Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Bioorg Med Chem Lett ; 105: 129745, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614151

RESUMO

A series of 8 novel pyridinyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PYRIB-SOs) were designed, prepared and evaluated for their mechanism of action. PYRIB-SOs were found to have antiproliferative activity in the nanomolar to submicromolar range on several breast cancer cell lines. Moreover, subsequent biofunctional assays indicated that the most potent PYRIB-SOs 1-3 act as antimitotics binding to the colchicine-binding site (C-BS) of α, ß-tubulin and that they arrest the cell cycle progression in the G2/M phase. Microtubule immunofluorescence and tubulin polymerisation assay confirm that they disrupt the cytoskeleton through inhibition of tubulin polymerisation as observed with microtubule-destabilising agents. They also show good overall theoretical physicochemical, pharmacokinetic and druglike properties. Overall, these results show that PYRIB-SOs is a new family of promising antimitotics to be further studied in vivo for biopharmaceutical and pharmacodynamic evaluations.


Assuntos
Antimitóticos , Proliferação de Células , Colchicina , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Colchicina/química , Colchicina/metabolismo , Colchicina/farmacologia , Sítios de Ligação , Antimitóticos/farmacologia , Antimitóticos/química , Antimitóticos/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Benzenossulfonatos/química , Benzenossulfonatos/farmacologia , Benzenossulfonatos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Tubulina (Proteína)/metabolismo , Estrutura Molecular , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/síntese química , Piridinas/química , Piridinas/farmacologia , Piridinas/síntese química , Relação Dose-Resposta a Droga
2.
Bioorg Chem ; 151: 107624, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39002514

RESUMO

Microtubules are recognized as an appealing target for cancer treatment. We designed and synthesized of novel tubulin colchicine binding site inhibitors based on millepachine. Biological evaluation revealed compound 5h exhibited significant antiproliferative activity against osteosarcoma cell U2OS and MG-63. And compound 5h also remarkably inhibited tubulin polymerization. Further investigations indicated compound 5h not only arrest U2OS cells cycle at the G2/M phases, but also induced U2OS cells apoptosis in dose-dependent manners. Moreover, compound 5h was verified to inhibit cell migration and angiogenesis of HUVECs, induce mitochondrial membrane potential decreased and promoted the elevation of ROS levels. Furthermore, compound 5h exhibited remarkable effects on tumor growth in vivo, and the TGI rate was up to 84.94 % at a dose of 20 mg/kg without obvious toxicity. These results indicated that 5h may be an appealing tubulin inhibitor for treatment of osteosarcoma.

3.
Molecules ; 29(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792062

RESUMO

Combretastatins isolated from the Combretum caffrum tree belong to a group of closely related stilbenes. They are colchicine binding site inhibitors which disrupt the polymerization process of microtubules in tubulins, causing mitotic arrest. In vitro and in vivo studies have proven that some combretastatins exhibit antitumor properties, and among them, combretastatin A-4 is the most active mitotic inhibitor. In this study, a series of novel combretastatin A-4 analogs containing carboxylic acid, ester, and amide moieties were synthesized and their cytotoxic activity against six tumor cell lines was determined using sulforhodamine B assay. For the most cytotoxic compounds (8 and 20), further studies were performed. These compounds were shown to induce G0/G1 cell cycle arrest in MDA and A549 cells, in a concentration-dependent manner. Moreover, in vitro tubulin polymerization assays showed that both compounds are tubulin polymerization enhancers. Additionally, computational analysis of the binding modes and binding energies of the compounds with respect to the key human tubulin isotypes was performed. We have obtained a satisfactory correlation of the binding energies with the IC50 values when weighted averages of the binding energies accounting for the abundance of tubulin isotypes in specific cancer cell lines were computed.


Assuntos
Proliferação de Células , Desenho de Fármacos , Estilbenos , Moduladores de Tubulina , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Proliferação de Células/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Estilbenos/farmacologia , Estilbenos/química , Estilbenos/síntese química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Células A549 , Polimerização/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais
4.
Bioorg Med Chem ; 95: 117489, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37816266

RESUMO

In this study of creating new molecules from clinical trial agents, an approach of Combretastatin structural modulation with the installation of NP-privileged motifs was considered, and a series of trimethoxyphenyl-2-aminoimidazole with functionalized quinolines and isoquinolines was investigated. An exciting method of quinoline C3-H iodination coupled with imidazopyridine-C3-H arylation and hydrazine-mediated fused-ring cleavage enabled synthesizing a class of compounds with two specific unsymmetric aryl substitutions. Interestingly, three compounds (6, 11, and 13) strongly inhibited HeLa cell proliferation with a half-maximal inhibitory concentration (10-46 nM). Among the compounds, compound 6 (QTMP) showed stronger antiproliferative ability than CA-4 (a clinical trial agent) in various cancer cell lines, including cervical, lung, breast, highly metastatic breast, and melanoma cells. QTMP inhibited the assembly of purified tubulin, depolymerized microtubules of A549 lung carcinoma cells, produced defective spindles, and arrested the cells in the G2/M phase. Further, QTMP binds to the colchicine site in tubulin with a dissociation constant of 5.0 ± 0.6 µM. QTMP displayed higher aqueous stability than CA-4 at 37 °C. Further, in silico analysis of QTMP indicated excellent drug-like properties, including good aqueous solubility, balanced hydrophilicity-lipophilicity, and high GI-absorption ability. The results together suggest that QTMP has anticancer potential.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Moduladores de Tubulina/farmacologia , Células HeLa , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
5.
Bioorg Chem ; 139: 106727, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451147

RESUMO

In this work, a series of 2-(trifluoromethyl)quinolin-4-amine derivatives were designed and synthesized through structural optimization strategy as a microtubule-targeted agents (MTAs) and their cytotoxicity activity against PC3, K562 and HeLa cell lines were evaluated. The half maximal inhibitory concentration (IC50) of 5e, 5f, and 5o suggested that their potency of anti-proliferative activities against HeLa cell lines were better than the combretastatin A-4. Compound 5e showed the higher anti-proliferative activity against PC3, K562 and HeLa in vitro with IC50 values of 0.49 µM, 0.08 µM and 0.01 µM, respectively. Further mechanism study indicated that the representative compound 5e was new class of tubulin inhibitors by EBI competition assay and tubulin polymerization assays, it is similar to colchicine. Immunofluorescence staining revealed that compound 5e apparently disrupted tubulin network in HeLa cells, and compound 5e arrested HeLa cells at the G2/M phase and induced cells apoptosis in a dose-dependent manner. Molecular docking results illustrated that the hydrogen bonds of represented compounds reinforced the interactions in the pocket of colchicine binding site. Preliminary results suggested that 5e deserves further research as a promising tubulin inhibitor for the development of anticancer agents.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Humanos , Estrutura Molecular , Células HeLa , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Simulação de Acoplamento Molecular , Polimerização , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Microtúbulos/metabolismo , Colchicina/metabolismo
6.
Bioorg Chem ; 137: 106580, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37149948

RESUMO

As a class of microtubule targeting agents, colchicine binding site inhibitors (CBSIs) are considered as promising drug candidates for cancer therapy. However, due to adverse reactions, there are currently no CBSIs approved by FDA for cancer treatment. Therefore, extensive efforts are still encouraged to find novel CBSIs with different chemical structures and better anticancer efficacies. In this work, we designed and synthesized a new coumarin-dihydroquinoxalone derivative, MY-673, and evaluated its anticancer potency in vitro and in vivo. We confirmed that MY-673 was a potent CBSI that it not only inhibited tubulin polymerization, but also exhibited significant inhibitory potency on the growth of 13 cancer cells with IC50 values from 11.7 nM to 395.9 nM. Based on the results of kinase panel screening, MY-673 could inhibit ERK (extracellular regulated protein kinases) pathways-related kinases. We further confirmed that MY-673 could inhibit ERK signaling pathway in MGC-803 and HGC-27 cells, and then affected the expression level of SMAD4 protein in TGF-ß (transforming growth factor ß) /SMAD (small mother against decapentaplegic) signaling pathway using the western blotting assay. In addition, compound MY-673 could effectively inhibit cell proliferation, migration and induce cell apoptosis. We also further confirmed the in vivo efficacy of MY-673 in inhibiting tumor growth using the MGC-803 xenograft tumor model. At 20 mg/kg, the TGI rate was 85.9%, and it did not cause obvious toxicity to the main organs of mice. Together, the results we report here indicated that MY-673 was a promising CBSI for cancer treatment, which was capable of inhibiting the ERK pathway with potent antiproliferative activities in vitro and in vivo.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Animais , Camundongos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/química , Sistema de Sinalização das MAP Quinases , Tubulina (Proteína)/metabolismo , Microtúbulos , Colchicina/metabolismo , Proliferação de Células , Neoplasias Gástricas/tratamento farmacológico , Antineoplásicos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade
7.
J Enzyme Inhib Med Chem ; 38(1): 2247579, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37587873

RESUMO

Angiogenesis plays an important role in tumour generation and progression, which is used to supply nutrients and metastasis. Herein, a series of novel dihydro-1H-indene derivatives were designed and evaluated as tubulin polymerisation inhibitors by binding to colchicine site, exhibiting anti-angiogenic activities against new vessel forming. Through structure-activity relationships study, compound 12d was found to be the most potent derivative possessing the antiproliferative activity against four cancer lines with IC50 values among 0.028-0.087 µM. Compound 12d bound to colchicine site on tubulin and inhibited tubulin polymerisation in vitro. In addition, compound 12d induced cell cycle arrest at G2/M phase, stimulated cell apoptosis, inhibited tumour metastasis and angiogenesis. Finally, the results of in vivo assay suggested that compound 12d could prevent tumour generation, inhibit tumour proliferation and angiogenesis without obvious toxicity. Collectively, all these findings suggested that compound 12d is a novel tubulin polymerisation inhibitor deserving further research.


Assuntos
Indenos , Moduladores de Tubulina , Moduladores de Tubulina/farmacologia , Tubulina (Proteína) , Colchicina
8.
J Enzyme Inhib Med Chem ; 38(1): 2155815, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36629423

RESUMO

The colchicine binding site of tubulin is a promising target for discovering novel antitumour agents. Previously, we identified 2-aryl-4-amide-quinoline derivatives displayed moderate tubulin polymerisation inhibitory activity and broad-spectrum in vitro antitumour activity. In this study, structure based rational design and systematic structural optimisation were performed to obtain analogues C1∼J2 bearing diverse substituents and scaffolds. Among them, analogue G13 bearing a hydroxymethyl group displayed good tubulin polymerisation inhibitory activity (IC50 = 13.5 µM) and potent antiproliferative activity (IC50 values: 0.65 µM∼0.90 µM). G13 potently inhibited the migration and invasion of MDA-MB-231 cells, and displayed potent antiangiogenic activity. It efficiently increased intracellular ROS level and decreased MMP in cancer cells, and obviously induced the fragmentation and disassembly of the microtubules network. More importantly, G13 exhibited good in vivo antitumour efficacy in MDA-MB-231 xenograft model (TGI = 38.2%; i.p., 30 mg/kg).


Assuntos
Antineoplásicos , Moduladores de Tubulina , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Colchicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Animais
9.
Arch Pharm (Weinheim) ; 356(10): e2300210, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37480173

RESUMO

Microtubules are appealing as intracellular targets for anticancer activity due to their importance in cell division. Three important binding sites are present on the tubulin protein: taxane, vinca, and colchicine binding sites (CBS). Many USFDA-approved drugs such as paclitaxel, ixabepilone, vinblastine, and combretastatin act by altering the dynamics of the microtubules. Additionally, a large number of compounds have been synthesized by medicinal chemists around the globe that target different tubulin binding sites. Although CBS inhibitors have proved their cytotoxic potential, no CBS-targeting drug had been able to reach the market. Several studies have reported design, synthesis, and biological evaluation of indole derivatives as potential anticancer agents. These compounds have been shown to inhibit cancer cell proliferation, induce apoptosis, and disrupt microtubule formation. Moreover, the binding affinity of these compounds to the CBS has been demonstrated using molecular docking studies and competitive binding assays. The present work has reviewed indole derivatives as potential colchicine-binding site inhibitors. The structure-activity relationship studies have revealed the crucial pharmacophoric features required for the potent and selective binding of indole derivatives to the CBS. The development of these compounds with improved efficacy and reduced toxicity could potentially lead to the development of novel and effective cancer therapies.

10.
Molecules ; 28(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110792

RESUMO

Cancer is one of the most common causes of human death worldwide; thus, numerous therapies, including chemotherapy, have been and are being continuously developed. In cancer cells, an aberrant mitotic spindle-a microtubule-based structure necessary for the equal splitting of genetic material between daughter cells-leads to genetic instability, one of the hallmarks of cancer. Thus, the building block of microtubules, tubulin, which is a heterodimer formed from α- and ß-tubulin proteins, is a useful target in anti-cancer research. The surface of tubulin forms several pockets, i.e., sites that can bind factors that affect microtubules' stability. Colchicine pockets accommodate agents that induce microtubule depolymerization and, in contrast to factors that bind to other tubulin pockets, overcome multi-drug resistance. Therefore, colchicine-pocket-binding agents are of interest as anti-cancer drugs. Among the various colchicine-site-binding compounds, stilbenoids and their derivatives have been extensively studied. Herein, we report systematic studies on the antiproliferative activity of selected stilbenes and oxepine derivatives against two cancer cell lines-HCT116 and MCF-7-and two normal cell lines-HEK293 and HDF-A. The results of molecular modeling, antiproliferative activity, and immunofluorescence analyses revealed that compounds 1a, 1c, 1d, 1i, 2i, 2j, and 3h were the most cytotoxic and acted by interacting with tubulin heterodimers, leading to the disruption of the microtubular cytoskeleton.


Assuntos
Antineoplásicos , Neoplasias , Estilbenos , Humanos , Tubulina (Proteína)/metabolismo , Estilbenos/química , Oxepinas/metabolismo , Células HEK293 , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Microtúbulos/metabolismo , Antineoplásicos/química , Colchicina/química , Moduladores de Tubulina/química , Sítios de Ligação , Proliferação de Células
11.
Bioorg Med Chem ; 76: 117098, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455508

RESUMO

Through structural optimization and ring fusion strategy, we designed a series of novel imidazo[1,2-a]pyrazine derivatives as potential tubulin inhibitors. These compounds displayed potent anti-proliferative activities (micromolar to nanomolar) against a panel of cancer cell lines (including HepG-2, HCT-116, A549 and MDA-MB-231 cells). Among them, compound TB-25 exhibited the strongest inhibitory effects against HCT-116 cells with an IC50 of 23 nM. Mechanism studies revealed that TB-25 could effectively inhibit tubulin polymerization in vitro, and destroy the dynamic equilibrium of microtubules in HCT-116 cells. In addition, TB-25 dose-dependently induced G2/M phase cell cycle arrest and apoptosis in HCT-116 cells. Furthermore, TB-25 suppressed HCT-116 cell migration in a concentration-dependent manner. Finally, molecular docking showed that TB-25 fitted well in the colchicine binding site of tubulin and overlapped nicely with CA-4. Collectively, these results suggest that TB-25 represents a promising tubulin inhibitor deserving further investigation.


Assuntos
Moduladores de Tubulina , Tubulina (Proteína) , Moduladores de Tubulina/farmacologia , Pirazinas/farmacologia , Simulação de Acoplamento Molecular
12.
Bioorg Med Chem ; 73: 117007, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150341

RESUMO

Nineteen TH03 analogues were designed and synthesized as tubulin colchicine-binding site inhibitors with potent antiproliferative activities. Among these compounds, 3,5-dimethoxyphenylpyridines 8j bearing a 4-methoxybenzyl aniline side-chain displayed the best antiproliferative activities against glioma (U87MG and U251). In addition, the trimethoxyphenylpyridine 8o bearing a 4-methyl-N-methyl aniline side-chain showed the best antiproliferative activities against colon carcinoma and lung cancer with the lowest IC50 value (0.09 µM < IC50 < 0.86 µM). Compared with CA-4, Compounds 8j and 8o displayed lower cytotoxicities toward normal cells but higher antiproliferative activities against RKO (IC50 = 0.15 µM and 0.09 µM respectively), NCI-H1299 (IC50 = 0.73 µM and 0.14 µM respectively), and A549 cells (IC50 = 0.86 µM and 0.37 µM respectively). Further investigations revealed that 8o shows higher tubulin polymerization inhibitory activity (IC50 = 3.1 ± 0.5 µM) than colchicine (IC50 = 8.6 ± 0.2 µM), and induced cell cycle arrest at the G2/M phase and cellular apoptosis through disrupting the microtubule network.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Compostos de Anilina/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Colchicina/química , Colchicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Piridinas/farmacologia , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
13.
Bioorg Chem ; 118: 105486, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801948

RESUMO

The colchicine binding site of tubulin is a promising target for discovering novel antitumor agents which exert the antiangiogenic effect and are not susceptible to multidrug resistance. For identifying novel tubulin inhibitors, structure-based virtual screening was applied to identify hit 9 which displayed moderate tubulin polymerization inhibition and broad-spectrum in vitro antitumor activity. Structural optimization was performed, and biological assay revealed analog E27 displayed the best antitumor activity with IC50 values ranging from 7.81 µM to 10.36 µM, and improved tubulin polymerization inhibitory activity (IC50 = 16.1 µM). It significantly inhibited cancer cell migration and invasion, induced cell apoptosis and arrested the cell cycle at G2/M phase. Moreover, the apoptotic effect of E27 is related to the increased ROS level, the decrease of MMP, and the abnormal expression of apoptosis-related proteins. Taken together, these results suggested E27 was a promising lead compound for discovering novel tubulin-targeted antitumor agents.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
14.
Bioorg Chem ; 128: 106053, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35964504

RESUMO

A hydroxamic acid based microtubule-destabilizing agent (MDA) SKLB-14b was discovered in this study, which was derived from shortening the linker length of the HDAC6 and microtubule dual-target inhibitor SKLB-23bb. SKLB-14b exhibited low nanomolar IC50 values on a wide spectrum of human cancer cell lines including both sensitive and multidrug-resistant cell lines. Surprisingly, its anti-proliferative activity relied on the presence of the hydroxamic acid group but lost inhibitory activity against HDACs. SKLB-14b bound to the colchicine site of tubulin and could inhibit tubulin polymerization. It exhibited good metabolic stability in liver microsomes, no inhibitory effect on CYP450 isoenzymes and high oral bioavailability. In vivo experiments revealed that SKLB-14b was potent in both sensitive (A2780S, HCT116) and resistant (A2780/T) xenograft mice models. Furthermore, in the patient-derived tumor xenograft (PDX) models of osimertinib resistant non-small cell lung cancer (NSCLC), 50 mg/kg of SKLB-14b administered every twodays inhibited tumor growth by 70.6% without obvious toxicity, better than the 59.7% inhibition rate of paclitaxel. Mechanistically, we found that SKLB-14b exerted anti-tumor and anti-multidrug resistance effects in vitro and in vivo through cell cycle arrest and pro-apoptotic activities, as well as vascular disrupting activities. Therefore, we discovered that SKLB-14b, as a novel MDA based on hydroxamic acid, could serve as a potential drug candidate for cancer therapy which deserves further investigation.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias Ovarianas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Ácidos Hidroxâmicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Microtúbulos , Neoplasias Ovarianas/tratamento farmacológico , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Enzyme Inhib Med Chem ; 37(1): 2755-2764, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36196773

RESUMO

A set of novel diarylpyridines as anti-tubulin agents were designed, synthesised using a rigid pyridine as a linker to fix the cis-orientation of ring-A and ring-B. All of the target compounds were evaluated for their in vitro antiproliferative activities. Among them, 10t showed remarkable antiproliferative activities against three cancer cell lines (HeLa, MCF-7 and SGC-7901) in sub-micromolar concentrations. Consistent with its potent antiproliferative activity, 10t also displayed potent anti-tubulin activity. Cellular mechanism investigation elucidated 10t disrupted the cellular microtubule structure, arrested cell cycle at G2/M phase and induces apoptosis. Molecular modelling studies showed that 10t could bind to the colchicine binding site on microtubules. These results provide motivation and further guidance for the development of new CA-4 analogues.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Colchicina/metabolismo , Colchicina/farmacologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Piridinas/farmacologia , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo
16.
J Enzyme Inhib Med Chem ; 37(1): 2223-2240, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35979600

RESUMO

Introduction: Colchicine-binding site inhibitors are some of the most interesting ligands belonging to the wider family of microtubule-destabilising agents.Results: A novel series of 4'-fluoro-substituted ligands (5-13) was synthesised. The antiproliferative activity assays resulted in nM values for the new benzotriazole-acrylonitrile derivatives. Compound 5, the hit compound, showed an evident blockade of HeLa cell cycle in the G2-M phase, but also a pro-apoptotic potential, and an increase of early and late apoptotic cells in HeLa and MCF-7 cell cycle analysis. Confocal microscopy analysis showed a segmented shape and a collapse of the cytoskeleton, as well as a consistent cell shrinkage after administration of 5 at 100 nM. Derivative 5 was also proved to compete with colchicine at colchicine-binding site, lowering its activity against tubulin polymerisation. In addition, co-administration of 5 and doxorubicin in drug-resistant A375 melanoma cell line highlighted a synergic potential in terms of inhibition of cell viability.Discussion: The 4'-fluoro substitution of benzotriazole-acrylonitrile scaffold brought us a step forward in the optimisation process to obtain compound 5 as promising MDA antiproliferative agent at nanomolar concentration.


Assuntos
Acrilonitrila , Antineoplásicos , Acrilonitrila/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Colchicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Ligantes , Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Triazóis , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina
17.
Drug Dev Res ; 83(2): 485-500, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34523738

RESUMO

Microtubules and the mitotic spindle have become an important target for cancer treatment due to their critical role in cell division. In this work, a novel series of benzofuran and indole derivatives were designed and synthesized, to be evaluated as tubulin polymerization inhibitors. 2-Acetylbenzofuran derivatives 1a,b and 3-acetylindole 1c were condensed with Wittig reagents 2a-d and Wittig-Horner reagents 3a-e to afford the respective 2-ethylidene derivatives 5a-j and 7a-e. Also, iminomethylene triphenylphosphine (2e) reacted with 1a,b to afford benzofuran-2-ylethylidene aniline derivatives 6a,b. In addition, compounds 1a,b reacted with trialkylphosphites 4a-c to give 1:1 adduct for which the Oxaphospholo[4,3-b]benzofuran-7-yl)diazene derivatives 8a-f, were assigned. The possible reactions mechanisms were discussed and structural reasoning for the new compounds were based upon spectroscopic data. Their antiproliferative activities against two cell lines namely, HepG2 and MCF7 cells were then evaluated. It was found that the benzofuran compounds 5b, 6a, and 8c exhibited the strongest antiproliferative activities against both cell lines compared to doxorubicin. By studying the mechanism of action, compound 6a showed good inhibition of tubulin polymerization which leads to mitotic spindle formation disruption, cell cycle arrest in the G2/M phase, and apoptosis of HepG2 cells. A conducted docking study confirmed the in vitro results indicating that compound 6a fitted properly at the colchicine binding site of tubulin. Based on these findings, compound 6a can be considered as a promising anticancer candidate that can be subjected for further development as a tubulin polymerization inhibitor for treating liver and breast cell carcinoma.


Assuntos
Antineoplásicos , Benzofuranos , Antineoplásicos/química , Benzofuranos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
18.
Invest New Drugs ; 39(2): 578-586, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33026557

RESUMO

Glochidiol has been shown to have potentially antiproliferative activity in vitro, however its anticancer mechanisms specifically against lung cancer remain unknown. This study aimed to investigate the anti-lung cancer effects of glochidiol in HCC-44 cells in vitro and in vivo. In the present study, glochidiol was found to have potent antiproliferative activity against lung cancer cell lines NCI-H2087, HOP-62, NCI-H520, HCC-44, HARA, EPLC-272H, NCI-H3122, COR-L105 and Calu-6 with IC50 values of 4.12 µM, 2.01 µM, 7.53 µM, 1.62 µM, 4.79 µM, 7.69 µM, 2.36 µM, 6.07 µM and 2.10 µM, respectively. In vivo, glochidiol was found to effectively inhibit lung cancer HCC-44 xenograft tumor growth in nude mice. Docking analysis found that glochidiol forms hydrogen bonds with residues of tubulin. Glochidiol was also found to inhibit tubulin polymerization in vitro with an IC50 value of 2.76 µM. Immunofluorescence staining and EBI competition assay suggest that glochidiol may interact with tubulin by targeting the colchicine binding site. Thus, glochidiol might be a novel colchicine binding site inhibitor with the potential to treat lung cancer.


Assuntos
Triterpenos/farmacologia , Tubulina (Proteína)/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Colchicina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Distribuição Aleatória , Tubulina (Proteína)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Bioorg Med Chem Lett ; 45: 128131, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34022412

RESUMO

Human esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers in human digestive system. It is necessary to discover novel antitumor agents for the treatment of esophageal cancers because of its poor prognosis. Indoline has been reported as an efficient anticancer fragment to design novel anticancer agents. In this work, indoline derivatives were designed, synthesized and explored their anticancer activity. Compound 9d, which exhibited potent antiproliferative activity with IC50 values of 1.84 µM (MGC-803 cells), 6.82 µM (A549 cells), 1.61 µM (Kyse30 cells), 1.49 µM (Kyse450 cells), 2.08 µM (Kyse510 cells) and 2.24 µM (EC-109 cells), respectively. The most active compound 9d was identified as a tubulin inhibitor targeting colchicine binding site with an IC50 value of 3.4 µM. Compound 9d could strongly suppress the tubulin polymerization in Kyse450 cells. The results of molecular docking also suggested compound 9d could tightly bind into the colchicine binding site of ß-tubulin. Besides, compound 9d inhibited the growth of KYSE450 cells in time and dose-dependent manners. All the results suggest that the indoline derivatives might be a class of novel tubulin inhibitors with potential anticancer activity and is worthy of further study.

20.
Bioorg Med Chem Lett ; 43: 128095, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33965530

RESUMO

Human esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers in human digestive system. It is necessary to discover novel antitumor agents for the treatment of esophageal cancers because of its poor prognosis. Indoline has been reported as an efficient anticancer fragment to design novel anticancer agents. In this work, indoline derivatives were designed, synthesized and explored their anticancer activity. Compound 9d, which exhibited potent antiproliferative activity with IC50 values of 1.84 µM (MGC-803 cells), 6.82 µM (A549 cells), 1.61 µM (Kyse30 cells), 1.49 µM (Kyse450 cells), 2.08 µM (Kyse510 cells) and 2.24 µM (EC-109 cells), respectively. The most active compound 9d was identified as a tubulin inhibitor targeting colchicine binding site with an IC50 value of 3.4 µM. Compound 9d could strongly suppress the tubulin polymerization in Kyse450 cells. The results of molecular docking also suggested compound 9d could tightly bind into the colchicine binding site of tubulin. Besides, compound 9d inhibited the growth of KYSE450 cells in a time and dose-dependent manner. All the results suggest that the indoline derivatives may be a class of novel tubulin inhibitors with potential anticancer activity, and which is worthy of further study.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Indóis/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA