Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 121: 10-5, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26256249

RESUMO

The emissions from the Compression ignition (CI) engines introduce toxicity to the atmosphere. The undesirable carbon deposits from these engines are realized in the nearby static or dynamic systems such as vehicles, inhabitants, etc. The objective of this research work is to improve the performance and emission characteristics of a diesel engine in the modified re-entrant combustion chamber using a diesel and Jatropha methyl ester blend (J20) at three different injection pressures. From the literature, it is revealed that the shape of the combustion chamber and the fuel injection pressure have an impact on the performance and emission parameters of the CI engine. In this work, a re-entrant combustion chamber with three different fuel injection pressures (200, 220 and 240bars) has been used in the place of the conventional hemispherical combustion chamber for diesel and J20. From the experimental results, it is found that the re-entrant chamber improves the brake thermal efficiency of diesel and J20 in all the tested conditions. It is also found that the 20% blend of Jatropha methyl ester showed 4% improvement in the brake thermal efficiency in the re-entrant chamber at the maximum injection pressure. Environmental safety directly relates to the reduction in the undesirable effects on both living and non-living things. Currently environmental pollution is of major concern. Even with the stringent emission norms new methods are required to reduce the harmful effects from automobiles. The toxicity of carbon monoxide (CO) is well known. In the re-entrant combustion chamber, the amount of CO emission is reduced by 26% when compared with the conventional fuel operation of the engine. Moreover, the amount of smoke is reduced by 24% and hydrocarbons (HC) emission by 24%. Thus, the modified re-entrant combustion chamber reduces harmful pollutants such as unburned HC and CO as well as toxic smoke emissions.


Assuntos
Ésteres/química , Jatropha/química , Emissões de Veículos , Poluentes Atmosféricos/análise , Biocombustíveis/análise , Dióxido de Carbono/análise , Monóxido de Carbono/análise , Hidrocarbonetos/química , Óxidos de Nitrogênio/química , Fumaça/análise
2.
Sci Rep ; 14(1): 23555, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39385039

RESUMO

The role of efficient fuel mixing and a stable flame holder is crucial in enhancing the performance and capabilities of scramjet engines for high-speed flight. The present research paper has tried to disclose the fuel mixing efficiency of 3-lobe annular nozzle on the mixing mechanism of the fuel jet behind the strut. In addition, using internal air jet flow for increasing the circulation strength and fuel mixing behind the strut is also examined in this study. Numerical simulation of the flow and fuel jet behind the strut is done to reveal the main physics related to the mechanism of fuel mixing inside the combustor with the proposed injection system. The results of our simulation show that using annular 3-lobe fuel jet improve the fuel mixing via production of the multiple vortex pairs within the combustor behind the strut. The use of internal air jet also enhances the fuel mixing efficiency up to 90% in combustor of scramjet engine.

3.
Sci Rep ; 14(1): 12812, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834714

RESUMO

The importance of fuel mixing for the progress of the scramjet engine is indisputable. The present article shows the importance of the non-equal multi-injector system for effective fuel distribution and flame holding inside the combustion segment of a scramjet engine. The supersonic air and fuel jet flow in the non-equal nozzle arrangement is simulated via computational fluid dynamic technique. Two injector types of circular and rectangular nozzle have been analyzed to attain flow characteristics of hydrogen jets at supersonic cross flow. Mach contour is also analyzed for these jet arrangements to show the interface of the jet in the non-equal jet arrangement. Besides, addition of internal air jet is also simulated and evaluated in this research. Our investigation shows that the diffusion height of the fuel jet is higher when a rectangular non-equal nozzle is applied. The circular nozzle is more active in the spreading of the fuel in the combustor and the use of an internal air jet effectively increases fuel in a combustor of the scramjet.

4.
Sci Rep ; 14(1): 6405, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493238

RESUMO

The importance of the fuel injection configuration on the propulsion efficiency of high-speed vehicles is apparent. In this article, the use of an annular extruded 4-lobe nozzle for the injection of fuel jet in a supersonic combustor of a scramjet engine in the existence of a shock generator is examined. The main aim of this study is to obtain the efficient jet arrangement for efficient fuel mixing inside the engine of hypersonic vehicles. A numerical approach is used to model the supersonic air stream and cross-jet flow with the SST turbulence model. The role of nozzle altitude and internal air jet on the fuel mixing of the hydrogen within the high-speed domain are disclosed. The importance of the horseshoe vortex and counter-rotating vortex on the fuel distribution is also presented. Our results show that the usage of a coaxial jet instead of an annular jet would increase fuel mixing by more than 40% in the combustion chamber.

5.
Environ Sci Pollut Res Int ; 31(31): 44218-44229, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38935281

RESUMO

Paddy parboiling in rice industries is an energy-intensive process that requires huge attention for energy conservation, fuel economy, and sustainability. Thus, several research initiatives have been undertaken to adopt a suitable energy conversion system in such industries to improve thermal efficiency and reduce environmental impact. In this study, exergy performance and exergy-based sustainability indicators have been investigated on a reversible bed paddy dryer coupled with a rice husk-fuelled downdraft gasifier. The experiment was conducted at the optimum operating conditions such as an equivalence ratio of 0.2 in the gasifier and a drying air temperature of 80℃ in the dryer. The exergy efficiency of the reversible bed dryer and the gasifier were 65.53% and 70.92% respectively. The lowest exergy efficiency of 35.29% was seen in the combustion chamber since a huge exergy destruction of 2.75 kW occurred. Therefore, the combustion chamber has a high potential improvement of about 1.66 kW. Due to less exergy destruction, the gas cooler and air duct showed high exergy efficiency of 62.36% and 76.2% respectively and the lowest values in exergy-based sustainability indicators. The assessment of environmental and sustainability factors on each component showed that the combustion chamber has a high waste exergy ratio of 0.688, environment effect factor of 1.95, exergy destruction coefficient of 0.69, and exergy sustainability index of 0.51.


Assuntos
Biomassa , Oryza , Agricultura
6.
Environ Sci Pollut Res Int ; 30(28): 72059-72073, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35028837

RESUMO

This paper deals with the effects of piston bowl geometry (hemispherical bowl, troded bowl, and re-entrant bowl) and fuel injection pressure (200 bar, 220 bar, and 240 bar) with hydrogen-diesel/1-pentanol (B20 (80% diesel and 20% pentanol) + 12 lpm of hydrogen) on the emission, combustion, and performance characteristics of a common rail direct injection diesel engine. Re-entrant bowl outperforms hemispherical and troded bowl in terms of brake thermal efficiency (5.67%) and hydrocarbon (8% reduction) with an increase in the fuel injection pressure (240 bar) at part and full load. However, with the increase in the fuel injection pressure in the re-entrant bowl, a slight reduction in nitrogen oxide emissions (2%) is observed. With an increase in injection pressure in the case of re-entrant bowls, NHRR (net heat release rate), peak pressure (in-cylinder), and ROPR (rate of pressure rises) all rise significantly by 3.4%, 4.2%, and 2.3%. It is found that changing the piston shape and fuel injection pressure simultaneously is a potential alternative for improving engine performance and lowering emissions.


Assuntos
Pentanóis , Emissões de Veículos , Hidrogênio , Biocombustíveis , Monóxido de Carbono/análise , Gasolina
7.
Chemosphere ; 303(Pt 3): 135275, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35697107

RESUMO

The air-fuel mixture preparation in pilot spray-ignited natural gas engines is primarily dominated by piston bowl profiles and fuel injection strategy. Piston bowl geometry is regarded as the crucial point in controlling engine pollutant emissions. In the present work, the SAGE combustion model was applied coupled with a general reaction kinetic mechanism. The engine model was validated with experimental data achieved from a Cummins ISX 400 engine, and good agreement between predicted and measured in-cylinder pressure and heat release rate was obtained. The influence of various piston bowl designs, including Mexican-hat geometry, double-lip geometry, bow geometry, and toroidal geometry, on the combustion process, engine performance, and pollutant emissions of a high-pressure direct-injection natural gas engine have been studied and analyzed numerically. The present study confirms the benefit of the piston bowl design as a beneficial tool to enhance the performance and pollutant emissions of the pilot diesel-ignited natural gas engine. Results showed that different chamber shapes slightly influence the combustion initiation, and the difference in in-cylinder pressure presents noticeable as the combustion continues. A higher turbulent kinetic energy improves the flow movement and facilitates the mixture formation in the cylinder. However, the combustion behavior is unwished caused by the improper injection angle of natural gas. Increasing the recess depth of combustion chambers reduces NOx formations at the price of sacrificing fuel economy. For the bow combustion chamber design, the NOx emission declined by 31.1%, while the indicated specific fuel consumption increased by 5.5% compared with the original engine. Although the indicated mean effective pressure and specific fuel consumption of the optimal double-lip geometry almost remain the same, NOx emissions can be reduced by 16.7% compared with the base design.


Assuntos
Poluentes Ambientais , Gasolina , Biocombustíveis , Temperatura Alta , Gás Natural , Emissões de Veículos
8.
Chemosphere ; 224: 407-416, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30831491

RESUMO

An open-system combustion chamber was designed and constructed for simulation of burning of various biomass types to estimate emission factors of pollutant gases, fine particulate matters and their composition to find out significant tracers. Rice straw (RS), maize residues (MR) and forest leaf litters (FLL) from mixed deciduous forest (MDF) and dry dipterocarp forest (DDF) were collected from various places in Northern Thailand based on land-use types. Approximately 1 kg of air-dried biomass sample was burned in the chamber, PM2.5 were collected. CO2 dominated during the flaming state while CO is predominant in the smoldering state. The highest EFPM2.5 was obtained from MDF burning (4.38 ±â€¯2.99 g kg-1), while the lowest value was from MR burning (2.15 ±â€¯0.95 g kg-1). Among water soluble ions, K+ (biomass burning (BB) tracer) was the most abundant species in PM2.5 followed by Cl- and SO42-. The average EFK+ from the burning of agricultural biomass was significantly higher than the burning of FLL. Scatter plot of K+/SO42- versus K+/Cl- can be used to distinguish between agricultural crop residues and FLL burning. Levoglucosan (BB tracer) was a dominant species among anhydrosugars and also a major component found in FLL burning. The ratios of levoglucosan/K+ and levoglucosan/mannosan obtained from forest and agricultural waste burnings were significantly different, therefore they can be used for BB source identification.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Gases/análise , Material Particulado/análise , Biomassa , Produtos Agrícolas/química , Florestas , Tailândia , Árvores/química
9.
Sci Total Environ ; 648: 737-744, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30130737

RESUMO

Polycyclic aromatic hydrocarbons, PM2.5 and micrometer-sized particles are mainly emitted by residential wood combustion, affecting air pollution in the cities of Chile. Eucalyptus globulus (EG) at 0% and 25% wood moisture was burning using a new controlled combustion chamber for emissions (3CE) to determine the emission factors of PM2.5, micrometer-sized particle numbers (0.265µm to 34.00µm) and 16 EPA-PAHs plus retene adsorbed on PM2.5 quartz filters. A method using accelerated solvent extraction, concentration, clean-up and GC-MS is proposed for determining emission factors for 16 EPA-PAHs for the concentration from biomass combustion. Chromatographic conditions and analytical steps were optimized in terms of linearity, selectivity, limits of detection and quantification, precision and accuracy. The recovery obtained from urban dust SRM 1649A (NIST reference material) analyses was between 63% (benzo[b]fluoranthene) and 102% (benzo[k]fluoranthene). In this investigation, it was shown that increasing the wood moisture in combustion tests decreased combustion efficiency (93% to 49%) and increased the emission factors of total PAHs (5215.47ngg-1 to 7644.48ngg-1), the gravimetric PM2.5 (2.01g kg-1 to 22.90gkg-1) and the total number of measured micrometer-sized particles (3.15×1012 particles kg-1 to 1.33×1013 particles kg-1) due to incomplete combustion. The PM2.5 emission rates (ERs) were estimated using EG at 0% WM (2.39g-1 to 3.15gh-1) and 25% WM (27.32gh-1 to 35.77gh-1) for three regions of Chile. In almost all regions, the Chilean emission regulations were exceeded for PM2.5 from wood combustion in the heater (stove with thermal power ≤8kW and emission limit of 2.5gh-1). Finally, when using wet wood for residential combustion, the amount of PAHs on the PM2.5 increased, presenting a potential hazard to population health. Therefore, improvements are necessary in the current regulation of PM emissions.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Eucalyptus/química , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Madeira/química , Umidade , Tamanho da Partícula
10.
Environ Sci Pollut Res Int ; 25(3): 2273-2284, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29119492

RESUMO

A numerical study was carried out to study the effect of various combustion bowl parameters on the performance behavior, combustion characteristics, and emission magnitude on a single cylinder diesel engine. A base combustion bowl and 11 different combustion bowls were created by varying the aspect ratio, reentrancy ratio, and bore to bowl ratio. The study was carried out at engine rated speed and a full throttle performance condition, without altering the compression ratio. The results revealed that the combustion bowl parameters could have a huge impact on the performance behavior, combustion characteristics, and emission magnitude of the engine. The bowl parameters, namely throat diameter and toroidal radius, played a crucial role in determining the performance behavior of the combustion bowls. It was observed that the combustion bowl parameters, namely central pip distance, throat diameter, and bowl depth, also could have an impact on the combustion characteristics. And throat diameter and toroidal radius, central pip distance, and toroidal corner radius could have a consequent effect on the emission magnitude of the engine. Of the different combustion bowls tested, combustion bowl 4 was preferable to others owing to the superior performance of 3% of higher indicated mean effective pressure and lower fuel consumption. Interestingly, trade-off for NO x emission was higher only by 2.85% compared with the base bowl. The sensitivity analysis proved that bowl depth, bowl diameter, toroidal radius, and throat diameter played a vital role in the fuel consumption parameter and emission characteristics even at the manufacturing tolerance variations.


Assuntos
Poluentes Atmosféricos/análise , Modelos Teóricos , Veículos Automotores , Emissões de Veículos/análise , Pressão
11.
Sci Total Environ ; 584-585: 901-910, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28189303

RESUMO

The objective of this research was to determine emission factors (EF) for particulate matter (PM2.5), combustion gases and particle size distribution generated by the combustion of Eucalyptus globulus (EG), Nothofagus obliqua (NO), both hardwoods, and Pinus radiata (PR), softwood, using a controlled combustion chamber (3CE). Additionally, the contribution of the different emissions stages associated with the combustion of these wood samples was also determined. Combustion experiments were performed using shaving size dried wood (0% humidity). The emission samples were collected with a tedlar bag and sampling cartridges containing quartz fiber filters. High reproducibility was achieved between experiment repetitions (CV<10%, n=3). The EF for PM2.5 was 1.06gkg-1 for EG, 1.33gkg-1 for NO, and 0.84gkg-1 for PR. Using a laser aerosol spectrometer (0.25-34µm), the contribution of particle emissions (PM2.5) in each stage of emission process (SEP) was sampled in real time. Particle size of 0.265µm were predominant during all stages, and the percentages emitted were PR (33%), EG (29%), and NO (21%). The distributions of EF for PM2.5 in pre-ignition, flame and smoldering stage varied from predominance of the flame stage for PR (77%) to predominance of the smoldering stage for NO (60%). These results prove that flame phase is not the only stage contributing to emissions and on the contrary, pre-ignition and in especial post-combustion smoldering have also very significant contributions. This demonstrates that particle concentrations measured only in stationary state during flame stage may cause underestimation of emissions.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Monóxido de Carbono/análise , Óxido Nitroso/análise , Dióxido de Enxofre/análise , Madeira , Incêndios , Tamanho da Partícula , Material Particulado/análise , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA