Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Biofouling ; 38(3): 207-222, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35345940

RESUMO

Microbiologically influenced corrosion and biofouling of steels depend on the adsorption of a conditioning film and subsequent attachment of bacteria. Extracellular deoxyribonucleic acid (eDNA) and amino acids are biologically critical nutrient sources and are ubiquitous in marine environments. However, little is known about their role as conditioning film molecules in early biofilm formation on metallic surfaces. The present study evaluated the capacity for eDNA and amino acids to form a conditioning film on carbon steel (CS), and subsequently, the influence of these conditioning films on bacterial attachment using a marine bacterial strain. Conditioning films of eDNA or amino acids were formed on CS through physical adsorption. Biochemical and microscopic analysis of eDNA conditioning, amino acid conditioning and control CS surfaces demonstrated that organic conditioning surfaces promoted bacterial attachment. The results highlight the importance of conditioning the surface in initial bacterial attachment to steel.


Assuntos
Aderência Bacteriana , Shewanella , Aminoácidos , Biofilmes , Carbono , Corrosão , Metais , Shewanella/genética , Aço/química , Propriedades de Superfície
2.
Environ Sci Technol ; 55(16): 11006-11018, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34339175

RESUMO

In the context of environmental plastic pollution, it is still under debate if and how the "plastisphere", a plastic-specific microbial community, emerges. In this study, we tested the hypothesis that the first conditioning film of dissolved organic matter (DOM) sorbs selectively to polymer substrates and that microbial attachment is governed in a substrate-dependent manner. We investigated the adsorption of stream water-derived DOM to polyethylene terephthalate (PET), polystyrene (PS), and glass (as control) including UV-weathered surfaces by Fourier-transform ion cyclotron mass spectrometry. Generally, the saturated, high-molecular mass and thus more hydrophobic fraction of the original stream water DOM preferentially adsorbed to the substrates. The UV-weathered polymers adsorbed more polar, hydrophilic OM as compared to the dark controls. The amplicon sequencing data of the initial microbial colonization process revealed a tendency of substrate specificity for biofilm attachment after 24 h and a clear convergence of the communities after 72 h of incubation. Conclusively, the adsorbed OM layer developed depending on the materials' surface properties and increased the water contact angles, indicating higher surface hydrophobicity as compared to pristine surfaces. This study improves our understanding of molecular and biological interactions at the polymer/water interface that are relevant to understand the ecological impact of plastic pollution on a community level.


Assuntos
Biofilmes , Plásticos , Adsorção , Polímeros , Rios
3.
Biofouling ; 36(2): 183-199, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32281883

RESUMO

Although cyanobacteria are a common group of microorganisms well-suited to utilization in photobioreactors (PBRs), studies of cyanobacteria fouling and its prevention are scarce. Using a cyanobacterium, Anabaena sp. PCC 7120, which had been genetically modified to enhance linalool production, the formation of conditioning films and the effects of these on the physico-chemical surface properties of various PBR materials during initial adhesion and biofilm formation were investigated. The adhesion assay revealed that the overall attachment of Anabaena was substratum dependent and no correlation between the hydrophobicity/roughness of clean material and cell attachment was found. Surface hydrophilicity/hydrophobicity of all the materials changed within 12 h due to formation of conditioning films. ATR-FTIR spectroscopy revealed that the fractional change in protein deposition between 12 to 96 h was consistent with Anabaena cell attachment but polysaccharide deposition was material specific and did not correlate with cell attachment on the PBR materials. Also, the delay in conditioning film proteins on PVC and PTFE indicated that components other than proteins may be responsible for the decrease in contact angles on these surfaces within 12 h. This indicates the important role of the chemical nature of adsorbed conditioning films in determining the initial attachment of Anabaena to PBR materials. The lower rate of attachment of Anabaena on the hydrophilic surfaces (glass and PMMA) between 72 h to 96 h (regime 3) showed that these surfaces could potentially have low fouling characteristics at extended time scales and should be considered for further research.


Assuntos
Anabaena/crescimento & desenvolvimento , Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Materiais de Construção/microbiologia , Fotobiorreatores/microbiologia , Adsorção , Anabaena/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
4.
Anal Bioanal Chem ; 409(25): 5965-5974, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28801691

RESUMO

Conditioning films are an important factor in the initiation and development of microbial biofilms, which are the leading cause of chronic infections associated with medical devices. Here, we analyzed the protein content of conditioning films formed after exposure to supernatants of cultures of the human pathogen Pseudomonas aeruginosa PAO1. Adhesion of substances from the supernatant was monitored using quartz crystal microbalance with dissipation monitoring (QCM-D) sensor chips modified with the commonly used implant material titanium dioxide (TiO2). Attached proteins were identified after on-chip digestion using matrix-assisted laser desorption/ionization (MALDI) time of flight (ToF) mass spectrometry (MS), and a new data processing tool consisting of an XML-database with theoretical tryptic peptides of every PAO1 protein and PHP scripts. Sub-databases containing only proteins, that we found in all replicates, were created and used for MS/MS precursor selection. The obtained MS/MS peaklists were then matched against theoretical fragmentations of the expected peptide sequences to verify protein identification. Using this approach we were able to identify 40 surface-associated proteins. In addition to extracellular proteins such as adhesins, a number of intra-cellular proteins were identified which may be involved in conditioning film formation, suggesting an as-yet unidentified role for these proteins, possibly after cell lysis. Graphical Abstract Flowchart of the method.


Assuntos
Proteínas de Bactérias/análise , Biofilmes , Pseudomonas aeruginosa/fisiologia , Técnicas de Microbalança de Cristal de Quartzo/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adsorção , Proteínas de Bactérias/metabolismo , Humanos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/química , Propriedades de Superfície
5.
Sensors (Basel) ; 15(5): 11873-88, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26007735

RESUMO

We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application.


Assuntos
Materiais Biocompatíveis/química , Biofilmes , Pesquisa Biomédica/instrumentação , Proteínas Sanguíneas/química , Som , Desenho de Equipamento , Humanos , Polímeros , Próteses e Implantes , Técnicas de Microbalança de Cristal de Quartzo
6.
Biofouling ; 30(8): 1011-21, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25303331

RESUMO

Among the first events after immersion of surfaces in the ocean is surface 'conditioning'. Here, the accumulation and composition of the conditioning films formed after immersion in the ocean are analyzed. In order to account for different surface chemistries, five self-assembled monolayers that differ in resistance to microfouling and wettability were used. Water samples from two static immersion test sites along the east coast of Florida were collected at two different times of the year and used for experiments. Spectral ellipsometry revealed that conditioning films were formed within the first 24 h and contact angle goniometry showed that these films changed the wettability and rendered hydrophobic surfaces more hydrophilic and vice versa. Infrared reflection adsorption spectroscopy showed that the composition of the conditioning film depended on both the wettability and immersion site. Laboratory and field assays showed that the presence of a conditioning film did not markedly influence settlement of microorganisms.


Assuntos
Organismos Aquáticos/fisiologia , Biofilmes/crescimento & desenvolvimento , Incrustação Biológica , Água do Mar/química , Florida , Interações Hidrofóbicas e Hidrofílicas , Espectrofotometria Infravermelho , Propriedades de Superfície , Molhabilidade
7.
J Hazard Mater ; 465: 133400, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38198871

RESUMO

The increasingly severe plastic pollution issue was intensified by the enormous plastic emissions into ecosystems during the Covid-19 pandemic. Plastic wastes entering the environment were swiftly exposed to microorganisms and colonized by biofilms, and the plastic-biofilm combined effects further influenced the ecosystem. However, the non-woven structure of disposable masks discarded carelessly during the COVID-19 pandemic was different from those of plastics with flat surface. To reveal the potential effects of plastic structure on colonized biofilms, white disposable surgical masks (DM) and transparent takeaway boxes (TB), both made of polyethylene, were selected for the incubation of organic conditioning films and biofilms. The results indicated that the non-woven structure of disposable mask was destroyed by the influence of water infiltration and biofilm colonization. The influence of surface structure on conditioning films led to a relatively higher proportion of tryptophan-like substances on DM than those on TB samples. Therefore, biofilms with significantly higher microbial biomass and carbon metabolic capacity were formed on DM than those on TB samples owing to the combined effects of their differences in surface structure and conditioning films. Moreover, abundant functional microorganisms associated with stress tolerance, carbon metabolism and biofilm formation were observed in biofilms on disposable mask. Combining with the results of partial least squares regression analysis, the selective colonization of functional microorganisms on disposable masks with uneven surface longitudinal fluctuation was revealed. Although the predicted functions of biofilms on disposable masks and takeaway boxes showed more similarity to each other than to those of free-living aquatic microorganisms owing to the existence of the plastisphere, biofilms on disposable masks may potentially trigger environmental risks different from those of takeaway boxes by unique carbon metabolism and abundant biomass.


Assuntos
COVID-19 , Polipropilenos , Humanos , Ecossistema , Máscaras , Pandemias , Biofilmes , Carbono , Polietileno , Plásticos
8.
Open Med (Wars) ; 18(1): 20230854, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075034

RESUMO

Ureteral stents are commonly used medical devices for the treatment of urinary system diseases. However, while providing benefits to patients, they often give rise to various issues, with stent encrustation being a major concern for clinical physicians. This phenomenon involves the formation of attached stones on the stent's surface, leading to potential complications such as increased fragility and laxity of the ureter, difficulties in stent removal, and a higher risk of stent fracture. Therefore, this review starts from the pathological mechanisms of stone formation and discusses in detail the two major mechanisms of stent encrustation: the conditioning film and the biofilm pathway. It also examines multiple risk factors associated with ureteral stents and patients. Furthermore, the review updates the research progress on the structure, materials, and bio-coatings of ureteral stents in the prevention and treatment of stent encrustation. It presents new insights into the prevention and treatment of stent encrustation. This includes individualized and comprehensive clinical guidance, the use of novel materials, and early intervention based on physiological and pathological considerations. Ultimately, the study offers an encompassing overview of the advancements in research within this field and provides the latest insights into strategies for preventing and treating stent encrustation.

9.
Artigo em Inglês | MEDLINE | ID: mdl-33808807

RESUMO

Bacterial retention and organic fouling on meat preparation surfaces can be influenced by several factors. Surfaces with linear topographies and defined chemistries were used to determine how the orientation of the surface features affected cleaning efficacy. Fine polished (irregular linear) stainless steel (FPSS), titanium coated fine polished (irregular linear) stainless steel (TiFP), and topographically regular, linear titanium coated surfaces (RG) were fouled with Escherichia coli mixed with a meat exudate (which was utilised as a conditioning film). Surfaces were cleaned along or perpendicular to the linear features for one, five, or ten wipes. The bacteria were most easily removed from the titanium coated and regular featured surfaces. The direction of cleaning (along or perpendicular to the surface features) did not influence the amount of bacteria retained, but meat extract was more easily removed from the surfaces when cleaned in the direction along the linear surface features. Following ten cleans, there was no significant difference in the amount of cells or meat exudate retained on the surfaces cleaned in either direction. This study demonstrated that for the E. coli cells, the TiFP and RG surfaces were easiest to clean. However, the direction of the clean was important for the removal of the meat exudate from the surfaces.


Assuntos
Aço Inoxidável , Titânio , Escherichia coli , Exsudatos e Transudatos , Carne , Propriedades de Superfície
10.
J Dent Res ; 99(8): 914-921, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32374711

RESUMO

Oral lubrication mediated by mucin and protein containing salivary conditioning films (SCFs) with strong water retainability can get impaired due to disease such as xerostomia, that is, a subjective dry mouth feel associated with the changed salivary composition and low salivary flow rate. Aberrant SCFs in xerostomia patient cause difficulties in speech, mastication, and dental erosion while the prescribed artificial saliva is inadequate to solve the complications on a lasting basis. With the growing aging population, it is urgently needed to propose a new strategy to restore oral lubrication. Existing saliva substitutes often overwhelm the aberrant SCFs, generating inadequate relief. Here we demonstrated that the function of aberrant SCFs in a patient with Sjögren syndrome can be boosted through mucin recruitment by a simple mucoadhesive, chitosan-catechol (Chi-C). Chi-C with different conjugation degrees (Chi-C7.6%, Chi-C14.5%, Chi-C22.4%) was obtained by carbodiimide chemistry, which induced a layered structure composed of a rigid bottom and a soft secondary SCF (S-SCF) after reflow of saliva. The higher conjugation degree of Chi-C generates a higher glycosylated S-SCF by mucin recruitment and a lower friction in vitro. The layered S-SCF extends the "relief period" for Sjögren patient saliva over 7-fold, measured on an ex vivo tongue-enamel friction system. Besides lubrication, Chi-C-treated S-SCF reduces dental erosion depths from 125 to 70 µm. Chi-C shows antimicrobial activity against Streptococcus mutans. This research provides a new key insight in restoring the functionality of conditioning film at articulating tissues in living systems.


Assuntos
Xerostomia , Humanos , Lubrificação , Mucinas , Saliva , Saliva Artificial , Xerostomia/etiologia , Xerostomia/terapia
11.
Artigo em Inglês | MEDLINE | ID: mdl-33050212

RESUMO

The reduction of biofouling and the reduction of cross-contamination in the food industry are important aspects of safety management systems. Polymeric surfaces are used extensively throughout the food production industry and therefore ensuring that effective cleaning regimes are conducted is vital. Throughout this study, the influence of the surface characteristics of three different polymeric surfaces, polytetrafluoroethylene (PTFE), poly(methyl methacrylate) (PMMA) and polyethylene terephthalate (PET), on the removal of Escherichia coli using a wipe clean method utilising 3% sodium hypochlorite was determined. The PTFE surfaces were the roughest and demonstrated the least wettable surface (118.8°), followed by the PMMA (75.2°) and PET surfaces (53.9°). Following cleaning with a 3% sodium hypochlorite solution, bacteria were completely removed from the PTFE surfaces, whilst the PMMA and PET surfaces still had high numbers of bacteria recovered (1.2 × 107 CFU/mL and 6.3 × 107 CFU/mL, respectively). When bacterial suspensions were applied to the surfaces in the presence of a blood conditioning film, cleaning with sodium hypochlorite demonstrated that no bacteria were recovered from the PMMA surface. However, on both the PTFE and PET surfaces, bacteria were recovered at lower concentrations (2.0 × 102 CFU/mL and 1.3 × 103 CFU/mL, respectively). ATP bioluminescence results demonstrated significantly different ATP concentrations on the surfaces when soiled (PTFE: 132 relative light units (RLU), PMMA: 80 RLU and PET: 99 RLU). Following cleaning, both in the presence and absence of a blood conditioning film, all the surfaces were considered clean, producing ATP concentrations in the range of 0-2 RLU. The results generated in this study demonstrated that the presence of a blood conditioning film significantly altered the removal of bacteria from the polymeric surfaces following a standard cleaning regime. Conditioning films which represent the environment where the surface is intended to be used should be a vital part of the test regime to ensure an effective disinfection process.


Assuntos
Desinfecção , Escherichia coli , Microbiologia de Alimentos , Polímeros/química , Molhabilidade , Materiais Revestidos Biocompatíveis , Fluorocarbonos/química , Microbiologia de Alimentos/métodos , Polietilenotereftalatos/química , Polimetil Metacrilato/química , Propriedades de Superfície
12.
Membranes (Basel) ; 9(12)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810273

RESUMO

We investigated the impact of conditioning compositions on the way bacteria move and adhere to reverse osmosis (RO) membranes that have been pre-conditioned by organic compounds. We used humic acid (HA), bovine serum albumin (BSA), and sodium alginate (SA) to simulate conditioning layers on the RO membranes. First, we investigated the chemotactic responses of Pseudomonas aeruginosa PAO1 to the organic substances and the impact of changes in physicochemical characteristics of pre-conditioned membranes on bacterial attachment. Second, we observed bacterial attachment under the presence or absence of nutrients or microbial metabolic activity. Results showed that there was no relationship between the chemotactic response of P. aeruginosa PAO1 and the organic substances, and the changes in hydrophobicity, surface free energy, and surface charge resulting from changing the composition of the conditioning layer did not seem to affect bacterial attachment, whereas changing the roughness of the conditioned membrane exponentially did (exponential correlation coefficient, R2 = 0.85). We found that the initial bacterial attachment on the membrane surface is influenced by (i) the nutrients in the feed solution and (ii) the microbial metabolic activity, whereas the chemotaxis response has a negligible impact. This study would help to establish a suitable strategy to manage bacterial attachment.

13.
Nano Energy ; 57: 558-565, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30984531

RESUMO

Biofouling has been a long-last problem in a variety of marine systems which causes energy waste and device damage. In this study, we present a self-activated anti-biofouling system enabled by electrical double layer disturbance, which could effectively suppress the initial formation of conditioning layers and subsequent microbe attachment. The small and low-frequency alternating electrical fields were produced by a triboelectric nanogenerator under water wave impacts. Systematic analyses confirmed that the anti-biofouling efficacy was directly related to the strength of the electric field and was effective in both fresh lake and sea water environments. An on-site demonstration was implemented at a calm lake shore for three weeks. The water wave-driven anti-biofouling exhibited excellent surface protection, which was significantly superior to several commercial anti-biofouling coatings. This development brings a novel, effective and eco-friendly solution for protecting a broad range of surfaces against biofouling.

14.
Colloids Surf B Biointerfaces ; 167: 524-530, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29729630

RESUMO

There is an important need for the development of new "environmentally-friendly" antifouling molecules to replace toxic chemicals actually used to fight against marine biofouling. Marine biomass is a promising source of non-toxic antifouling products such as natural antimicrobial peptides produced by marine organisms. The aim of this study was to demonstrate the efficiency of antimicrobial peptides extracted from snow crab (SCAMPs) to reduce the formation of marine biofilms on immerged mild steel surfaces. Five antimicrobial peptides were found in the snow crab hydrolysate fraction used in this study. SCAMPs were demonstrated to interact with natural organic matter (NOM) during the formation of the conditioning film and to limit the marine biofilm development in terms of viability and bacterial structure. Natural SCAMPs could be considered as a potential alternative and non-toxic product to reduce biofouling, and as a consequence microbial induced corrosion on immerged surfaces.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Produtos Biológicos/farmacologia , Braquiúros/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Organismos Aquáticos/química , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Aço/química , Propriedades de Superfície
15.
Water Res ; 109: 155-163, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27883920

RESUMO

Adsorption of organic macromolecules onto surfaces in contact with waters forms a so-called conditioning film and induces modifications of the surface properties. Here, we characterized conditioning films formed onto two hydrophobic materials (used as pipe liner) and immersed for 24 h in tap water. Using combination of atomic force microscopy (AFM), and chemical force microscopy (CFM), we detected some changes in roughness and hydrophilic/hydrophobic balance of the surface of the tested coupons, and also the deposition of numerous organic polymers (few millions/cm2) randomly distributed on the surface. The maximum molecular extension of these organic polymers was in the range of 250-1250 nm according to the tested materials. Systematic analysis of the force curves with the theoretical models (WLC and FJC) allowed determining the proportion of rupture events related to the unfolding of both polysaccharide and polypeptide segments, which represented 75-80% and 20-25% of the analyzed curves, respectively. The number of autochthonous drinking water bacteria, which attached to the material within the same period of time was 10000-folds lower than the detected number of polymers attached to the surface. Even in drinking water systems with relatively low organic matter (dissolved organic carbon < 1.1 mg/L), the potential of formation of a conditioning biofilm is important.


Assuntos
Água Potável , Propriedades de Superfície , Biofilmes , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA