RESUMO
Rechargeable lithium (Li) metal batteries face challenges in achieving stable cycling due to the instability of the solid electrolyte interphase (SEI). The Li-ion solvation structure and its desolvation process are crucial for the formation of a stable SEI on Li metal anodes and improving Li plating/stripping kinetics. This research introduces an interfacial desolvation coating technique to actively modulate the Li-ion solvation structure at the Li metal interface and regulate the participation of the electrolyte solvent in SEI formation. Through experimental investigations conducted using a carbonate electrolyte with limited compatibility to Li metal, the optimized desolvation coating layer, composed of 12-crown-4 ether-modified silica materials, selectively displaces strongly coordinating solvents while simultaneously enriching weakly coordinating fluorinated solvents at the Li metal/electrolyte interface. This selective desolvation and enrichment effect reduce solvent participation to SEI and thus facilitate the formation of a LiF-dominant SEI with greatly reduced organic species on the Li metal surface, as conclusively verified through various characterization techniques including XPS, quantitative NMR, operando NMR, cryo-TEM, EELS, and EDS. The interfacial desolvation coating technique enables excellent rate cycling stability (i.e., 1C) of the Li metal anode and prolonged cycling life of the Li||LiCoO2 pouch cell in the conventional carbonate electrolyte (E/C 2.6 g/Ah), with 80% capacity retention after 333 cycles.
RESUMO
Cell membrane-coated nanoparticles are emerging as a new type of promising nanomaterials for immune evasion and targeted delivery. An underlying premise is that the unique biological functions of natural cell membranes can be conferred on the inherent physiochemical properties of nanoparticles by coating them with a cell membrane. However, the extent to which the membrane protein properties are preserved on these nanoparticles and the consequent bio-nano interactions are largely unexplored. Here, we synthesized two mesenchymal stem cell (MSC) membrane-coated silica nanoparticles (MCSNs), which have similar sizes but distinctly different stiffness values (MPa and GPa). Unexpectedly, a much lower macrophage uptake, but much higher cancer cell uptake, was found with the soft MCSNs compared with the stiff MCSNs. Intriguingly, we discovered that the soft MCSNs enabled the forming of a more protein-rich membrane coating and that coating had a high content of the MSC chemokine CXCR4 and MSC surface marker CD90. This led to the soft MCSNs enhancing cancer cell uptake mediated by the CD90/integrin receptor-mediated pathway and CXCR4/SDF-1 pathways. These findings provide a major step forward in our fundamental understanding of how the combination of nanoparticle elasticity and membrane coating may be used to facilitate bio-nano interactions and pave the way forward in the development of more effective cancer nanomedicines.
Assuntos
Nanopartículas , Neoplasias , Humanos , Membrana Celular/metabolismo , Nanopartículas/química , Proteínas/metabolismo , Neoplasias/metabolismo , ElasticidadeRESUMO
Selective oxidation of methane to organic oxygenates over metal-organic frameworks (MOFs) catalysts at low temperature is a challenging topic in the field of C1 chemistry because of the inferior stability of MOFs. Modifying the surface of Cu-BTC via hydrophobic polydimethylsiloxane (PDMS) at 235 °C under vacuum not only can dramatically improve its catalytic cycle stability in a liquid phase but also generate coordinatively unsaturated Cu(I) sites, which significantly enhances the catalytic activity of Cu-BTC catalyst. The results of spectroscopy characterizations and theoretical calculation proved that the coordinatively unsaturated Cu(I) sites made H2O2 dissociative into â¢OH, which formed Cu(II)-O active species by combining with coordinatively unsaturated Cu(I) sites for activating the C-H bond of methane. The high productivity of C1 oxygenates (CH3OH and CH3OOH) of 10.67 mmol gcat.-1h-1 with super high selectivity of 99.6% to C1 oxygenates was achieved over Cu-BTC-P-235 catalyst, and the catalyst possessed excellent reusability.
RESUMO
Understanding the fundamental interaction of nanoparticles at plant interfaces is critical for reaching field-scale applications of nanotechnology-enabled plant agriculture, as the processes between nanoparticles and root interfaces such as root compartments and root exudates remain largely unclear. Here, using iron deficiency-induced plant chlorosis as an indicator phenotype, we evaluated the iron transport capacity of Fe3O4 nanoparticles coated with citrate (CA) or polyacrylic acid (PAA) in the plant rhizosphere. Both nanoparticles can be used as a regulator of plant hormones to promote root elongation, but they regulate iron deficiency in plant in distinctive ways. In acidic root exudates secreted by iron-deficient Arabidopsis thaliana, CA-coated particles released fivefold more soluble iron by binding to acidic exudates mainly through hydrogen bonds and van der Waals forces and thus, prevented iron chlorosis more effectively than PAA-coated particles. We demonstrate through roots of mutants and visualization of pH changes that acidification of root exudates primarily originates from root tips and the synergistic mode of nanoparticle uptake and transformation in different root compartments. The nanoparticles entered the roots mainly through the epidermis but were not affected by lateral roots or root hairs. Our results show that magnetic nanoparticles can be a sustainable source of iron for preventing leaf chlorosis and that nanoparticle surface coating regulates this process in distinctive ways. This information also serves as an urgently needed theoretical basis for guiding the application of nanomaterials in agriculture.
Assuntos
Anemia Hipocrômica , Arabidopsis , Deficiências de Ferro , Nanopartículas de Magnetita , Ferro/metabolismo , Transporte Biológico , Anemia Hipocrômica/metabolismo , Arabidopsis/metabolismo , Raízes de Plantas/metabolismoRESUMO
Ni-rich layered oxides as high-capacity battery cathodes suffer from degradation at high voltages. We utilize a dry surface modification method, mechanofusion (MF), to achieve enhanced battery stability. The simplicity, high yield, and flexibility make it cost-effective and highly attractive for processing at the industrial scale. The underlying mechanisms responsible for performance improvement are unveiled by a systematic study combining multiple probes, e.g., 3D nano-tomography, spectroscopic imaging, in situ synchrotron diffraction, and finite element analysis (FEA). MF affects the bulk crystallography by introducing partially disordered structure, microstrain, and local lattice variation. Furthermore, the crack initiation and propagation pattern during delithiation are regulated and the overall mechanical fracture is reduced after such surface coating. We validate that MF can alter the bulk charging pathways. Such a synergic effect between surface modification and bulk charge distribution is fundamentally important for designing next-generation battery cathode materials.
RESUMO
The functional support and advancement of our body while preserving inherent naturalness is one of the ultimate goals of bioengineering. Skin protection against infectious pathogens is an application that requires common and long-term wear without discomfort or distortion of the skin functions. However, no antimicrobial method has been introduced to prevent cross-infection while preserving intrinsic skin conditions. Here, we propose an antimicrobial skin protection platform copper nanomesh, which prevents cross-infectionmorphology, temperature change rate, and skin humidity. Copper nanomesh exhibited an inactivation rate of 99.99% for Escherichia coli bacteria and influenza virus A within 1 and 10 min, respectively. The thin and porous nanomesh allows for conformal coating on the fingertips, without significant interference with the rate of skin temperature change and humidity. Efficient cross-infection prevention and thermal transfer of copper nanomesh were demonstrated using direct on-hand experiments.
Assuntos
Anti-Infecciosos , Cobre , Infecção Hospitalar , Nanopartículas Metálicas , Pele , Anti-Infecciosos/farmacologia , Cobre/farmacologia , Infecção Hospitalar/prevenção & controle , Escherichia coli/efeitos dos fármacos , Dedos , Humanos , Vírus da Influenza A/efeitos dos fármacos , Porosidade , Pele/microbiologiaRESUMO
SignificanceWe present a groundbreaking advance in completely nonprecious hydrogen fuel cell technologies achieving a record power density of 200 mW/cm2 with Ni@CNx anode and Co-Mn cathode. The 2-nm CNx coating weakens the O-binding energy, which effectively mitigates the undesirable surface oxidation during hydrogen oxidation reaction (HOR) polarization, leading to a stable fuel cell operation for Ni@CNx over 100 h at 200 mA/cm2, superior to a Ni nanoparticle counterpart. Ni@CNx exhibited a dramatically enhanced tolerance to CO relative to Pt/C, enabling the use of hydrogen gas with trace amounts of CO, critical for practical applications. The complete removal of precious metals in fuel cells lowers the catalyst cost to virtually negligible levels and marks a milestone for practical alkaline fuel cells.
RESUMO
Neurotoxins are known for their extreme lethality. However, due to their enormous diversity, effective and broad-spectrum countermeasures are lacking. This study presents a dual-modal cellular nanoparticle (CNP) formulation engineered for continuous neurotoxin neutralization. The formulation involves encapsulating the metabolic enzyme N-sulfotransferase (SxtN) into metal-organic framework (MOF) nanoparticle cores and coating them with a natural neuronal membrane, termed "Neuron-MOF/SxtN-NPs". The resulting nanoparticles combine membrane-enabled broad-spectrum neurotoxin neutralization with enzyme payload-enabled continuous neurotoxin neutralization. The studies confirm the protection of the enzyme payload by the MOF core and validate the continuous neutralization of saxitoxin (STX). In vivo studies conducted using a mouse model of STX intoxication reveal markedly improved survival rates compared with control groups. Furthermore, acute toxicity assessments show no adverse effects associated with the administration of Neuron-MOF/SxtN-NPs in healthy mice. Overall, Neuron-MOF/SxtN-NPs represent a unique biomimetic nanomedicine platform poised to effectively neutralize neurotoxins, marking an important advancement in the field of countermeasure nanomedicine.
RESUMO
Biomembrane coating technologies have been developed to equip synthetic nanomaterials with natural biointerfaces. We report a one-step method for nondestructively coating the biomembranes of "living" cells onto nanoparticle surfaces. By using simple centrifugation, nanoparticles pass through a concentrated layer of living cells. This process mimics exosome release via endocytosis and exocytosis, preserving the membrane integrity of the source cells. The resulting silica nanoparticles were efficiently coated with membrane components from Raw264.7 cells. Nanoflow-liquid chromatography-tandem mass spectrometry confirmed that the proteins composing the membrane originated from the source cells. Additionally, the biomembrane coating suppressed the phagocytosis of silica nanoparticles by Raw264.7 cells while enhancing their uptake by HeLa cells. Our simple and efficient method for living biomembrane coating holds promise for the development of nanoparticles for medical and pharmaceutical applications.
RESUMO
Two-dimensional (2D) semiconductors possess exceptional electronic, optical, and magnetic properties, making them highly desirable for widespread applications. However, conventional mechanical exfoliation and epitaxial growth methods are insufficient in meeting the demand for atomically thin films covering large areas while maintaining high quality. Herein, leveraging liquid metal oxidation reaction, we propose a motorized spin-coating exfoliation strategy to efficiently produce large-area 2D metal oxide (2DMO) semiconductors with high crystallinity, atomically thin thickness, and flat surfaces on diverse substrates. Moreover, we realized a 2D gallium oxide-based deep ultraviolet solar-blind photodetector featuring a metal-semiconductor-metal structure, showcasing high responsivity (8.24 A W-1) at 254 nm and excellent sensitivity (4.3 × 1012 cm Hz1/2 W-1). This novel liquid-metal-based spin-coating exfoliation strategy offers great potential for synthesizing atomically thin 2D semiconductors, opening new avenues for future functional electronic and optical applications.
RESUMO
A functional coating layer (FCL) is widely applied in fast-charging lithium-ion batteries to improve the sluggish Li+ transport kinetics of traditional graphite anodes. However, blindly increasing the Li+ conductivity for FCL reduces the overall electron conductivity of the anodes. Herein, we decoupled the effect of La-doping on TiNb2O7 (TNO) in terms of the phase evolution, Li+/electron transport, and lithiation behavior, and then proposed a promising La0.1TNO FCL with balanced Li+/electron transport for a fast-charging graphite anode. By optimizing the doping concentration of La, more holes are introduced into the TNO as electron carriers without causing lattice distortion, thus maintaining the fast Li+ diffusion channel in TNO. As a result, the graphite with La0.1TNO FCL delivers an excellent capacity of 220.2 mAh g-1 (96.3% retention) after 450 cycles at 3 C, nearly twice that of the unmodified one.
RESUMO
Controlling ice formation is critical in fields such as atmospheric science and biological cryopreservation. However, thermal heterogeneity during freezing and thawing in cryopreservation causes uneven ice crystallization and melting, leading to mechanical and thermal stress-induced damage. This study introduces biocompatible and biodegradable black phosphorus (BP)-polyethylene glycol-amine nanosheets (NS) to address this issue. BP NS primarily localize at ice grain boundaries, while amine groups of NH2-PEG-NH2 form hydrogen bonds with H2O molecules, penetrating ice crystals. In situ cross-sectional observations confirmed that BP-PEG-NH2 NS promotes uniform melting and facilitates ice cracks and boundaries. Heat transfer analysis using a bidirectional heating system revealed that the internal heat energy varies based on BP dispersion within the ice crystals. When applied to the cryopreservation of human tongue squamous cell carcinoma cells, BP-PEG-NH2 NSs significantly improved post-thaw viability. It presents a promising strategy for designing thawing materials after cryopreservation of cells, tissues, and organs.
Assuntos
Criopreservação , Crioprotetores , Congelamento , Gelo , Nanoestruturas , Fósforo , Fósforo/química , Humanos , Nanoestruturas/química , Criopreservação/métodos , Crioprotetores/química , Crioprotetores/farmacologia , Polietilenoglicóis/química , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular TumoralRESUMO
OBJECTIVE: Patients with Crohn's disease (CD) exhibit great heterogeneity in disease presentation and treatment responses, where distinct gut bacteria and immune interactions may play part in the yet unresolved disease aetiology. Given the role of antibodies in the barrier defence against microbes, we hypothesised that gut bacterial antibody-coating patterns may influence underlying disease-mediated processes. DESIGN: Absolute and relative single and multicoating of gut bacteria with IgA, IgG1, IgG2, IgG3 and IgG4 in patients with CD and healthy controls were characterised and compared with disease activity. IgG2-coated and non-coated taxa from patients with severe CD were identified, profiled for pathogenic characteristics and monitored for enrichment during active disease across cohorts. RESULTS: Patients with severe CD exhibited higher gut bacterial IgG2-coating. Supervised clustering identified 25 bacteria to be enriched in CD patients with high IgG2-coating. Sorting, sequencing and in silico-based assessments of the virulent potential of IgG2-coated and bulk stool bacteria were performed to evaluate the nature and pathogenicity of IgG2-coated and non-coated bacteria. The analyses demonstrated IgG2-coating of both known pathogenic and non-pathogenic bacteria that co-occurred with two non-coated pathobionts, Campylobacter and Mannheimia. The two non-coated pathobionts exhibited low prevalence, rarely coincided and were strongly enriched during disease flares in patients with CD across independent and geographically distant cohorts. CONCLUSION: Distinct gut bacterial IgG2-coating was demonstrated in patients with severe CD and during disease flares. Co-occurrence of non-coated pathobionts with IgG2-coated bacteria points to an uncontrolled inflammatory condition in severe CD mediated via escape from antibody coating by two gut pathobionts.
Assuntos
Doença de Crohn , Humanos , Doença de Crohn/patologia , Bactérias , Anticorpos Antibacterianos , Imunoglobulina GRESUMO
The metabolites and microbiota in tongue coating display distinct characteristics in certain digestive disorders, yet their relationship with colorectal cancer (CRC) remains unexplored. Here, we employed liquid chromatography coupled with tandem mass spectrometry to analyze the lipid composition of tongue coating using a nontargeted approach in 30 individuals with colorectal adenomas (CRA), 32 with CRC, and 30 healthy controls (HC). We identified 21 tongue coating lipids that effectively distinguished CRC from HC (AUC = 0.89), and 9 lipids that differentiated CRC from CRA (AUC = 0.9). Furthermore, we observed significant alterations in the tongue coating lipid composition in the CRC group compared to HC/CRA groups. As the adenoma-cancer sequence progressed, there was an increase in long-chain unsaturated triglycerides (TG) levels and a decrease in phosphatidylethanolamine plasmalogen (PE-P) levels. Furthermore, we noted a positive correlation between N-acyl ornithine (NAOrn), sphingomyelin (SM), and ceramide phosphoethanolamine (PE-Cer), potentially produced by members of the Bacteroidetes phylum. The levels of inflammatory lipid metabolite 12-HETE showed a decreasing trend with colorectal tumor progression, indicating the potential involvement of tongue coating microbiota and tumor immune regulation in early CRC development. Our findings highlight the potential utility of tongue coating lipid analysis as a noninvasive tool for CRC diagnosis.
Assuntos
Neoplasias Colorretais , Lipidômica , Fosfatidiletanolaminas , Espectrometria de Massas em Tandem , Língua , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Lipidômica/métodos , Masculino , Feminino , Língua/microbiologia , Língua/metabolismo , Língua/patologia , Língua/química , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem/métodos , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/análise , Idoso , Cromatografia Líquida , Lipídeos/análise , Lipídeos/química , Triglicerídeos/metabolismo , Triglicerídeos/análise , Adenoma/metabolismo , Adenoma/microbiologia , Esfingomielinas/análise , Esfingomielinas/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/química , Plasmalogênios/análise , Plasmalogênios/metabolismo , Plasmalogênios/química , Estudos de Casos e Controles , Etanolaminas/metabolismo , Etanolaminas/análise , Etanolaminas/química , Ceramidas/metabolismo , Ceramidas/análise , AdultoRESUMO
Immunoglobulin (Ig) bacterial coating has been described in the gastrointestinal tract and linked to inflammatory bowel disease; however, little is known about Ig coating of vaginal bacteria and whether it plays a role in vaginal health including bacterial vaginosis (BV). We examined Ig coating in 18 women with symptomatic BV followed longitudinally before, 1 week, and 1 month after oral metronidazole treatment. Immunoglobulin A (IgA) and/or immunoglobulin G (IgG) coating of vaginal bacteria was assessed by flow cytometry, and Ig coated and uncoated bacteria were sorted and characterized using 16S rRNA sequencing. Despite higher levels of IgG compared to IgA in cervicovaginal fluid, the predominant Ig coating the bacteria was IgA. The majority of bacteria were uncoated at all visits, but IgA coating significantly increased after treatment for BV. Despite similar amounts of uncoated and IgA coated majority taxa ( >1% total) across all visits, there was preferential IgA coating of minority taxa (0.2%-1% total) associated with BV including Sneathia, several Prevotella species, and others. At the time of BV, we identified a principal component (PC) driven by proinflammatory mediators that correlated positively with an uncoated BV-associated bacterial community and negatively with an IgA coated protective Lactobacillus bacterial community. The preferential coating of BV-associated species, increase in coating following metronidazole treatment, and positive correlation between uncoated BV-associated species and inflammation suggest that coating may represent a host mechanism designed to limit bacterial diversity and reduce inflammatory responses. Elucidating the role of Ig coating in vaginal mucosal immunity may promote new strategies to prevent recurrent BV.
Assuntos
Vaginose Bacteriana , Feminino , Humanos , Vaginose Bacteriana/microbiologia , Metronidazol/farmacologia , Imunoglobulina A , RNA Ribossômico 16S/genética , Vagina/microbiologia , Bactérias/genética , Imunoglobulina GRESUMO
Use and performance criteria of photonic devices increase in various application areas such as information and communication, lighting, and photovoltaics. In many current and future photonic devices, surfaces of a semiconductor crystal are a weak part causing significant photo-electric losses and malfunctions in applications. These surface challenges, many of which arise from material defects at semiconductor surfaces, include signal attenuation in waveguides, light absorption in light emitting diodes, non-radiative recombination of carriers in solar cells, leakage (dark) current of photodiodes, and light reflection at solar cell interfaces for instance. To reduce harmful surface effects, the optical and electrical passivation of devices has been developed for several decades, especially with the methods of semiconductor technology. Because atomic scale control and knowledge of surface-related phenomena have become relevant to increase the performance of different devices, it might be useful to enhance the bridging of surface physics to photonics. Toward that target, we review some evolving research subjects with open questions and possible solutions, which hopefully provide example connecting points between photonic device passivation and surface physics. One question is related to the properties of the wet chemically cleaned semiconductor surfaces which are typically utilized in device manufacturing processes, but which appear to be different from crystalline surfaces studied in ultrahigh vacuum by physicists. In devices, a defective semiconductor surface often lies at an embedded interface formed by a thin metal or insulator film grown on the semiconductor crystal, which makes the measurements of its atomic and electronic structures difficult. To understand these interface properties, it is essential to combine quantum mechanical simulation methods. This review also covers metal-semiconductor interfaces which are included in most photonic devices to transmit electric carriers to the semiconductor structure. Low-resistive and passivated contacts with an ultrathin tunneling barrier are an emergent solution to control electrical losses in photonic devices.
RESUMO
BACKGROUND: The Mexican lime (Citrus aurantifolia cv.), widely consumed in Iran and globally, is known for its high perishability. Edible coatings have emerged as a popular method to extend the shelf life of fruits, with xanthan gum-based coatings being particularly favored for their environmental benefits. This study aims to evaluate the effectiveness of an edible coating formulated from xanthan gum, enriched with Spirulina platensis (Sp) and pomegranate seed oil (PSO), in improving the quality and reducing the weight loss of Mexican lime fruit under conditions of 20 ± 2 °C and 50-60% relative humidity. RESULTS: Based on the results, the application of coatings was generally effective in reducing fruit weight loss, with the least weight loss observed in the xanthan gum 0.2%+ Spirulina platensis extract (1%) treatment. Additionally, the levels of total phenols and flavonoids in the treated fruits exceeded those in the control group, with xanthan gum 0.2%+ Spirulina platensis extract (1%) and xanthan gum 0.2% exhibiting the highest concentrations of these compounds. The antioxidant capacity of the fruits was also enhanced by the coatings, surpassing that of the control group, with xanthan gum 0.2%+ Spirulina platensis extract (1%) achieving the highest levels. The treatments significantly suppressed the activity of the polyphenol oxidase (PPO) enzyme, with xanthan gum 0.2% demonstrating the most potent inhibitory effect. Furthermore, the treatments resulted in increased activities of catalase (CAT) and peroxidase (POD) enzymes compared to the control. Except for xanthan gum 0.2%+ pomegranate seed oil (0.05%), all treatments maintained the fruit's greenness (a*) more effectively than the control. CONCLUSIONS: Peel browning is a major factor contributing to the decline in quality and shelf life of lime fruit. The application of 0.1% and 0.2% xanthan gum coatings, as well as a combination of 0.2% xanthan gum and Spirulina platensis extract, significantly inhibited PPO activity and enhanced the activity of CAT and POD and phenolic compound in Mexican lime fruits stored at of 20 ± 2 °C for 24 days. Consequently, these treatments comprehensively preserved lime fruit quality by significantly reducing browning, maintaining green color, and preserving internal quality parameters such as TA, thereby enhancing both visual appeal and overall fruit quality.
Assuntos
Óleos de Plantas , Polissacarídeos Bacterianos , Punica granatum , Sementes , Spirulina , Spirulina/química , Óleos de Plantas/farmacologia , Punica granatum/química , Sementes/química , Frutas/química , Citrus aurantiifolia , Conservação de Alimentos/métodos , Armazenamento de Alimentos , AntioxidantesRESUMO
Salt stress is one of the most important abiotic stress factors limiting crop production. Therefore, improving the stress resistance of seeds is very important for crop growth. Our previous studies have shown that using microcapsules encapsulating bacteria (Pontibacter actiniarum DSM 19842) as seed coating for wheat can alleviate salt stress. In this study, the genes and pathways involved in the response of wheat to salt stress were researched further. The results showed that compared with the control, the coating can improve osmotic stress and decrease oxidative damage by increasing the content of proline (29.1%), the activity of superoxide dismutase (SOD) (94.2%), peroxidase (POD) (45.7%) and catalase (CAT) (3.3%), reducing the content of hydrogen peroxide (H2O2) (39.8%) and malondialdehyde (MDA) (45.9%). In addition, ribonucleic acid (RNA) sequencing data showed that 7628 differentially expressed genes (DEGs) were identified, and 4426 DEGs up-regulated, 3202 down-regulated in the coated treatment. Many DEGs related to antioxidant enzymes were up-regulated, indicating that coating can promote the expression of antioxidant enzyme-related genes and alleviate oxidative damage under salt stress. The differential gene expression analysis demonstrated up-regulation of 27 genes and down-regulation of 20 genes. Transcription factor families, mostly belonging to bHLH, MYB, B3, NAC, and WRKY. Overall, this seed coating can promote the development of sustainable agriculture in saline soil.
Assuntos
Perfilação da Expressão Gênica , Tolerância ao Sal , Triticum , Triticum/genética , Tolerância ao Sal/genética , Cápsulas , Regulação da Expressão Gênica de Plantas , Transcriptoma , Sementes/genética , Sementes/fisiologiaRESUMO
BACKGROUND: Guava is a fruit prone to rapid spoilage following harvest, attributed to continuous and swift physicochemical transformations, leading to substantial postharvest losses. This study explored the efficacy of xanthan gum (XG) coatings applied at various concentrations (0.25, 0.5, and 0.75%) on guava fruits (Gola cultivar) over a 15-day storage period. RESULTS: The results indicated that XG coatings, particularly at 0.75%, substantially mitigated moisture loss and decay, presenting an optimal concentration. The coated fruits exhibited a modified total soluble soluble solids, an increased total titratable acidity, and an enhanced sugar-acid ratio, collectively enhancing overall quality. Furthermore, the XG coatings demonstrated the remarkable ability to preserve bioactive compounds, such as total phenolics, flavonoids, and antioxidants, while minimizing the levels of oxidative stress markers, such as electrolyte leakage, malondialdehyde, and H2O2. The coatings also influenced cell wall components, maintaining levels of hemicellulose, cellulose, and protopectin while reducing water-soluble pectin. Quantitative analysis of ROS-scavenging enzymes, including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, revealed significant increases in their activities in the XG-coated fruits compared to those in the control fruits. Specifically, on day 15, the 0.75% XG coating demonstrated the highest SOD and CAT activities while minimizing the reduction in APX activity. Moreover, XG coatings mitigated the activities of fruit-softening enzymes, including pectin methylesterase, polygalacturonase, and cellulase. CONCLUSIONS: This study concludes that XG coatings play a crucial role in preserving postharvest quality of guava fruits by regulating various physiological and biochemical processes. These findings offer valuable insights into the potential application of XG as a natural coating to extend the shelf life and maintain the quality of guava fruits during storage.
Assuntos
Frutas , Polissacarídeos Bacterianos , Psidium , Psidium/química , Polissacarídeos Bacterianos/farmacologia , Frutas/química , Frutas/efeitos dos fármacos , Conservação de Alimentos/métodos , Antioxidantes/metabolismoRESUMO
Rechargeable Mg-ion Batteries (RMB) containing a Mg metal anode offer the promise of higher specific volumetric capacity, energy density, safety, and economic viability than lithium-ion battery technology, but their realization is challenging. The limited availability of suitable inorganic cathodes compatible with electrolytes relevant to Mg metal anode restricts the development of RMBs. Despite the promising capability of some oxides to reversibly intercalate Mg+2 ions at high potential, its lack of stability in chloride-containing ethereal electrolytes, relevant to Mg metal anode hinders the realization of a full practical RMB. Here the successful in situ encapsulation of monodispersed spherical V2O5 (≈200 nm) is demonstrated by a thin layer of VS2 (≈12 nm) through a facile surface reduction route. The VS2 layer protects the surface of V2O5 particles in RMB electrolyte solution (MgCl2 + MgTFSI in DME). Both V2O5 and V2O5@VS2 particles demonstrate high initial discharge capacity. However, only the V2O5@VS2 material demonstrates superior rate performance, Coulombic efficiency (100%), and stability (138 mA h g-1 discharge capacity after 100 cycles), signifying the ability of the thin VS2 layer to protect the V2O5 cathode and facilitate the Mg+2 ion intercalation/deintercalation into V2O5.