.
J Pept Sci ; 20(3): 159-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24464516

RESUMO

Scolopendra subspinipes mutilans, also known as Chinese red-headed centipede, is a venomous centipede from East Asia and Australasia. Venom from this animal has not been researched as thoroughly as venom from snakes, snails, scorpions, and spiders. In this study, we isolated and characterized SsmTx-I, a novel neurotoxin from the venom of S. subspinipes mutilans. SsmTx-I contains 36 residues with four cysteines forming two disulfide bonds. It had low sequence similarity (<10%) with other identified peptide toxins. By whole-cell recording, SsmTx-I significantly blocked voltage-gated K⁺ channels in dorsal root ganglion neurons with an IC50 value of 200 nM, but it had no effect on voltage-gated Na⁺ channels. Among the nine K⁺ channel subtypes expressed in human embryonic kidney 293 cells, SsmTx-I selectively blocked the Kv2.1 current with an IC50 value of 41.7 nM, but it had little effect on currents mediated by other K⁺ channel subtypes. Blockage of Kv2.1 by SsmTx-I was not associated with significant alteration of steady-state activation, suggesting that SsmTx-I might act as a simple inhibitor or channel blocker rather than a gating modifier. Our study reported a specific Kv2.1-blocker from centipede venom and provided a basis for future investigations of SsmTx-I, for example on structure-function relationships, mechanism of action, and pharmacological potential.


Assuntos
Medicamentos de Ervas Chinesas/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Canais de Potássio Shab/efeitos dos fármacos , Peçonhas/farmacologia , Animais , Linhagem Celular , Alcaloides Diterpenos , Humanos , Técnicas de Patch-Clamp , Ratos
17.
J R Soc Interface ; 21(214): 20230439, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38807527

RESUMO

We present a novel approach to traction force microscopy (TFM) for studying the locomotion of 10 cm long walking centipedes on soft substrates. Leveraging the remarkable elasticity and ductility of kudzu starch gels, we use them as a deformable gel substrate, providing resilience against the centipedes' sharp leg tips. By optimizing fiducial marker size and density and fine-tuning imaging conditions, we enhance measurement accuracy. Our TFM investigation reveals traction forces along the centipede's longitudinal axis that effectively counterbalance inertial forces within the 0-10 mN range, providing the first report of non-vanishing inertia forces in TFM studies. Interestingly, we observe waves of forces propagating from the head to the tail of the centipede, corresponding to its locomotion speed. Furthermore, we discover a characteristic cycle of leg clusters engaging with the substrate: forward force (friction) upon leg tip contact, backward force (traction) as the leg pulls the substrate while stationary, and subsequent forward force as the leg tip detaches to reposition itself in the anterior direction. This work opens perspectives for TFM applications in ethology, tribology and robotics.


Assuntos
Artrópodes , Locomoção , Locomoção/fisiologia , Animais , Artrópodes/fisiologia , Microscopia/métodos
18.
Zookeys ; 1198: 1-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693971

RESUMO

Hanseniellachilensis is the only myriapod of the class Symphyla known from Chile. This garden centipede, or pseudocentipede, was described more than 120 years ago based on morphologically incomplete specimens collected in central Chile, a well-known biodiversity hotspot. In this study, we redescribe this species based on morphologically complete specimens collected near the type locality using scanning electron microscope images. Our study provides the description of diagnostic characters hitherto unknown in this species such as macrochaetae of the tergites and spinnerets of the cerci. We also include a new record from central Chile and discuss the presumed presence of this species in Argentina and Madagascar.

19.
Protein Expr Purif ; 92(2): 230-4, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24145284

RESUMO

Antimicrobial peptide scolopin 1 (AMP-scolopin 1) is a small cationic peptide identified from centipede venoms of Scolopendra subspinipes mutilans. It has broad-spectrum activities against bacteria, fungi, and tumor cells, which may possibly be used as an antimicrobial agent. We first report here the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of cationic antimicrobial peptide AMP-scolopin 1. The fusion protein expressed in a soluble form was purified to a purity of 95% by Ni-IDA chromatography. After the SUMO-scolopin 1 fusion protein was cleaved by the SUMO protease at 30°C for 1 h, the cleaved sample was reapplied to a Ni-IDA. The recombinant scolopin1 had similar antimicrobial properties to the synthetic scolopin 1. Thus, we successfully established a system for purifying peptide of centipede, which could be used for further research.


Assuntos
Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Venenos de Artrópodes/metabolismo , Artrópodes/enzimologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Venenos de Artrópodes/química , Venenos de Artrópodes/genética , Artrópodes/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
20.
Toxicon ; 233: 107231, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37517595

RESUMO

Research on centipede venoms has led to the discovery of a diverse array of novel proteins and peptides, including those with homology to previously discovered toxin families (e.g., phospholipase A2s and pM12a metalloproteases) and novel toxin families not previously detected in venoms (e.g., ß-pore forming toxins and scoloptoxins). Most of this research has focused on centipedes in the order Scolopendromorpha, particularly those in the families Scolopendridae, Cryptopidae, and Scolopocryptopidae. To generate the first high-throughput venom characterization for a centipede in the scolopendromorph family Plutoniumidae, we performed venom-gland transcriptomics and venom proteomics on two Theatops posticus. We identified a total of 64 venom toxins, 60 of which were detected in both the venom-gland transcriptome and venom proteome and four of which were only detected transcriptomically. We detected a single highly abundant arylsulfatase B (ARSB) toxin, the first ARSB toxin identified from centipede venoms. As ARSBs have been detected in other venomous species (e.g., scorpions), ARSBs in T. posticus highlights a new case of convergent evolution across venoms. Theatops posticus venom also contained a much higher abundance and diversity of phospholipase A2 toxins compared to other characterized centipede venoms. Conversely, we detected other common centipedes toxins, such as CAPs and scoloptoxins, at relatively low abundances and diversities. Our observation of a diverse set of toxins from T. posticus venom, including those from novel toxin families, emphasizes the importance of studying unexplored centipede taxonomic groups and the continued potential of centipede venoms for novel toxin discovery and unraveling the molecular mechanisms underlying trait evolution.


Assuntos
Venenos de Artrópodes , Artrópodes , Animais , Quilópodes/metabolismo , Artrópodes/química , Arilsulfatases/metabolismo , Fosfolipases/metabolismo , Venenos de Artrópodes/química , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA