Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell Mol Life Sci ; 80(6): 171, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261512

RESUMO

Imbalance of bone homeostasis induces bone degenerative diseases such as osteoporosis. Hedgehog (Hh) signaling plays critical roles in regulating the development of limb and joint. However, its unique role in bone homeostasis remained largely unknown. Here, we found that canonical Hh signaling pathway was gradually augmented during osteoclast differentiation. Genetic inactivation of Hh signaling in osteoclasts, using Ctsk-Cre;Smof/f conditional knockout mice, disrupted both osteoclast formation and subsequent osteoclast-osteoblast coupling. Concordantly, either Hh signaling inhibitors or Smo/Gli2 knockdown stunted in vitro osteoclast formation. Mechanistically, Hh signaling positively regulated osteoclast differentiation via transactivation of Traf6 and stabilization of TRAF6 protein. Then, we identified connective tissue growth factor (CTGF) as an Hh-regulatory bone formation-stimulating factor derived from osteoclasts, whose loss played a causative role in osteopenia seen in CKO mice. In line with this, recombinant CTGF exerted mitigating effects against ovariectomy induced bone loss, supporting a potential extension of local rCTGF treatment to osteoporotic diseases. Collectively, our findings firstly demonstrate that Hh signaling, which dictates osteoclast differentiation and osteoclast-osteoblast coupling by regulating TRAF6 and CTGF, is crucial for maintaining bone homeostasis, shedding mechanistic and therapeutic insights into the realm of osteoporosis.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Osteoporose , Feminino , Camundongos , Animais , Osteoclastos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Osteoblastos/metabolismo , Osteogênese , Transdução de Sinais , Osteoporose/genética , Osteoporose/metabolismo , Homeostase , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Diferenciação Celular , Reabsorção Óssea/metabolismo
2.
Ecotoxicol Environ Saf ; 279: 116501, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805831

RESUMO

6:2 Chlorinated polyfluoroalkyl ether sulfonate (F-53B) is a new type of perfluorinated and polyfluoroalkyl substance (PFAS) that is used extensively in industry and manufacturing. F-53B causes damage to multiple mammalian organs. However, the impacts of F-53B on bone are unknown. Maternal exposure to F-53B is of particular concern because of the vulnerability of the developing fetus and newborn to contaminants from the mother. The goal of this study was to examine the impacts of maternal F-53B exposure on bone growth and development in offspring and to explore its underlying mechanisms. Herein, C57BL/6 J mice were given free access to deionized water containing 0, 0.57, or 5.7 mg/L F-53B during pregnancy and lactation. F-53B exposure resulted in impaired liver function, decreased IGF-1 secretion, dysregulation of bone metabolism and disruption of the dynamic balance between osteoblasts and osteoclasts in male offspring. F-53B inhibits longitudinal bone growth and development and causes osteoporosis in male offspring. F-53B may affect the growth and development of offspring bone via the IGF-1/OPG/RANKL/CTSK signaling pathway. This study provides new insights for the study of short stature and bone injury caused by F-53B.


Assuntos
Desenvolvimento Ósseo , Lactação , Exposição Materna , Camundongos Endogâmicos C57BL , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Masculino , Gravidez , Camundongos , Exposição Materna/efeitos adversos , Desenvolvimento Ósseo/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Fluorocarbonos/toxicidade , Osteoprotegerina/metabolismo , Osteoclastos/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Ácidos Sulfônicos/toxicidade
3.
Calcif Tissue Int ; 113(6): 618-629, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37878026

RESUMO

Osteoporosis disproportionately affects older women, yet gender differences in human osteoblasts remain unexplored. Identifying mechanisms and biomarkers of osteoporosis will enable the development of preventative and therapeutic approaches. Transcriptome data of 187 osteoblast samples from men and women were compared. Differentially expressed genes (DEGs) were identified, and weighted gene co-expression network analysis (WGCNA) was used to discover co-expressed modules. Enrichment analysis was performed to annotate DEGs. Preservation analysis determined whether modules and pathways were similar between genders. Blood methylation, transcriptome data, mouse phenotype data, and drug treatment data were utilized to identify key osteoporosis genes. We identified 1460 DEGs enriched in immune response, neurogenesis, and GWAS osteoporosis-related genes. WGCNA uncovered 8 modules associated with immune response, development, collagen metabolism, mitochondrion, and amino acid synthesis. Preservation analysis indicated modules and pathways were generally similar between genders. Incorporating GWAS and mouse phenotype data revealed 9 key genes, including GMDS, SMOC2, SASH1, MMP2, AHCYL1, ARRDC2, IGHMBP2, ATP6V1A, and CTSK. These genes were differentially methylated in patient blood and differentiated high and low bone mineral density patients in pre- and postmenopausal women. Denosumab treatment in postmenopausal women down-regulated 6 key genes, up-regulated T cell proportions, and down-regulated fibroblast proportion. qRT-PCR was used to confirm the genes in postmenopausal women. We identified 9 key osteoporosis genes by comparing the transcriptome of osteoblasts in women and men. Our findings' clinical implications were confirmed by multi-omics data and qRT-PCR, and our study provides novel biomarkers and therapeutic targets for osteoporosis diagnosis and treatment.


Assuntos
Osteoporose , Transcriptoma , Humanos , Feminino , Masculino , Animais , Camundongos , Idoso , Osteoporose/genética , Osteoporose/metabolismo , Perfilação da Expressão Gênica , Biomarcadores , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
4.
Anim Biotechnol ; 34(9): 5155-5159, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36752216

RESUMO

Cathepsin K (CTSK) is a lysosomal protease existent in the skeletal muscles which is involved in biochemical processes related to obesity. Several studies have reported the effects of CTSK gene on body weight and fat deposition in human, mice and pigs. However, information about its structure and functions in sheep is very limited. Thus, this study was performed to evaluate the association between CTSK gene variants and yearling growth performance in Afshari × Booroola-Merino crossbred sheep. A fragment of 500 bp in exon 6 and partial of intron 5 of CTSK gene was amplified with polymerase chain reaction (PCR). All animals were genotyped by single-stranded conformation polymorphism (SSCP) and further confirmed by sequencing. Association analysis using a fixed linear model indicated that g.106510225G > A SNP was significantly related to average daily weight gain (ADWG) per year, fat-tail weight to carcass weight ratio (FW/CW), muscle thickness (MT) and muscle cross-sectional area (MCSA) of animals (p < 0.05). Due to the low polymorphic information content (PIC <0.25) for targeted locus in studied population, more association studies are needed to confirm the CTSK gene effects on growth traits in sheep.


Assuntos
Polimorfismo de Nucleotídeo Único , Humanos , Ovinos/genética , Animais , Camundongos , Suínos , Catepsina K/genética , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Íntrons , Éxons
5.
Am J Med Genet A ; 185(8): 2455-2463, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33963797

RESUMO

Pycnodysostosis is characterized by short stature, osteosclerosis, acro-osteolysis, increased tendency of fractures, and distinctive dysmorphic features. It is a rare autosomal recessive disease caused by biallelic CTSK mutations. The clinical details of 18 patients from Saudi Arabia were reviewed. Short stature, osteopetrosis, acro-osteolysis, and distinctive facial dysmorphism were documented in all cases. Our results highlight the significant complications associated with this disease. The large anterior fontanelle is one of the cardinal signs of this disease; however, half of our patients had small fontanelles and a quarter had craniosynostosis, which caused optic nerve compression. Sleep apnea was of the major complications in three patients. Bone fracture can be a presenting symptom, and in our patients it mainly occurred after the age of 3 years. Bone marrow suppression was seen in a single patient of our cohort who was misdiagnosed initially with malignant osteopetrosis. In this study, we also describe two novel (c.5G > A [p.Trp2Ter], c.538G > A [p.Gly180Ser]) and two reported (c.244-29 A > G, c.830C > T [p.Ala277Val]) CTSK mutations. Our results indicate that the recurrent intronic variant, c.244-29 A > G is likely to be a founder mutation, as it was found in 78% (14/18 patients) of our cohort belonging to the same tribe.


Assuntos
Alelos , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Fenótipo , Picnodisostose/diagnóstico , Picnodisostose/genética , Catepsina K/genética , Pré-Escolar , Consanguinidade , Fácies , Feminino , Estudos de Associação Genética/métodos , Genótipo , Humanos , Imageamento Tridimensional , Masculino , Mutação , Linhagem , Radiografia , Arábia Saudita , Tomografia Computadorizada por Raios X
6.
Acta Odontol Scand ; 79(6): 458-465, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33823749

RESUMO

OBJECTIVES: Odontogenic inflammatory diseases are main causes for alveolar bone breakdown and teeth loss, leaving great difficulties in denture restoration. Local inflammatory granulation tissue (IGT) is considered as pathological tissue and required to be removed. However, there are many evidences supporting that under appropriate intervention, IGT in alveolar bone maybe transformed into reparative granulation tissue (RGT), followed by ossification. Therefore, this study aimed to discover a specific target to promote this transformation. MATERIALS AND METHODS: After drawing out histological differences between IGT and RGT with haematoxylin and eosin (H&E) and immunohistochemical (IHC) assay staining, TMT-labelled quantitative proteomic analysis was applied to identify potential targets. RESULTS: The most striking histological property of RGT was found to be ECM deposition, which significantly decreased inflammatory cells, prominently increased fibroblasts as well as triggered changes of vascular types. Combined with histological findings and proteomic analysis, five KEGG pathways were associated with ECM, inflammation and angiogenesis and 49 pathways involved in differentially expressed proteins. COL1A1 was not only the most up-regulated protein, but also one of main hubs in protein-protein interaction regulatory network. Specific protease cathepsin K (CTSK) was identified. Level of CTSK in RGT was down-regulated to 69.10-76.97% (p < .05), with significantly up-regulated COL1A1, COL1A2, FN1 and TGFB1 included in focal adhesion, PI3K-Akt signalling pathways and angiogenesis. CTSK involved in transformation from IGT to RGT. CONCLUSIONS: CTSK might be a target to regulate transformation from IGT to RGT in alveolar bone through ECM, stem cells and angiogenesis mechanisms. However, further research is also clearly required.


Assuntos
Fosfatidilinositol 3-Quinases , Proteômica , Tecido de Granulação , Humanos , Osteogênese , Células-Tronco
7.
Calcif Tissue Int ; 106(5): 553-566, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32008052

RESUMO

Cleidocranial dysplasia is an autosomal dominant skeletal disorder resulting from RUNX2 mutations. The influence of RUNX2 mutations on osteoclastogenesis and bone resorption have not been reported. To investigate the role of RUNX2 in osteoclast, RUNX2 expression in macrophages (RAW 264.7 cells) was detected. Stable RAW 264.7 cell lines expressing wild-type RUNX2 or mutated RUNX2 (c.514delT, p.172 fs) were established, and their functions in osteoclasts were investigated. Wild-type RUNX2 promoted osteoclast differentiation, formation of F-actin ring, and bone resorption, while mutant RUNX2 attenuated the positive differentiation effect. Wild-type RUNX2 increased the expression and activity of mTORC2. Subsequently, mTORC2 specifically promoted phosphorylation of AKT at the serine 473 residue. Activated AKT improved the nuclear translocation of NFATc1 and increased the expression of downstream genes, including CTSK. Inhibition of AKT phosphorylation abrogated the osteoclast formation of wild-type macrophages, whereas constitutively activated AKT rescued the osteoclast formation of mutant macrophages. The present study suggested that RUNX2 promotes osteoclastogenesis and bone resorption through the AKT/NFATc1/CTSK axis. Mutant RUNX2 lost the function of regulating osteoclast differentiation and bone remodeling, resulting in the defective formation of the tooth eruption pathway and impaction of permanent teeth in cleidocranial dysplasia. This study, for the first time, verifies the effect of RUNX2 on osteoclast differentiation and bone resorption and provides new insight for the explanation of cleidocranial dysplasia.


Assuntos
Reabsorção Óssea , Diferenciação Celular , Displasia Cleidocraniana/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/fisiologia , Osteoclastos , Animais , Remodelação Óssea , Catepsina K , Camundongos , Fatores de Transcrição NFATC , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Células RAW 264.7 , Erupção Dentária
8.
J Cell Biochem ; 120(8): 12382-12392, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30816596

RESUMO

Cathepsin K (CTSK) is a secreted protease that plays an essential role in osteoclastic bone resorption and osteoporotic bone loss. We have previously shown that activator protein 1 (AP-1) stimulates CTSK promoter activity and that proximal nuclear factor of activated T cells cytoplasmic 1 (NFATc1)-binding sites play a major role in the stimulation of CTSK gene expression by receptor activator of NFκB ligand (RANKL). In the present study, we have extended these observations and further dissected the effects of transcription factors involved in the regulation of CTSK gene expression. Our aim was to investigate the cooperative interplay among transcription factors AP-1, microphthalmia-associated transcription factor (Mitf), and NFATc1, and the consequent regulatory effects on CTSK transcription. Experiments were carried out in RAW 264.7 cells, which can be readily differentiated to osteoclasts upon RANKL stimulation. Our data show that AP-1, Mitf, and NFATc1 are capable of independently stimulating CTSK promoter activity. A combination of any two factors further enhances CTSK promoter activity, with the combination of AP-1 (c-fos/c-jun) and NFATc1 inducing the largest increase. We further identify a synergistic effect when all three factors cooperate intimately at the proximal promoter region, yielding maximal transcriptional upregulation of the CTSK promoter. RANKL induces temporal localization of AP-1 and NFATc1 to the CTSK promoter. These results suggest that the interaction of multiple transcription factors mediate a maximal response to RANKL-induced CTSK gene expression.


Assuntos
Catepsina K/genética , Regulação da Expressão Gênica , Fator de Transcrição Associado à Microftalmia/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Regiões Promotoras Genéticas , Fator de Transcrição AP-1/metabolismo , Animais , Catepsina K/metabolismo , Diferenciação Celular , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Fatores de Transcrição NFATC/genética , Osteoclastos/metabolismo , Osteogênese , Células RAW 264.7 , Ratos , Fator de Transcrição AP-1/genética , Ativação Transcricional
9.
Clin Genet ; 96(4): 309-316, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31237352

RESUMO

Pycnodysostosis is a lysosomal autosomal recessive skeletal dysplasia characterized by osteosclerosis, short stature, acro-osteolysis, facial features and an increased risk of fractures. The clinical heterogeneity of the disease and its rarity make it difficult to provide patients an accurate prognosis, as well as appropriate care and follow-up. French physicians from the OSCAR network have been asked to fill out questionnaires collecting molecular and clinical data for 27 patients issued from 17 unrelated families. All patients showed short stature (mean = -3.5 SD) which was more severe in females (P = .006). The mean fracture rate was moderate (0.21 per year), with four fractures in total average. About 75% underwent at least one surgery, with an average number of 2.1 interventions per patient. About 50% required non-invasive assisted ventilation due to sleep apnea (67%). About 29% showed psychomotor difficulties and 33% needed a school assistant or adapted schooling. No patient had any psychological evaluation or follow-up. Molecular data were available for 14 families. Growth hormone administration was efficient on linear growth in 40% of cases. We propose several axis of management, such as systematic cerebral MRI for Chiari malformation screening at diagnosis and regular psychological follow-up.


Assuntos
Picnodisostose/diagnóstico , Picnodisostose/terapia , Alelos , Gerenciamento Clínico , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Mutação , Fenótipo , Guias de Prática Clínica como Assunto , Picnodisostose/genética , Radiografia
10.
Calcif Tissue Int ; 105(6): 681-686, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31489468

RESUMO

Pycnodysostosis (PYCD) is a rare recessive inherited skeletal disease, characterized by short stature, brittle bones, and recurrent fractures, caused by variants in the Cathepsin K encoding gene that leads to impaired osteoclast-mediated bone resorption. Hypophosphatasia (HPP) is a dominant or recessive inherited condition representing a heterogeneous phenotype with dental symptoms, recurrent fractures, and musculoskeletal problems. The disease results from mutation(s) in the tissue non-specific alkaline phosphate encoding gene with reduced activity of alkaline phosphatase and secondarily defective mineralization of bone and teeth. Here, we present the first report of a patient with the coexistence of PYCD and HPP. This patient presented typical clinical findings of PYCD, including short stature, maxillary hypoplasia, and sleep apnoea. However, the burden of disease was caused by over 30 fractures, whereupon most showed delayed healing and non-union. Biochemical analysis revealed suppressed bone resorption and low bone formation capacity. We suggest that the coexistence of impaired bone resorption and mineralization may explain the severe bone phenotype with poor fracture healing.


Assuntos
Fraturas Múltiplas/genética , Hipofosfatasia/genética , Mutação/genética , Picnodisostose/genética , Fosfatase Alcalina/genética , Osso e Ossos/metabolismo , Catepsina K/genética , Feminino , Consolidação da Fratura/genética , Fraturas Ósseas/complicações , Fraturas Ósseas/genética , Humanos , Hipofosfatasia/complicações , Masculino , Picnodisostose/complicações
11.
Osteoporos Int ; 29(8): 1833-1841, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29796728

RESUMO

This is the first Egyptian study with detailed clinical and orodental evaluation of eight patients with pycnodysostosis and identification of four mutations in CTSK gene with two novel ones and a founder effect. INTRODUCTION: Pycnodysostosis is a rare autosomal recessive skeletal dysplasia due to mutations in the CTSK gene encoding for cathepsin K, a lysosomal cysteine protease. METHODS: We report on the clinical, orodental, radiological, and molecular findings of eight patients, from seven unrelated Egyptian families with pycnodysostosis. RESULTS: All patients were offspring of consanguineous parents and presented with the typical clinical picture of the disorder including short stature, delayed closure of fontanels, hypoplastic premaxilla, obtuse mandibular angle, and drum stick terminal phalanges with dysplastic nails. Their radiological findings showed increased bone density, acro-osteolysis, and open cranial sutures. Mutational analysis of CTSK gene revealed four distinct homozygous missense mutations including two novel ones, c.164A>C (p. K55T) and c.433G>A (p.V145M). The c.164A>C (p. K55T) mutation was recurrent in three unrelated patients who also shared similar haplotype, suggesting a founder effect. CONCLUSION: Our findings expand the mutational spectrum of CTSK gene and emphasize the importance of full clinical examination of all body systems including thorough orodental evaluation in patients with pycnodysostosis.


Assuntos
Catepsina K/genética , Efeito Fundador , Mutação de Sentido Incorreto , Picnodisostose/genética , Adolescente , Adulto , Densidade Óssea/fisiologia , Criança , Análise Mutacional de DNA , Feminino , Ossos da Mão/diagnóstico por imagem , Humanos , Masculino , Linhagem , Picnodisostose/diagnóstico por imagem , Picnodisostose/fisiopatologia , Radiografia , Radiografia Panorâmica , Anormalidades Dentárias/diagnóstico por imagem , Anormalidades Dentárias/genética
12.
J Cell Biochem ; 115(7): 1290-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24500983

RESUMO

Osteoclasts and foreign body giant cells (FBGCs) are both derived from the fusion of macropahges. These cells are seen in close proximity during foreign body reactions, therefore it was assumed that they might interact with each other. The aim was to identify important genes that are expressed by osteoclasts and FBGCs which can be used to understand peri-implantitis and predict the relationship of these cells during foreign body reactions. Bone marrow macrophages (BMM) were treated with receptor activator of nuclear factor kappa B ligand (RANKL) to produce osteoclasts. Quantitative PCR (qPCR) was used to identify the genes that were expressed by osteoclasts and FBGCs compared to macrophage controls. TRAP staining was used to visualise the cells while gelatine zymography and western blots were used for protein expression. Tartrate-resistant acid phosphatase (TRAP), matrix metallo proteinase 9 (MMP9), nuclear factor of activated T cells 1 (NFATc1), cathepsin K (CTSK) and RANK were significantly lower in FBGCs compared to osteoclasts. Inflammation specific chemokines such as monocyte chemotactic protein (MCP1 also called CCL2), macrophage inflammatory protein 1 alpha (MIP1α), MIP1ß and MIP1γ, and their receptors CCR1, CCR3 and CCR5, were highly expressed by FBGCs. FBGCs were negative for osteoclast specific markers (RANK, NFATc1, CTSK). FBGCs expressed chemokines such as CCL2, 3, 5 and 9 while osteoclasts expressed the receptors for these chemokines i.e. CCR1, 2 and 3. Our findings show that osteoclast specific genes are not expressed by FBGCs and that FBGCs interact with osteoclasts during foreign body reaction through chemokines.


Assuntos
Quimiocinas/biossíntese , Células Gigantes de Corpo Estranho/metabolismo , Osteoclastos/metabolismo , Peptídeo Hidrolases/biossíntese , Receptores de Quimiocinas/biossíntese , Fosfatase Ácida , Animais , Células da Medula Óssea/citologia , Catepsina K/metabolismo , Diferenciação Celular , Células Cultivadas , Células Gigantes de Corpo Estranho/citologia , Isoenzimas , Macrófagos/citologia , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Peri-Implantite , Ligante RANK/farmacologia , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Fosfatase Ácida Resistente a Tartarato
13.
Biochem Biophys Res Commun ; 440(4): 545-50, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24103757

RESUMO

Interleukin (IL)-3, a multilineage hematopoietic growth factor, is implicated in the regulation of osteoclastogenesis. However, the role of IL-3 in osteoclastogenesis remains controversial; whereas early studies showed that IL-3 stimulates osteoclastogenesis, recent investigations demonstrated that IL-3 inhibits osteoclast formation. The objective of this work is to further address the role of IL-3 in osteoclastogenesis. We found that IL-3 treatment of bone marrow cells generated a population of cells capable of differentiating into osteoclasts in tissue culture dishes in response to the stimulation of the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of nuclear factor kappa B ligand (RANKL). The IL-3-dependent hematopoietic cells were able to further proliferate and differentiate in response to M-CSF stimulation and the resulting cells were also capable of forming osteoclasts with M-CSF and RANKL treatment. Interestingly, IL-3 inhibits M-CSF-/RANKL-induced differentiation of the IL-3-dependent hematopoietic cells into osteoclasts. The flow cytometry analysis indicates that while IL-3 treatment of bone marrow cells slightly affected the percentage of osteoclast precursors in the surviving populations, it considerably increased the percentage of osteoclast precursors in the populations after subsequent M-CSF treatment. Moreover, osteoclasts derived from IL-3-dependent hematopoietic cells were fully functional. Thus, we conclude that IL-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the osteoclastogenic process. These findings provide a better understanding of the role of IL-3 in osteoclastogenesis.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Interleucina-3/fisiologia , Osteoclastos/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Interleucina-3/farmacologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL
14.
Gen Comp Endocrinol ; 192: 115-25, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23665105

RESUMO

P4 is a hormone with diverse functions that include roles in reproduction, growth, and development. The objectives of this study were to examine the effects of P4 on androgen production in the mature teleost testis and to identify molecular signaling cascades regulated by P4 to improve understanding of its role in male reproduction. Fathead minnow (FHM) testis explants were treated in vitro with two concentrations of P4 (10(-8) and 10(-6) M) for 6 and 12 h. P4 significantly increased testosterone (T) production in the FHM testis but did not affect 11-ketotestosterone. Gene network analysis revealed that insulin growth factor (Igf1) and tumor necrosis factor receptor (Tnfr) signaling was significantly depressed with P4 treatment after 12h. There was also a 20% increase in a gene network for follicle-stimulating hormone secretion and an 18% decrease in genes involved in vasopressin signaling. Genes in steroid metabolism (e.g. star, cyp19a, 11bhsd) were not significantly affected by P4 treatments in this study, and it is hypothesized that pre-existing molecular machinery may be more involved in the increased production of T rather than the de novo expression of steroid-related transcripts and receptors. There was a significant decrease in prostaglandin E synthase 3b (cytosolic) (ptges3b) after treatment with P4, suggesting that there is cross talk between P4 and prostaglandin pathways in the reproductive testis. P4 has a role in regulating steroid production in the male testis and may do so by modulating gene networks related to endocrine pathways, such as Igf1, Tnfr, and vasopressin.


Assuntos
Cyprinidae/genética , Cyprinidae/metabolismo , Progesterona/genética , Testículo/metabolismo , Animais , Masculino , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Testosterona/análogos & derivados , Testosterona/metabolismo
15.
Pediatr Int ; 55(5): 651-5, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24134756

RESUMO

Pycnodysostosis is a rare autosomal recessive skeletal dysplasia characterized by osteosclerosis, short stature, acro-osteolysis of the distal phalanges, bone fragility and skull deformities. Mutations in the cathepsin K (CTSK) gene, which encodes a lysosomal cysteine protease highly expressed in osteoclasts, have been found to be responsible for the disease. We identified a Thai girl with pycnodysostosis. Her parents were first cousins. Polymerase chain reaction sequencing of the entire coding regions of CTSK of the proband's complementary DNA revealed that the whole exon 2 was skipped. We subsequently amplified exon 2 using genomic DNA, which showed that the patient was homozygous for a c.120G>A mutation. The mutation was located at the last nucleotide of exon 2. Its presence was confirmed by restriction enzyme analysis using BanI. The skipping of exon 2 eliminates the normal start codon. The mutation has never been previously reported, thus the current report expands the CTSK mutational spectrum.


Assuntos
Catepsina K/genética , DNA/genética , Mutação de Sentido Incorreto , Picnodisostose/genética , Catepsina K/metabolismo , Criança , Análise Mutacional de DNA , Éxons , Feminino , Homozigoto , Humanos , Reação em Cadeia da Polimerase , Picnodisostose/diagnóstico , Picnodisostose/metabolismo
16.
J Biomol Struct Dyn ; : 1-12, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37255004

RESUMO

Pycnodysostosis is an atypical autosomal recessive condition of Lysosomal storage disorder that originated due to the deficit of the enzyme Cathepsin K which is vital for normal osteoclast action in bone resorption. Abnormal degradation of type 1 collagen and accumulation of toxic undigested collagen fibers in lysosomes of the osteoclast cells resulting in high bone density, brittle bones, and a short stature is caused in CTSK protein-carrying individuals. The broad aim of this study is to identify the most significant variant through various computational pipelines. This study was initiated by retrieving a total number of thirty-six variants from NCBI, HGMD, and UniProt databases, and the Y283C variant was found to be more significant by various standard computational tools. A structural investigation was performed to understand and gain a better knowledge about the interaction profile for the native (1BY8) and variant (Y283C) with Relacatib (a small-molecule drug that blocks the function of Cathepsin K, an enzyme that has been linked to osteoporosis, osteoarthritis, and other bone-degrading diseases). The interaction profile was analyzed using molecular docking. Relacatib (ligand) had an average binding affinity for both native (-7.16 kcal/mol) and Y283C (-6.76 kcal/mol). Finally, Molecular dynamics simulations were done in duplicates to recognize the variant (Y283C) activity of the protein structure against Relacatib for 100 ns. This study assists in comprehending the most pathogenic amino-acid variant, the ligand interaction with the protein structure, and paves the way for understanding the steadiness of the ligand with the native and selected significant amino-acid variant.Communicated by Ramaswamy H. Sarma.

17.
Pharmgenomics Pers Med ; 16: 925-932, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920752

RESUMO

Purpose: The aim of this study was to explore the association between CTSK polymorphisms and the response to alendronate treatment in postmenopausal Chinese women with low bone mineral density. Patients and Methods: In this study, 460 postmenopausal women from Shanghai were included. All of them were treated with weekly oral alendronate 70 mg, daily calcium 600 mg and vitamin D 125 IU for a year. Four tag single nucleotide polymorphisms (SNPs) in CTSK gene were genotyped. Bone mineral densities of lumbar spine (L1-L4), femoral neck and total hip were measured at baseline and after 12 months of treatment, respectively. Results: After 1-year of treatment, there was no significant differences in BMI between baseline and follow-up. After alendronate treatment, the BMD of L1-4, femoral neck and total hip all increased significantly (all P < 0.001), with average increases of 4.33 ± 6.42%, 1.85 ± 4.20%, and 2.36 ± 3.79%, respectively. There was no significant difference in BMD at L1-L4, the femoral neck and total hip between different genotype groups at baseline (P>0.05). After 1-year treatment with alendronate, rs12746973 and rs10847 were associated with the % change of BMD at L1-L4 (P=0.038) and % change of BMD at femoral neck (P=0.038), respectively. Furthermore, rs10847 was associated with BMD response at femoral neck (P=0.013). However, the associations were not significant after Bonferroni correction. Conclusion: We concluded that the common variations of CTSK gene were potentially associated with the therapeutic response to alendronate treatment in Chinese women with low bone mineral density. However, further validation is needed.

18.
Discov Oncol ; 14(1): 200, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930479

RESUMO

BACKGROUND: Cathepsin-K (CTSK) is overexpressed in Gastric cancer (GC) and the mechanism of its overexpression in GC is still unclear. The present work found CTSK as a potential predictive biomarker and immunotherapeutic target for GC based on the tumor microenvironment (TME). METHODS: From public databases, gene expression profiles and clinical data of GC were downloaded to analyze the distribution of stromal and immune cells and tumor abundance in TME. Differentially expressed genes (DEGs) associated with TME were obtained by differential analysis, followed by cross-screening to obtain CTSK as a gene associated with TME. Next, a series of methods and tools were employed to explore the relationships between clinicopathological features of GC and CTSK expression as well as prognosis, tumor immune microenvironment, immune checkpoints and drug sensitivity. And GSEA was used to investigate the potential role of CTSK in the tumor microenvironment of GC. RESULTS: From the dataset, we obtained a total of 656 DEGs associated with TME and the stromal component of TME was found to be closely involved in GC prognosis. CTSK was cross-screened as the key gene associated with TME by the PPI network and univariate Cox regression analysis. Pan-cancer analysis revealed significant high expression of CTSK in a variety of cancers. Subsequently, we hypothesized that high-expressed CTSK was closely correlated with poor prognosis and lymph node metastasis of tumors, and that CTSK, a GC TME-related gene, was largely involved in a range of biological behaviors of tumors, with a significant correlation between several immune cells. CONCLUSION: CTSK was validated as a potential prognostic biomarker related to TME of GC and could be a promising next-generation immunotherapeutic target for GC.

19.
J Orthop Translat ; 38: 229-240, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36474855

RESUMO

Background: Glucocorticoid (GC) is one of frequently used anti-inflammatory agents, but its administration is unfortunately accompanied with bone loss. Although sporadic studies indicated that osteocytes are subject to a series of pathological changes under GC stress, including overexpression of cathepsin K, the definite role of osteocytes in GC-induced bone loss remains largely unclear. Methods: Gene expression of Ctsk and protein levels of cathepsin K were assessed in MLO-Y4 cell lines exposed to dexamethasone (Dex) of different time (0, 12, 24 hours) and dose (0, 10-8 and 10-6 M) courses by RT-qPCR and western blotting, respectively. Confocal imaging and immunostaining were then performed to evaluate the effects of osteocyte-derived cathepsin K on type I collagen in a primary osteocyte ex vivo culture system. MitoTracker Red was used to stain mitochondria for mitochondria morphology assessment and JC-1 assay was employed to evaluate the mitochondria membrane potential in MLO-Y4 cells following Dex treatment. Activation of PINK1-mediated mitophagy was evaluated by immunostaining of the PINK1 protein and CytoID assay. Mdivi-1 was used to inhibit mitophagy and siRNAs were used for the inhibition of Pink1 and Atg5. Results: GC triggered osteocytes to produce excessive cathepsin K which in turn led to the degradation of type I collagen in the extracellular matrix in a primary osteocyte ex vivo culture system. Meanwhile, GC administration increased mitochondrial fission and membrane depolarization in osteocytes. Further, the activation of PINK1-mediated mitophagy was demonstrated to be responsible for the diminishment of dysfunctional mitochondria in osteocytes. Examination of relationship between mitophagy and cathepsin K production revealed that inhibition of mitophagy via knocking down Pink1 gene abolished the GC-triggered cathepsin K production. Interestingly, GC's activation effect towards cathepsin K via mitophagy was found to be independent on the canonical autophagy as this effect was not impeded when inhibiting the canonical autophagy via Atg5 suppression. Conclusion: GC-induced PINK1-mediated mitophagy substantially modulates the production of cathepsin K in osteocytes, which could be an underlying mechanism by which osteocytes contribute to the extracellular matrix degradation during bone loss. The Translational potential of this article: Findings of the current study indicate a possible role of osteocyte mitophagy in GC-induced bone loss, which provides a potential therapeutic approach to alleviate GC-induced osteoporosis by targeting PINK1-mediated osteocytic mitophagy.

20.
Bioact Mater ; 21: 547-565, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36185749

RESUMO

The disability, mortality and costs due to ionizing radiation (IR)-induced osteoporotic bone fractures are substantial and no effective therapy exists. Ionizing radiation increases cellular oxidative damage, causing an imbalance in bone turnover that is primarily driven via heightened activity of the bone-resorbing osteoclast. We demonstrate that rats exposed to sublethal levels of IR develop fragile, osteoporotic bone. At reactive surface sites, cerium ions have the ability to easily undergo redox cycling: drastically adjusting their electronic configurations and versatile catalytic activities. These properties make cerium oxide nanomaterials fascinating. We show that an engineered artificial nanozyme composed of cerium oxide, and designed to possess a higher fraction of trivalent (Ce3+) surface sites, mitigates the IR-induced loss in bone area, bone architecture, and strength. These investigations also demonstrate that our nanozyme furnishes several mechanistic avenues of protection and selectively targets highly damaging reactive oxygen species, protecting the rats against IR-induced DNA damage, cellular senescence, and elevated osteoclastic activity in vitro and in vivo. Further, we reveal that our nanozyme is a previously unreported key regulator of osteoclast formation derived from macrophages while also directly targeting bone progenitor cells, favoring new bone formation despite its exposure to harmful levels of IR in vitro. These findings open a new approach for the specific prevention of IR-induced bone loss using synthesis-mediated designer multifunctional nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA