Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Sci Food Agric ; 103(15): 7560-7568, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37421608

RESUMO

BACKGROUND: Chia oil represents the vegetable source with the highest content of omega-3 fatty acids. However, the incorporation of polyunsaturated fatty acids into food is limited due to their susceptibility toward oxidation. This investigation aimed to study the microencapsulation of chia oil (CO), using gallic acid (GA) crosslinked-soy protein isolate (SPI) as a wall material and its effect on its oxidative stability. RESULTS: Microcapsules presented a moisture content, water activity, and encapsulation efficiency of around 2.95-4.51% (wet basis); 0.17 and 59.76-71.65%, respectively. Rancimat tests showed that with higher GA content, the induction period increased up to 27.9 h. The storage test demonstrated that the microencapsulated oil with crosslinked wall material has lower values of hydroperoxides and higher induction times concerning the non-crosslinked oil. Finally, the fatty acid profile at this storage time indicated that microcapsules with GA did not have significant changes. In vitro digestion exhibited a reduction in the percentage of bioavailable oil for crosslinked microcapsules, but with no variations in its chemical quality, and an increase in the total polyphenols amount and antioxidant activity. CONCLUSION: The results obtained demonstrated that the microencapsulation of CO using SPI crosslinked with GA as wall material exerted a very important protective effect since a synergistic effect could be described between the microencapsulation effect and the antioxidant power of GA. © 2023 Society of Chemical Industry.


Assuntos
Salvia , Proteínas de Soja , Ácido Gálico , Salvia/química , Cápsulas/química , Óleos de Plantas/química , Antioxidantes/química
2.
J Sci Food Agric ; 103(7): 3322-3333, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36750451

RESUMO

BACKGROUND: Chia oil (CO) is popular for being the richest vegetable source of α-linolenic acid (60-66%). However, this content of polyunsaturated fatty acids (PUFA) limits the incorporation of bulk CO in food products due to its high probability of oxidation. This justifies the study of alternative wall materials for microencapsulation. No reports regarding the use of dairy protein/vegetable protein/polysaccharide blends as wall material for the microencapsulation of CO have been published. Therefore, this work analyzed the behavior of a whey protein concentrate (WPC)/soy protein isolate (SPI)/arabic gum (AG) blend as wall material. The complex coacervation (CC) process was studied: pH, 4.0; total solid content, 30% w/v; WPC/SPI/AG ratio, 8:1:1 w/w/w; stirring speed, 600 rpm; time, 30 min; room temperature. RESULTS: The oxidative stability index (OSI) of CO (3.25 ± 0.16 h) was significantly increased after microencapsulation (around four times higher). Furthermore, the well-known matrix-forming ability of AG and WPC helped increase the OSI of microencapsulated oils. Meanwhile, SPI contributed to the increase of the encapsulation efficiency due to its high viscosity. Enhanced properties were observed with CC: encapsulation efficiency (up to 79.88%), OSIs (from 11.25 to 12.52 h) and thermal stability of microcapsules given by the denaturation peak temperatures of WPC (from 77.12 to 86.00 °C). No significant differences were observed in the fatty acid composition of bulk and microencapsulated oils. CONCLUSION: Microcapsules developed from complex coacervates based on the ternary blend represent promising omega-3-rich carriers for being incorporated into functional foods.


Assuntos
Ácidos Graxos Ômega-3 , Proteínas de Soja , Proteínas do Soro do Leite/química , Proteínas de Soja/metabolismo , Cápsulas/química , Ácidos Graxos Ômega-3/química , Liofilização , Estresse Oxidativo , Goma Arábica/química , Composição de Medicamentos
3.
Plant Foods Hum Nutr ; 78(1): 179-185, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36515802

RESUMO

Most of the studies on the beneficial effects of chia have been conducted with its seeds. There is less evidence about the effects of cold pressed chia seeds oil on hypercholesterolemia-induced alterations. Thus, this study investigated the effects of cold pressed chia seed oil supplementation on certain hematological and biochemical biomarkers in both normal and hypercholesterolemic rabbits. Thirty two male rabbits were assigned to four different groups and fed on: 1) a regular diet (CD), 2) CD supplemented with 10% chia oil, 3) CD supplemented with 1% cholesterol, 4) CD supplemented with 1% cholesterol and 10% chia oil. After six weeks of dietary interventions, mean arterial blood pressure and visceral fat were measured and blood samples were analyzed for lipid profiles and hematological parameters while erythrocyte membranes and retroperitoneal fat were analyzed for fatty acids composition and biochemical biomarkers. Dietary intervention with chia oil achieved control of the hypercholesterolemia-induced increase of mean arterial blood pressure, neutrophil to lymphocytes ratio, erythrocyte membrane fluidity, and improved erythrocyte morphological alterations. With regard to inflammatory biomarkers, chia oil supplementation reduced omega-6/omega-3 polyunsaturated fatty acids ratios and arachidonic/linolenic fatty acids ratios both in erythrocytes and fat from normal and hypercholesterolemic rabbits. The increase of linolenic fatty acid into the retroperitoneal fat was about 9 times higher than its respective controls. These results provide support for the potential health benefits of chia oil intake on hypercholesterolemia-associated clinical, hematological and biochemical alterations.


Assuntos
Ácidos Graxos Ômega-3 , Hipercolesterolemia , Salvia , Animais , Coelhos , Salvia/química , Ácidos Graxos Ômega-3/química , Ácidos Graxos , Ácido alfa-Linolênico , Colesterol , Sementes , Biomarcadores
4.
Food Technol Biotechnol ; 60(4): 449-457, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36816871

RESUMO

Research background: Cheese whey and whey permeate are dairy industry by-products usually sent to effluent treatment or incorrectly disposed in the environment, generating costs for the production of dairy products and environmental problems due to the high organic load. Cheese whey and whey permeate can be reused as wall materials to form chia oil microcapsules, which act as a barrier to prooxidants. This study aims to develop an encapsulation method by spray-drying to protect chia oil using dairy by-products as wall materials. Experimental approach: We evaluated cheese whey, whey permeate and mixtures of m(cheese whey):m(whey permeate)=50, 70 and 80% as encapsulating agents with the spray-drying process. Initially, we characterized the chia oil and encapsulating materials. Chia oil emulsions were prepared using the encapsulating materials and an emulsifier. The stability of the emulsions was evaluated by creaming index, and they were characterized according to size distribution and polydispersity index. Emulsions were encapsulated in a spray dryer with inlet and outlet air temperature at 125 and 105 °C, respectively. After encapsulation, we assessed the oxidative degradation of chia oil over 30 days of storage by determining the peroxide index. Results and conclusions: Emulsions presented creaming index between 51 and 83% in all formulations, and the oxidative stability of microencapsulated chia oil was significantly higher than that of free chia oil after 30 days. Wall material combination affected both encapsulation efficiency and oxidation protection. The cheese whey and whey permeate (8:2) mixture exhibited the highest encapsulation efficiency (70.07%) and ability to protect the chia seed oil. After 30 days, the peroxide value was below the maximum limit considered safe for human consumption. Novelty and scientific contribution: According to these results, dairy by-products can be used for encapsulation of oxidation-sensitive oils. This represents an alternative use for dairy by-products, which otherwise are discarded and can impact the environment due to their high organic load. Our findings suggest that dairy by-products can be effectively used as wall materials to generate value-added products.

5.
J Sci Food Agric ; 102(6): 2396-2403, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34625975

RESUMO

BACKGROUND: The peanut skin (PS) is considered as an industrial waste with undervalued applications. Although several studies report potent antioxidant capacities of PS phenolics, the effectiveness in highly unsaturated lipid systems has not yet been evaluated. The objectives of the present study were two-fold: (i) to characterize a PS phenolic extract (PSE) obtained by means of a green technology and (ii) to evaluate its antioxidant efficacy on pure chia oil and chia oil in water (O/W) acid emulsion. RESULTS: PSE was composed mainly of monomeric and condensed flavonoids (procyanidin and proanthocyanidin oligomers). PSE displayed strong antioxidant properties as measured by different reducing power and radical scavenging capacities [IC50  = 0.36 µg dry extract (DE) mL-1 for ferric reducing antioxidant power; IC50  = 4.96 µg DE mL-1 for 2,2-diphenyl-1-picrylhydrazyl (DPPH)• ; IC50  = 6.01 µg DE mL-1 for 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS)•+ ; IC50  = 2.62 µg DE mL-1 for HO• ]. It also showed high antioxidant efficacy when tested in pure chia oil under accelerated oxidation conditions (Rancimat, 100 °C). When added to the O/W emulsions maintained at 40 °C for 15 days, the PSE was more effective than a synthetic antioxidant (tert-butylhydroquinone) with respect to minimizing the formation and degradation of lipid hydroperoxides. CONCLUSIONS: The antioxidant efficacy of PSE was primarily attributed to the abundance of compounds with a high number of phenolic-OH groups. Because they were found to cover a relatively wide range of partition coefficients, the antioxidant properties could be also enhanced by effect of both interfacial and solubility phenomena. All of these features allow the potential use of PSE as a natural antioxidant in different types of foods, including acid emulsion systems. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes , Arachis , Antioxidantes/química , Emulsões , Solventes , Água/química
6.
Lipids Health Dis ; 19(1): 10, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31948460

RESUMO

BACKGROUND: Ω-3 fatty acids perform several therapeutic functions in the body, however, their applications are limited due to the inferior oxidative stability. To improve the oxidative stability and release properties of Ω-3 fatty acids, microencapsulation is performed. Butter is a good source of fat-soluble vitamins and antioxidant systems however, it is not a good source of Ω-3 fatty acids. Supplementation of butter with microcapsules of vegetable oils rich in Ω-3 fatty acids is not reported in literature. METHODS: Microcapsules of chia oil (MCO) were prepared using chitosan as encapsulating material by spray drying at lower temperature. Unsalted butter prepared from cultured cream using Lactococcus lactis ssp. Lactis at 21 °C for 16 Hrs. Cream was churned at 12 °C and microcapsules of chia oil were added to the butter during the working stage at four different concentrations i.e. 2, 4, 6 and 8% (T1, T2, T3 and T4, respectively). Butter without supplementation of MCO were kept as control. Butter samples were stored for 90 days at -10 °C. Butter composition, antioxidant capacity, fatty acid profile, induction period, free fatty acids, peroxide value and sensory evaluation were performed at 0, 45 and 90 days of storage. RESULTS: Addition of MCO in butter did not have any effect on standards of identity of butter. Microencapsulation had no effect on fatty acid profile of microcapsules of chia oil. Concentration of alpha-linolenic acid (ALA) in control, T1, T2, T3 and T4 were 0.49, 4.29, 8.41, 13.21 and 17.44%, respectively. Concentration of ALA in fresh and 90 days stored butter samples were 17.44 and 17.11%, respectively. After 90 days of storage, loss of eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) were 0.07%, 0.05 and 0.03%, respectively. At 0, 45 and 90 days of storage, 2, 2-Diphenyl-1-picrylhydrazyle (DPPH) free radical scavenging activity of free chia oil was 39.81, 71.22 and 62.18%, respectively. However, microcapsules of chia oil had superior antioxidant activity. DPPH free radical scavenging activity of microcapsules at 0, 45 and 90 days of storage was 36.51, 36.43 and 35.96%, respectively (p > 0.05). Total antioxidant capacity of microcapsules at 0, 45 and 90 days of storage was 70.53, 69.88 and 68.52%, respectively (p > 0.05). It was recorded that induction period of free chia oil and microcapsules was only 2.86 h and 8.55 h. Among the butter samples, control revealed the lowest induction period. While, induction period of experimental samples was not different from each other. Peroxide value and free fatty acids of the butter samples at the end of storage period (90 days) was less than the European Union standards limit (10MeqO2/kg and 0.2%). Sensory characteristics of experimental samples were similar to the control. MCO can be added in butter to improve its functional value. CONCLUSION: Concentration of Ω-3 fatty acids in butter up to 8% can be increased through microcapsules of chia oil with reasonable oxidative stability and no effect on sensory characteristics.


Assuntos
Antioxidantes/química , Medicamentos de Ervas Chinesas/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Manteiga/análise , Canfanos , Cápsulas/química , Cápsulas/farmacologia , Quitosana/química , Medicamentos de Ervas Chinesas/química , Ácidos Graxos Ômega-3/química , Humanos , Lactococcus lactis/metabolismo , Oxirredução/efeitos dos fármacos , Panax notoginseng , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Salvia/química , Salvia miltiorrhiza
7.
J Sci Food Agric ; 100(3): 1265-1273, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31709548

RESUMO

BACKGROUND: The aim of this work was to evaluate the effect on chemical composition, physico-chemical properties, cooking characteristics, fatty acid profile, lipid oxidation, and sensory acceptability of an oil-in-water emulsion gel that was prepared with chestnut flour, chia oil, gellan gum, and water (CEG), used as a fat replacer in pork burgers. The original mixture was used as a control sample (CS). The other samples were formulated partially replacing pork backfat with 5% of CEG (CEG5%) and 10% of CEG (CEG10%). RESULTS: Proximate analysis of samples showed several differences between samples. The CEG addition was found to be effective for improving the cooking yield while diameter reduction and thickness increase were positively affected. As regards lipid oxidation, in cooked burger, the 2-thiobarbituric acid (TBA) values for CS, CEG5% and CEG10% were 0.46, 0.57, and 0.59 mg malonaldehyde/kg sample, respectively. The linolenic and linolenic acid content of pork burger increased as CEG addition increased. Sensory properties for CS and CEG5% were similar whereas CEG10% showed the highest sensory scores. CONCLUSIONS: A combination of chestnut flour and chia oil could be used as a novel ingredient to develop pork burgers with a better nutritional profile without diminishing their sensory and physico-chemical properties. © 2019 Society of Chemical Industry.


Assuntos
Fagaceae/química , Substitutos da Gordura/análise , Farinha/análise , Produtos da Carne/análise , Óleos de Plantas/análise , Salvia/química , Animais , Culinária , Emulsões/química , Aditivos Alimentares/análise , Géis/química , Humanos , Suínos , Paladar
8.
Asian-Australas J Anim Sci ; 33(8): 1310-1322, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32054210

RESUMO

OBJECTIVE: The current study was conducted to evaluate the quality and profile of fatty acid in the breast and thigh, and the performance of broilers fed diets containing seed or oil of chia (Salvia hispanica L.) as a replacement for soybean, in the rearing period from 29 to 42 days of age. METHODS: On the 29th day of age, 120 broilers were distributed in four treatments evaluated in five replicates of six birds. The grain or oil of soybean was respectively replaced on a weightto-weight basis in the formulation by the seed or oil of chia, constituting the experimental diets. The roasted whole soybean and chia seed were included in the feed at 16.4%, whereas the soybean and chia oils were included at 2.5%. RESULTS: The dietary chia oil increased the lipid peroxidation in the thigh meat, and the dietary chia seed increased the cooking loss of the thigh. However, for the other physicochemical parameters evaluated and for the proximate composition of the breast and thigh, in general, the inclusion of chia seed or oil in the diet provided similar or better results than those observed when the diets contained soybean oil or roasted whole soybean. With regard to the fatty acid profile and associated parameters, dietary chia increased the concentrations of α-linolenic, eicosapentaenoic, and docosahexaenoic acids and reduced the Σω-6:Σω-3 ratio and the atherogenicity and thrombogenicity indices of the broiler meat. However, the dietary chia seed worsened the feed conversion ratio. CONCLUSION: Diet containing 2.5% chia oil supplied to broilers during the period from 29 to 42 days of age improves the feed conversion ratio, increases the deposition of the ω-3 fatty acids in the breast and thigh, in addition to reducing the Σω-6:Σω-3 ratio and the atherogenicity and thrombogenicity indices, thereby resulting in meat with higher nutritional quality.

9.
J Sci Food Agric ; 99(4): 1682-1690, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30207385

RESUMO

BACKGROUND: Chia oil possesses a very high content of polyunsaturated fatty acids, mainly α-linolenic acid. This characteristic makes this oil possess beneficial properties to health but gives it a high susceptibility to the oxidation process. Microencapsulation and the addition of natural antioxidants are alternatives to protect chia oil against oxidative deterioration. The aim of this study was to investigate the physicochemical characteristics and the oxidative stability of chia seed oil microencapsulated with different natural antioxidants (Guardian Chelox, which is a commercial blend of extracts from chamomile and rosemary, and essential oils from Origanum vulgare, Origanum x majoricum, and Mentha spicata) by freeze-drying using sodium caseinate and lactose as wall materials. RESULTS: The main physicochemical properties of the microencapsulated chia oil were similar regardless of the presence of antioxidant. The moisture content was 38.1 ± 4.0 g kg-1 ; the microencapsulation efficiency was higher than 85% in all cases. The freeze-drying microencapsulation significantly enhanced (P ≤ 0.05) the oxidative stability of the chia oil. The addition of natural antioxidants conferred chia oil additional protection against lipid oxidation, depending on the type and concentration (500 or 1000 mg kg-1 of the emulsion previous to freeze-drying) of the antioxidant. Among them, Guardian Chelox (1000 mg kg-1 ), presented the highest induction time obtained by the Rancimat accelerated oxidative stability test and the lowest peroxide values after 90 days of storage (33% relative humidity, 25 ± 2 °C). Overall, the microparticles with antioxidants presented a lower degree of yellowing during storage than the control system. CONCLUSION: The use of different natural antioxidants confers freeze-dried microencapsulated chia seed oil additional protection against lipid oxidation. This information is relevant for the application of this oil, which is a rich source of omega-3 fatty acids, in the food industry. © 2018 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Extratos Vegetais/química , Óleos de Plantas/química , Camomila/química , Composição de Medicamentos , Ácidos Graxos Ômega-3/química , Liofilização , Origanum/química , Oxirredução , Rosmarinus/química , Salvia/química , Sementes/química
10.
J Sci Food Agric ; 98(13): 4903-4910, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29569241

RESUMO

BACKGROUND: Omega-3 and omega-6 fatty acids-rich oils suffer oxidation reactions that alter their chemical and organoleptic quality. Microencapsulation can be a powerful tool for protection against ambient conditions. In the present study, the addition of microencapsulated chia oil as an ingredient in bread preparations and its effect on the technological and chemical quality of breads was investigated. RESULTS: Microencapsulation of chia oil was carried out by freeze-drying with soy proteins as wall material and oil release was determined under in vitro gastric and intestinal conditions. Encapsulated oil-containing bread showed no differences in specific volume, average cell area, firmness and chewiness with respect to control bread. Unencapsulated oil-containing bread showed a marked increase in hydroperoxide values respect to control, whereas encapsulated oil-containing bread values were not affected by baking and bread storage. The fatty acid profiles showed a decrease of 13% and 16%, respectively, in α-linolenic acid in the encapsulated and unencapsulated oils with respect to bulk chia oil. Sensory analysis showed no significant differences between bread samples. CONCLUSION: The addition of encapsulated chia oil did not alter the technological quality of breads and prevented the formation of hydroperoxide radicals. A ration of encapsulated oil-containing bread contributes 60% of the recommended dietary intake of omega-3 fatty acids. © 2018 Society of Chemical Industry.


Assuntos
Pão/análise , Aditivos Alimentares/química , Manipulação de Alimentos/métodos , Óleos de Plantas/química , Salvia/química , Adulto , Ácidos Graxos Ômega-3/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Paladar
11.
Eur J Nutr ; 56(2): 509-519, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26582578

RESUMO

OBJECTIVE: The aim of this study was to determine whether α-linolenic acid (ALA ω-3 fatty acid) enriched diet affects growth parameters when applied to a syngeneic model of mammary carcinoma. MATERIALS AND METHODS: BALB/c mice were divided and fed with: 1) a chia oil diet, rich in ALA or 2) a corn oil diet, rich in linoleic acid (LA ω-6 fatty acid). Mice were subcutaneously inoculated with a tumor cell line LM3, derived from a murine mammary adenocarcinoma. RESULTS: After 35 days, tumor incidence, weight, volume and metastasis number were lower in the ALA-fed mice, while tumor latency time was higher, and the release of pro-tumor metabolites derived from ω-6 fatty acids decreased in the tumor. Compared to the control group, a lower number of mitosis, a higher number of apoptotic bodies and higher T-lymphocyte infiltration were consistently observed in the ALA group. An ALA-rich diet decreased the estrogen receptor (ER) α expression, a recognized breast cancer promotor while showing an opposite effect on ERß in tumor lysates. CONCLUSION: These data support the anticancer effect of an ALA-enriched diet, which might be used as a dietary strategy in breast cancer prevention.


Assuntos
Dieta , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/prevenção & controle , Metástase Neoplásica/prevenção & controle , Ácido alfa-Linolênico/administração & dosagem , Animais , Apoptose , Linhagem Celular Tumoral , Óleo de Milho , Receptor alfa de Estrogênio/análise , Receptor beta de Estrogênio/análise , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Ácidos Graxos Ômega-6/análise , Ácidos Graxos Ômega-6/metabolismo , Feminino , Ácido Linoleico , Masculino , Neoplasias Mamárias Experimentais/química , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica/patologia , Transplante de Neoplasias , Óleos de Plantas , Linfócitos T
12.
Lipids Health Dis ; 16(1): 102, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28569164

RESUMO

BACKGROUND: Chia (Salvia hispanica L.) is known as power house of omega fatty acids which has great health benefits. It contains up to 78% linolenic acid (ω-3) and 18% linoleic acid (ω-6), which could be a great source of omega-3 fatty acids for functional foods. Therefore, in this study, margarines were prepared with supplementation of different concentrations of chia oil to enhance omega-3 fatty acids, antioxidant characteristics and oxidative stability of the product. METHODS: Margarines were formulated from non-hydrogenated palm oil, palm kernel and butter. Margarines were supplemented with 5, 10, 15 and 20% chia oil (T1, T2, T3 and T4), respectively. Margarine without any addition of chia oil was kept as control. Margarine samples were stored at 5 °C for a period of 90 days. Physico-chemical (fat, moisture, refractive index, melting point, solid fat index, fatty acids profile, total phenolic contents, DPPH free radical scavenging activity, free fatty acids and peroxide value) and sensory characteristics were studied at the interval of 45 days. RESULTS: The melting point of T1, T2, T3 and T4 developed in current investigation were 34.2, 33.8, 33.1 and 32.5 °C, respectively. The solid fat index of control, T1, T2, T3 and T4 were 47.21, 22.71, 20.33, 18.12 and 16.58%, respectively. The α-linolenic acid contents in T1, T2, T3 and T4 were found 2.92, 5.85, 9.22, 12.29%, respectively. The concentration of eicosanoic acid in T2, T3 and T4 was 1.82, 3.52, 6.43 and 9.81%, respectively. The content of docosahexanoic acid in T2, T3 and T4 was present 1.26, 2.64, 3.49 and 5.19%, respectively. The omega-3 fatty acids were not detected in the control sample. Total phenolic contents of control, T1, T2, T3 and T4 samples were 0.27, 2.22, 4.15, 7.23 and 11.42 mg GAE/mL, respectively. DPPH free radical scavenging activity for control, T1, T2, T3 and T4 was noted 65.8, 5.37, 17.82, 24.95, 45.42 and 62.8%, respectively. Chlorogenic acid, caffeic acid, quercetin, phenolic glycoside k and phenolic glycoside Q in T3 were present 0.78, 0.73, 1.82, 4.12 and 4.49 mg/mL, respectively. After 90 days of storage period, free fatty acids and peroxide value of all the treatments were less than 0.2 (% and MeqO2/kg). Sensory characteristics of treatments were not different from the control. CONCLUSION: Margarines supplemented with chia oil showed enhanced level of omega-3 fatty acids and antioxidant characteristics. These results suggest that chia oil can be used for formulation of margarine with increased level of omega-3 fatty acids and acceptable sensory characteristics.


Assuntos
Antioxidantes/química , Ácidos Graxos Ômega-3/química , Fenóis/química , Salvia/química , Suplementos Nutricionais , Humanos , Margarina/análise , Oxirredução , Óleos de Plantas/química
13.
Ther Deliv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469701

RESUMO

Aim: This study explores chia oil, rich in ω-3 fatty acids and nutraceutical components, as a potential remedy for diseases, especially those linked to inflammation and cancer. Methods/materials: A chia oil-based nanoemulsion, developed through single emulsification, underwent comprehensive analysis using various techniques. In vitro and in vivo assays, including macrophage polarization, nitrite and cytokine production, cellular uptake and biodistribution, were conducted to assess the anti-inflammatory efficacy. Results & conclusion: Results reveal that the chia nanoemulsion significantly inhibits inflammation, outperforming pure oil with twice the efficacy. Enhanced uptake by macrophage-like cells and substantial accumulation in key organs indicate its potential as an economical and effective anti-inflammatory nanodrug, addressing global economic and health impacts of inflammation-related diseases.

14.
Foods ; 12(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37893726

RESUMO

The use of proteins to produce oil-containing microcapsules has been previously analyzed; however, their chemical modification, in order to improve their performance as wall materials, is a strategy that has not been widely developed yet. This study aimed to analyze the chemical modification of the proteins through cross-linking reactions with tannic acid and to evaluate their performance as wall materials to the microencapsulation of oils rich in polyunsaturated fatty acids. The cross-linking reaction of isolated soy protein and tannic acid was carried out at pH 10-11 and 60 °C. Subsequently, emulsions were made with a high-speed homogenizer and microcapsules were obtained by spray drying. Microcapsules were characterized by particle size, morphology (SEM), total pore area and % porosity (mercury intrusion methodology), superficial properties (contact angle), and size distribution of oil droplets (by laser diffraction). Additionally, encapsulation efficiency was determined as a function of total and surface oil. Oil chemical stability and quality were studied by Rancimat, hydroperoxide values, and fatty acid profiles. In addition, a storage test was performed for 180 days, and released oil and polyphenols were determined by in vitro gastric digestion. Moreover, the fatty acid composition of the oil and the total polyphenol content and antioxidant capacity of polyphenols were analyzed. The results showed that spray-dried microcapsules had an encapsulation efficiency between 54 and 78%. The oxidative stability exhibited a positive correlation between the amount of polyphenols used and the induction time, with a maximum of 27 h. The storage assay showed that the peroxide value was lower for those cross-linked microcapsules concerning control after 180 days. After the storage time, the omega-3 content was reduced by 49% for soy protein samples, while cross-linked microcapsules maintained the initial concentration. The in-vitro digestion assay showed a decrease in the amount of oil released from the cross-linked microcapsules and an increase in the amount of polyphenols and a higher antioxidant capacity for all samples (for example, 238.10 mgGAE/g and 554.22 mg TE/g for undigested microcapsules with TA 40% versus 322.09 mgGAE/g and 663.61 mg TE/g for digested samples). The microcapsules showed a high degree of protection of the encapsulated oil, providing a high content of polyunsaturated fatty acids (PUFAS) and polyphenols even in prolonged storage times.

15.
Foods ; 12(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37628117

RESUMO

The consumption of processed meat products beyond recommended limits has been associated with serious health conditions, including heart disease, diabetes, and cancer. In an effort to create healthier options, the meat industry is exploring alternatives to animal fat in processed meats. This study focuses on replacing animal fat in dry-cured sausages (Salchichón) with textured chia, poppy, melon, and pumpkin oils. The research aims to evaluate the physical and nutritional changes resulting from this substitution and assess consumer acceptance through sensory analysis. The use of seed oils led to slight color changes and comparable texture, except for cohesiveness. The incorporation of textured seed oils resulted in reduced fat content, increased proportions of ashes and protein, and decreased energy value. The fatty acid composition showed lower proportions of saturated fatty acids and increased polyunsaturated fatty acids. Sensory analysis revealed that the control sample with pork fat received the highest ratings for appearance, texture, and taste, while samples with higher seed oil percentages scored lower due to color, cohesiveness, and specific flavors from the seed oils. Despite these variations, consumers demonstrated a high level of acceptability for all samples. Choice analysis results indicated that higher prices had a negative impact on consumer willingness to purchase, while the use of the 100% Iberian pig breed and animal welfare labels positively influenced purchasing attitudes. Regarding the presence of a pumpkin seed oil label in the product, a negative willingness to pay was reported. However, significant individual variation was reported for this attribute, indicating the existence of consumer segments with more positive attitudes toward these innovative dry-cured sausages.

16.
Foods ; 11(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36553764

RESUMO

Native corn starch and pretreated corn starch were treated with α-amylase, glucoamylase and mixtures of both to generate starches with high porosity with conserved granular structure. Porous starches were characterized; particle size distribution analysis, nitrogen adsorption-desorption analysis, scanning electron microscopy, water and oil adsorption capacity, differential scanning calorimeter, X-ray diffraction and damaged starch techniques were used. The α-amylase/glucoamylase mixture at the highest dose was the best treatment to generate porous starches with interesting adsorption capacity and granular structure conservation. Selected starches were impregnated with chia oil using a vacuum. Pretreated corn starch modified with the α-amylase/glucoamylase mixture showed no significant differences on impregnation capacity compared with native starch with a similar enzyme treatment. The highest oxidative stability was achieved with pretreated porous starch impregnated with 10 to 25% chia oil, compared with the bulk oil (5.37 to 4.72 and 2.58 h, respectively). Results have demonstrated that vacuum impregnation could be a potential technique for the incorporation of oil in porous structures based on starch and porous starches obtained by enzymatic hydrolysis are a promising material for the incorporation and protection of oils susceptible to oxidation.

17.
Foods ; 10(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34441575

RESUMO

Chia oil is a valuable source of omega-3-fatty acids and other nutritional components. However, it is expensive to produce and can therefore be easily adulterated with cheaper oils to improve the profit margins. Spectroscopic methods are becoming more and more common in food fraud detection. The aim of this study was to answer following questions: Is it possible to detect chia oil adulteration by spectroscopic analysis of the oils? Is it possible to identify the adulteration oil? Is it possible to determine the amount of adulteration? Two chia oils from local markets were adulterated with three common food oils, including sunflower, rapeseed and corn oil. Subsequently, six chia oils obtained from different sites in Kenya were adulterated with sunflower oil to check the results. Raman, NIR and fluorescence spectroscopy were applied for the analysis. It was possible to detect the amount of adulterated oils by spectroscopic analysis, with a minimum R2 of 0.95 for the used partial least square regression with a maximum RMSEPrange of 10%. The adulterations of chia oils by rapeseed, sunflower and corn oil were identified by classification with a median true positive rate of 90%. The training accuracies, sensitivity and specificity of the classifications were over 90%. Chia oil B was easier to detect. The adulterated samples were identified with a precision of 97%. All of the classification methods show good results, however SVM were the best. The identification of the adulteration oil was possible; less than 5% of the adulteration oils were difficult to detect. In summary, spectroscopic analysis of chia oils might be a useful tool to identify adulterations.

18.
Foods ; 10(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202638

RESUMO

Gelled emulsion (GE) systems are one of the novel proposals for the reformulation of meat products with healthier profiles. The aims of this research were (i) to develop gelled emulsions using pseudocereal flours (amaranth, buckwheat, teff, and quinoa) and vegetable oils (chia oil, hemp oil, and their combination), (ii) to determine their chemical composition, physicochemical properties, and lipid stability, and (iii) to evaluate their stability during frozen storage. The results showed that GEs are technologically viable except for the sample elaborated with teff flour and a mix of oils. The lipid oxidation was not greater than 2.5 mg malonaldehyde/kg of sample for any of the samples analyzed. The physicochemical properties analyzed showed both the pH and color values of the GEs within the range of values obtained for the fat of animal origin. The texture properties were affected by the type of oil added; in general, the firmness and the work of shear increased with the addition of the mixture of both oils. The samples elaborated with buckwheat and chia oil and quinoa and chia oil had the highest emulsion stability values, which remained among the highest after freezing. The results showed that gelled emulsions, based on chia oil, hemp, and their mixture with pseudocereal flours, are a viable alternative as a possible substitute of saturated fat in the development of novel foods.

19.
Foods ; 10(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064917

RESUMO

Functional foods are highly demanded by consumers. Omega-3 rich oil and commercial buttermilk (BM), as functional components, used in combination to produce emulsions for further drying may facilitate the incorporation to foods. Ultra-high-pressure homogenization (UHPH) has a great potential for technological and nutritional aspects in emulsions production. The present study aimed to examine the potential improvement of UHPH technology in producing buttermilk-stabilized omega-3 rich emulsions (BME) for further drying, compared with conventional homogenization. Oil-in-water emulsions formulated with 10% chia: sunflower oil (50:50); 30% maltodextrin and 4 to 7% buttermilk were obtained by using conventional homogenization at 30 MPa and UHPH at 100 and 200 MPa. Particle size analysis, rheological evaluation, colloidal stability, zeta-potential measurement, and microstructure observations were performed in the BME. Subsequent spray drying of emulsions were made. As preliminary approximation for evaluating differences in the homogenization technology applied, encapsulation efficiency and morphological characteristics of on spray-dried emulsions (SDE) containing 21.3 to 22.7% oil content (dry basis) were selected. This study addresses the improvement in stability of BME treated by UHPH when compared to conventional homogenization and the beneficial consequences in encapsulation efficiency and morphology of SDE.

20.
Meat Sci ; 179: 108534, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33975259

RESUMO

A freeze-dried extract from the bark of mate branches (BMBE) containing high chlorogenic acids (CGA) content (30 g 100 g-1) was produced. Then, chia oil was mixed with 7.5% BMBE and sonicated for 0, 10, and 20 min. Chia oil with or without the addition of BMBE was hydrogelled and used to produce buffalo burgers with 50% reduction in animal fat. CGA levels and the nutritional, oxidative, and sensory properties of the burgers were analyzed. A reduction of ~30% fat and an increase above 60% PUFA/SFA ratio was observed for the reformulated raw and cooked burgers. In addition, the Omega-6/Omega-3 PUFA ratio of the burgers decreased from 20.8 (raw) and 31.9 (cooked) to values lower than 2. The addition of BMBE enriched the burgers with CGA, preventing an increase in lipid oxidation caused by chia oil. The addition of BMBE-enriched hydrogelled chia oil not subjected to sonication did not affect the sensory properties of the burgers.


Assuntos
Ácido Clorogênico , Ácidos Graxos Ômega-3/análise , Produtos da Carne/análise , Adulto , Animais , Búfalos , Comportamento do Consumidor , Feminino , Géis , Humanos , Ilex paraguariensis/química , Masculino , Pessoa de Meia-Idade , Extratos Vegetais , Óleos de Plantas , Salvia/química , Suínos , Substâncias Reativas com Ácido Tiobarbitúrico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA