Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Br J Haematol ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313917

RESUMO

This study compared decitabine exposure when administered IV (DEC-IV) at a dose of 20 mg/m2 for 5-days with orally administered decitabine with cedazuridine (DEC-C), as well as the clinical efficacy and safety of DEC-C in patients with acute myeloid leukaemia (AML) who were ineligible for intensive induction chemotherapy. In all, 89 patients were randomised 1:1 to DEC-IV or oral DEC-C (days 1-5 in a 28-day treatment cycle), followed by 5 days of the other formulation in the next treatment cycle. All patients received oral DEC-C for subsequent treatment cycles until treatment discontinuation. Equivalent systemic decitabine exposures were demonstrated (5-day area under the curve ratio between the two decitabine formulations of 99.64 [90% confidence interval 91.23%, 108.80%]). Demethylation rates also were similar (≤1.1% difference). Median overall survival (OS), clinical response and safety profile with oral DEC-C were consistent with those previously observed with DEC-IV. Next-generation sequencing was performed to identify molecular abnormalities that impact OS and TP53 mutations were associated with a poor outcome. These findings support the use of oral DEC-C in patients with AML.

2.
Curr Issues Mol Biol ; 45(7): 5935-5949, 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37504291

RESUMO

Hepatocellular carcinoma (HCC) is a worldwide health issue. Epigenetic alterations play a crucial role in HCC tumorigenesis. Using epigenetic modulators for HCC treatment confers a promising therapeutic effect. The aim of this study was to explore the effect of a decitabine (DAC) and vorinostat (VOR) combination on the crosstalk between apoptosis and autophagy in the HCC HepG2 cell line at 24 h and 72 h. Median inhibitory concentrations (IC50s) of VOR and DAC were assessed in the HepG2 cell line. The activity of caspase-3 was evaluated colorimetrically, and Cyclin D1(CCND1), Bcl-2, ATG5, ATG7, and P62 levels were assessed using ELISA at different time intervals (24 h and 72 h), while LC3IIB and Beclin-1gene expression were measured by using qRT-PCR. The synergistic effect of VOR and DAC was confirmed due to the observed combination indices (CIs) and dose reduction indices (DRIs). The combined treatment with both drugs inhibited the proliferation marker (CCND1), and enhanced apoptosis compared with each drug alone at 24 h and 72 h (via active caspase-3 upregulation and Bcl-2 downregulation). Moreover, the combination induced autophagy as an early event via upregulation of Beclin-1, LC3IIB, ATG5, and ATG7 gene expression. The initial induction of autophagy started to decrease after 72 h due to Beclin-1 downregulation, and there was decreased expression of LC3IIB compared with the value at 24 h. Herein, epigenetic modulation via the VOR/DAC combination showed an antitumor effect through the coordination of an autophagy-apoptosis crosstalk and promotion of autophagy-induced apoptosis, which ultimately led to the cellular death of HCC cancer cells.

3.
Nutr Neurosci ; 26(1): 72-84, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36625764

RESUMO

Although the pathogenesis of Parkinson's Disease (PD) is not completely understood, there is a consensus that it can be caused by multifactorial mechanisms involving genetic susceptibility, epigenetic modifications induced by toxins and mitochondrial dysfunction. In the past 20 years, great efforts have been made in order to clarify molecular mechanisms that are risk factors for this disease, as well as to identify bioactive agents for prevention and slowing down of its progression. Nutraceutical products have received substantial interest due to their nutritional, safe and therapeutic effects on several chronic diseases. The aim of this review was to gather the main evidence of the epigenetic mechanisms involved in the neuroprotective effects of phenolic compounds currently under investigation for the treatment of toxin-induced PD. These studies confirm that the neuroprotective actions of polyphenols involve complex epigenetic modulations, demonstrating that the intake of these natural compounds can be a promising, low-cost, pharmacogenomic strategy against the development of PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/prevenção & controle , Polifenóis/farmacologia , Nutrigenômica , Epigênese Genética , Predisposição Genética para Doença
4.
Proc Natl Acad Sci U S A ; 117(30): 17785-17795, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32651270

RESUMO

Poly(ADP ribose) polymerase inhibitors (PARPi) have efficacy in triple negative breast (TNBC) and ovarian cancers (OCs) harboring BRCA mutations, generating homologous recombination deficiencies (HRDs). DNA methyltransferase inhibitors (DNMTi) increase PARP trapping and reprogram the DNA damage response to generate HRD, sensitizing BRCA-proficient cancers to PARPi. We now define the mechanisms through which HRD is induced in BRCA-proficient TNBC and OC. DNMTi in combination with PARPi up-regulate broad innate immune and inflammasome-like signaling events, driven in part by stimulator of interferon genes (STING), to unexpectedly directly generate HRD. This inverse relationship between inflammation and DNA repair is critical, not only for the induced phenotype, but also appears as a widespread occurrence in The Cancer Genome Atlas datasets and cancer subtypes. These discerned interactions between inflammation signaling and DNA repair mechanisms now elucidate how epigenetic therapy enhances PARPi efficacy in the setting of BRCA-proficient cancer. This paradigm will be tested in a phase I/II TNBC clinical trial.


Assuntos
Recombinação Homóloga/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína BRCA1/genética , Proteína BRCA2/genética , Linhagem Celular Tumoral , Biologia Computacional , Metilases de Modificação do DNA/antagonistas & inibidores , Reparo do DNA/efeitos dos fármacos , Anemia de Fanconi/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interferons/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108398

RESUMO

Breast cancer exhibits various epigenetic abnormalities that regulate gene expression and contribute to tumor characteristics. Epigenetic alterations play a significant role in cancer development and progression, and epigenetic-targeting drugs such as DNA methyltransferase inhibitors, histone-modifying enzymes, and mRNA regulators (such as miRNA mimics and antagomiRs) can reverse these alterations. Therefore, these epigenetic-targeting drugs are promising candidates for cancer treatment. However, there is currently no effective epi-drug monotherapy for breast cancer. Combining epigenetic drugs with conventional therapies has yielded positive outcomes and may be a promising strategy for breast cancer therapy. DNA methyltransferase inhibitors, such as azacitidine, and histone deacetylase inhibitors, such as vorinostat, have been used in combination with chemotherapy to treat breast cancer. miRNA regulators, such as miRNA mimics and antagomiRs, can alter the expression of specific genes involved in cancer development. miRNA mimics, such as miR-34, have been used to inhibit tumor growth, while antagomiRs, such as anti-miR-10b, have been used to inhibit metastasis. The development of epi-drugs that target specific epigenetic changes may lead to more effective monotherapy options in the future.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metilação de DNA , MicroRNAs/metabolismo , Código das Histonas , Antagomirs/metabolismo , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Metiltransferases/metabolismo , DNA/metabolismo
6.
Bioorg Med Chem Lett ; 40: 127908, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33705897

RESUMO

Screening of a small chemical library (Medicines for Malaria Venture Pathogen Box) identified two structurally related pyrazolone (inhibitor 1) and pyridazine (inhibitor 2) DNMT3A inhibitors with low micromolar inhibition constants. The uncompetitive and mixed type inhibition patterns with DNA and AdoMet suggest these molecules act through an allosteric mechanism, and thus are unlikely to bind to the enzyme's active site. Unlike the clinically used mechanism based DNMT inhibitors such as decitabine or azacitidine that act via the enzyme active site, the inhibitors described here could lead to the development of more selective drugs. Both inhibitors show promising selectivity for DNMT3A in comparison to DNMT1 and bacterial DNA cytosine methyltransferases. With further study, this could form the basis of preferential targeting of de novo DNA methylation over maintenance DNA methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Pirazolonas/química , Piridazinas/química , Bibliotecas de Moléculas Pequenas/química , Azacitidina/farmacologia , Domínio Catalítico , DNA/metabolismo , Metilação de DNA/efeitos dos fármacos , DNA Metiltransferase 3A , Decitabina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Humanos , Ligação Proteica , Bibliotecas de Moléculas Pequenas/farmacologia
7.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066495

RESUMO

Medulloblastoma (MB) is one of the most frequent and malignant brain tumors in children. The prognosis depends on the advancement of the disease and the patient's age. Current therapies, which include surgery, chemotherapy, and irradiation, despite being quite effective, cause significant side effects that influence the central nervous system's function and cause neurocognitive deficits. Therefore, they substantially lower the quality of life, which is especially severe in a developing organism. Thus, there is a need for new therapies that are less toxic and even more effective. Recently, knowledge about the epigenetic mechanisms that are responsible for medulloblastoma development has increased. Epigenetics is a phenomenon that influences gene expression but can be easily modified by external factors. The best known epigenetic mechanisms are histone modifications, DNA methylation, or noncoding RNAs actions. Epigenetic mechanisms comprehensively explain the complex phenomena of carcinogenesis. At the same time, they seem to be a potential key to treating medulloblastoma with fewer complications than past therapies. This review presents the currently known epigenetic mechanisms that are involved in medulloblastoma pathogenesis and the potential therapies that use epigenetic traits to cure medulloblastoma while maintaining a good quality of life and ensuring a higher median overall survival rate.


Assuntos
Neoplasias Cerebelares/genética , Neoplasias Cerebelares/terapia , Epigênese Genética , Meduloblastoma/genética , Meduloblastoma/terapia , Neoplasias Cerebelares/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Meduloblastoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
8.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769422

RESUMO

Methylcytosines in mammalian genomes are the main epigenetic molecular codes that switch off the repertoire of genes in cell-type and cell-stage dependent manners. DNA methyltransferases (DMT) are dedicated to managing the status of cytosine methylation. DNA methylation is not only critical in normal development, but it is also implicated in cancers, degeneration, and senescence. Thus, the chemicals to control DMT have been suggested as anticancer drugs by reprogramming the gene expression profile in malignant cells. Here, we report a new optical technique to characterize the activity of DMT and the effect of inhibitors, utilizing the methylation-sensitive B-Z transition of DNA without bisulfite conversion, methylation-sensing proteins, and polymerase chain reaction amplification. With the high sensitivity of single-molecule FRET, this method detects the event of DNA methylation in a single DNA molecule and circumvents the need for amplification steps, permitting direct interpretation. This method also responds to hemi-methylated DNA. Dispensing with methylation-sensitive nucleases, this method preserves the molecular integrity and methylation state of target molecules. Sparing methylation-sensing nucleases and antibodies helps to avoid errors introduced by the antibody's incomplete specificity or variable activity of nucleases. With this new method, we demonstrated the inhibitory effect of several natural bio-active compounds on DMT. All taken together, our method offers quantitative assays for DMT and DMT-related anticancer drugs.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/química , Metilação de DNA , DNA de Forma B/química , DNA Forma Z/química , Ensaios Enzimáticos/métodos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA de Forma B/metabolismo , DNA Forma Z/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos
9.
Acta Neuropsychiatr ; 33(5): 217-241, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34348819

RESUMO

Epigenetic mechanisms such as DNA methylation (DNAm) have been associated with stress responses and increased vulnerability to depression. Abnormal DNAm is observed in stressed animals and depressed individuals. Antidepressant treatment modulates DNAm levels and regulates gene expression in diverse tissues, including the brain and the blood. Therefore, DNAm could be a potential therapeutic target in depression. Here, we reviewed the current knowledge about the involvement of DNAm in the behavioural and molecular changes associated with stress exposure and depression. We also evaluated the possible use of DNAm changes as biomarkers of depression. Finally, we discussed current knowledge limitations and future perspectives.


Assuntos
Biomarcadores/sangue , Depressão/tratamento farmacológico , Depressão/genética , Metiltransferases/antagonistas & inibidores , Animais , Antidepressivos/farmacologia , Encéfalo/metabolismo , Ilhas de CpG , Metilação de DNA/efeitos dos fármacos , Depressão/sangue , Epigenômica , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Modelos Animais , Ratos , Ratos Wistar , Estresse Psicológico
10.
Molecules ; 25(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178333

RESUMO

Triple-negative breast cancer is an aggressive disease frequently associated with resistance to chemotherapy. Evidence supports that small molecules showing DNA methyltransferase inhibitory activity (DNMTi) are important to sensitize cancer cells to cytotoxic agents, in part, by reverting the acquired epigenetic changes associated with the resistance to therapy. The present study aimed to evaluate if chemical compounds derived from propolis could act as epigenetic drugs (epi-drugs). We selected three phenolic acids (caffeic, dihydrocinnamic, and p-coumaric) commonly detected in propolis and the (-)-epigallocatechin-3-gallate (EGCG) from green tea, which is a well-known DNA demethylating agent, for further analysis. The treatment with p-coumaric acid and EGCG significantly reduced the cell viability of four triple-negative breast cancer cell lines (BT-20, BT-549, MDA-MB-231, and MDA-MB-436). Computational predictions by molecular docking indicated that both chemicals could interact with the MTAse domain of the human DNMT1 and directly compete with its intrinsic inhibitor S-Adenosyl-l-homocysteine (SAH). Although the ethanolic extract of propolis (EEP) did not change the global DNA methylation content, by using MS-PCR (Methylation-Specific Polymerase Chain Reaction) we demonstrated that EEP and EGCG were able to partly demethylate the promoter region of RASSF1A in BT-549 cells. Also, in vitro treatment with EEP altered the RASSF1 protein expression levels. Our data indicated that some chemical compound present in the EEP has DNMTi activity and can revert the epigenetic silencing of the tumor suppressor RASSF1A. These findings suggest that propolis are a promising source for epi-drugs discovery.


Assuntos
Epigênese Genética , Hidroxibenzoatos/farmacologia , Própole/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Anticarcinógenos/química , Anticarcinógenos/farmacologia , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxibenzoatos/química , Simulação de Acoplamento Molecular , Própole/química , Neoplasias de Mama Triplo Negativas/patologia
11.
Neurobiol Learn Mem ; 159: 6-15, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30731235

RESUMO

Enhancement of synaptic plasticity through changes in neuronal gene expression is a prerequisite for improved cognitive performance. Moreover, several studies have shown that DNA methylation is able to affect the expression of (e.g. plasticity) genes that are important for several cognitive functions. In this study, the effect of the DNA methyltransferase (DNMT) inhibitor RG108 was assessed on object pattern separation (OPS) task in mice. In addition, its effect on the expression of target genes was monitored. Administration of RG108 before the test led to a short-lasting, dose-dependent increase in pattern separation memory that was not present anymore after 48 h. Furthermore, treatment with RG108 did not enhance long-term memory of the animals when tested after a 24 h inter-trial interval in the same task. At the transcriptomic level, acute treatment with RG108 was accompanied by increased expression of Bdnf1, while expression of Bdnf4, Bdnf9, Gria1 and Hdac2 was not altered within 1 h after treatment. Methylation analysis of 14 loci in the promoter region of Bdnf1 revealed a counterintuitive increase in the levels of DNA methylation at three CpG sites. Taken together, these results indicate that acute administration of RG108 has a short-lasting pro-cognitive effect on object pattern separation that could be explained by increased Bdnf1 expression. The observed increase in Bdnf1 methylation suggests a complex interplay between Bdnf methylation-demethylation that promotes Bdnf1 expression and associated cognitive performance. Considering that impaired pattern separation could constitute the underlying problem of a wide range of mental and cognitive disorders, pharmacological agents including DNA methylation inhibitors that improve pattern separation could be compelling targets for the treatment of these disorders. In that respect, future studies are needed in order to determine the effect of chronic administration of such agents.


Assuntos
DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Ftalimidas/farmacologia , Percepção Espacial/efeitos dos fármacos , Triptofano/análogos & derivados , Animais , Comportamento Animal/efeitos dos fármacos , Ilhas de CpG/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Camundongos , Vírus Miúdo do Camundongo , Regiões Promotoras Genéticas/efeitos dos fármacos , Triptofano/farmacologia
12.
Bioorg Med Chem Lett ; 29(6): 826-831, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30704813

RESUMO

DNA methylation is an epigenetic modification that is performed by DNA methyltransferases (DNMTs) and that leads to the transfer of a methyl group from S-adenosylmethionine (SAM) to the C5 position of cytosine. This transformation results in hypermethylation and silencing of genes such as tumor suppressor genes. Aberrant DNA methylation has been associated with the development of many diseases, including cancer. Inhibition of DNMTs promotes the demethylation and reactivation of epigenetically silenced genes. NSC 106084 and 14778 have been reported to inhibit DNMTs in the micromolar range. We report herein the synthesis of NSC 106084 and 14778 and the evaluation of their DNMT inhibitory activity. Our results indicate that while commercial NSC 14778 is moderately active against DNMT1, 3A/3L and 3B/3L, resynthesized NSC 14778 is inactive under our assay conditions. Resynthesized 106084 was also found to be inactive.


Assuntos
Acetatos/química , Compostos Benzidrílicos/química , Benzofenonas/química , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Salicilatos/química , Acetatos/síntese química , Compostos Benzidrílicos/síntese química , Benzofenonas/síntese química , Ensaios Enzimáticos , Inibidores Enzimáticos/síntese química , Salicilatos/síntese química
13.
J Cutan Pathol ; 46(12): 930-934, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31254406

RESUMO

Cutaneous toxicities to DNA methyltransferase inhibitors are variable and include localized injection site reactions, ecchymoses, maculopapular eruptions, and neutrophilic dermatoses including pyoderma gangrenosum, Sweet syndrome, and neutrophilic eccrine hidradenitis. This series describes two patients diagnosed with lobular neutrophilic panniculitis arising during treatment of acute myelogenous leukemia with "hypomethylating drugs," including the first report of its occurrence with a next-generation agent. Differential diagnoses, histopathologic characteristics, treatment considerations, and proposed pathogenesis will be discussed.


Assuntos
Antineoplásicos/toxicidade , Azacitidina/análogos & derivados , Azacitidina/toxicidade , Inibidores Enzimáticos/toxicidade , Paniculite/induzido quimicamente , Dermatopatias/induzido quimicamente , Idoso , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Azacitidina/administração & dosagem , Azacitidina/uso terapêutico , DNA , Diagnóstico Diferencial , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/uso terapêutico , Feminino , Glucocorticoides/administração & dosagem , Glucocorticoides/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Metiltransferases/antagonistas & inibidores , Pessoa de Meia-Idade , Neutrófilos/patologia , Paniculite/patologia , Prednisona/administração & dosagem , Prednisona/uso terapêutico , Dermatopatias/patologia , Resultado do Tratamento
14.
Int J Mol Sci ; 19(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332838

RESUMO

Cerebrovascular and neurodegenerative disorders affect one billion people around the world and result from a combination of genomic, epigenomic, metabolic, and environmental factors. Diagnosis at late stages of disease progression, limited knowledge of gene biomarkers and molecular mechanisms of the pathology, and conventional compounds based on symptomatic rather than mechanistic features, determine the lack of success of current treatments, including current FDA-approved conventional drugs. The epigenetic approach opens new avenues for the detection of early presymptomatic pathological events that would allow the implementation of novel strategies in order to stop or delay the pathological process. The reversibility and potential restoring of epigenetic aberrations along with their potential use as targets for pharmacological and dietary interventions sited the use of epidrugs as potential novel candidates for successful treatments of multifactorial disorders involving neurodegeneration. This manuscript includes a description of the most relevant epigenetic mechanisms involved in the most prevalent neurodegenerative disorders worldwide, as well as the main potential epigenetic-based compounds under investigation for treatment of those disorders and their limitations.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Epigenômica , Doença de Parkinson/genética , Doença de Parkinson/terapia , Farmacogenética , Humanos , Terapia de Alvo Molecular , Degeneração Neural/genética
15.
Bull Exp Biol Med ; 166(1): 1-6, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30417305

RESUMO

We studied the participation of DNA-methylation processes in the mechanisms of memory storage and reconsolidation, amnesia induction, and in recovery of the conditioned food aversion memory in edible snails. It was found that daily injections of DNA methyltransferases inhibitor over 3 days combined with a reminder of a conditioned food stimulus did not affect memory storage. The administration of DNA methyltransferase inhibitors did not suppress induction of amnesia caused the NMDA receptor antagonist/reminder. Injections of DNA methyltransferase inhibitors combined with the reminder led to memory recovery in 3 days after amnesia induction. Thus, DNA methyltransferase inhibitors in the same doses did not affect storage and reconsolidation of memory, as well as the mechanisms of amnesia induction. At the same time, injections of inhibitors led to memory recovery, apparently, due to disruption of reactivation and amnesia development.


Assuntos
Metilases de Modificação do DNA/metabolismo , Memória/efeitos dos fármacos , Ftalimidas/farmacologia , Triptofano/análogos & derivados , Valina/análogos & derivados , Amnésia/tratamento farmacológico , Amnésia/enzimologia , Amnésia/prevenção & controle , Animais , Metilases de Modificação do DNA/antagonistas & inibidores , Caracois Helix , Ftalimidas/uso terapêutico , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Triptofano/farmacologia , Triptofano/uso terapêutico , Valina/farmacologia , Valina/uso terapêutico
16.
Angiogenesis ; 20(2): 245-267, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28378227

RESUMO

Cancer cells are often dependent on epigenetic pathways for their survival. Consequently, drugs that target the epigenome, rather than the underlying DNA sequence, are currently attracting considerable attention. In recent years, the first epigenetic drugs have been approved for cancer chemotherapy, mainly for hematological applications. Limitations in single-drug efficacies have thus far limited their application in the treatment of solid tumors. Nevertheless, promising activity for these compounds has been suggested when combined with other, distinctly targeted agents. In this review, we discuss the anti-angiogenic activity of histone deacetylase and DNA methyltransferase inhibitors and their combinations with other targeted (anti-angiogenic) therapeutics in treatment of solid tumors. The role that these inhibitors play in the inhibition of tumor angiogenesis, particularly in combination with other targeted agents, and the advantages they present over broad acting anticancer agents, are critically discussed.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias , Neovascularização Patológica , Animais , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/enzimologia , Neovascularização Patológica/patologia
17.
Drug Dev Res ; 75(6): 348-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25195579

RESUMO

Different epigenetic alterations (DNA methylation, histone modifications, chromatin remodeling, noncoding RNA dysregulation) are associated with the phenotypic expression of complex disorders in which genomic, epigenomic, proteomic, and metabolomic changes, in conjunction with environmental factors, are involved. As epigenetic modifications are reversible and can be potentially targeted by pharmacological and dietary interventions, a series of epigenetic drugs have been developed, including DNA methyltransferase inhibitors (nucleoside analogs, small molecules, bioproducts, antisense oligonucleotides, miRNAs), histone deacetylase inhibitors (short-chain fatty acids, hydroxamic acids, cyclic peptides, benzamides, ketones, sirtuin inhibitors, sirtuin activators), histone acetyltransferase modulators, histone methyltransferase inhibitors, histone demethylase inhibitors, and noncoding RNAs (miRNAs), with potential effects against myelodysplastic syndromes, different types of cancer, and neurodegenerative disorders. Pharmacogenetic and pharmacoepigenetic studies are required for the proper evaluation of efficacy and safety issues in clinical trials with epigenetic drugs.


Assuntos
Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Epigenômica/métodos , Farmacogenética/métodos , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Metilação de DNA , Desenho de Fármacos , Inibidores Enzimáticos/química , Humanos , MicroRNAs/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética
18.
Front Pharmacol ; 15: 1381168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720770

RESUMO

Epigenetic modifications, characterized by changes in gene expression without altering the DNA sequence, play a crucial role in the development and progression of cancer by significantly influencing gene activity and cellular function. This insight has led to the development of a novel class of therapeutic agents, known as epigenetic drugs. These drugs, including histone deacetylase inhibitors, histone acetyltransferase inhibitors, histone methyltransferase inhibitors, and DNA methyltransferase inhibitors, aim to modulate gene expression to curb cancer growth by uniquely altering the epigenetic landscape of cancer cells. Ongoing research and clinical trials are rigorously evaluating the efficacy of these drugs, particularly their ability to improve therapeutic outcomes when used in combination with other treatments. Such combination therapies may more effectively target cancer and potentially overcome the challenge of drug resistance, a significant hurdle in cancer therapy. Additionally, the importance of nutrition, inflammation control, and circadian rhythm regulation in modulating drug responses has been increasingly recognized, highlighting their role as critical modifiers of the epigenetic landscape and thereby influencing the effectiveness of pharmacological interventions and patient outcomes. Epigenetic drugs represent a paradigm shift in cancer treatment, offering targeted therapies that promise a more precise approach to treating a wide spectrum of tumors, potentially with fewer side effects compared to traditional chemotherapy. This progress marks a step towards more personalized and precise interventions, leveraging the unique epigenetic profiles of individual tumors to optimize treatment strategies.

19.
Diseases ; 12(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39057134

RESUMO

BACKGROUND: Ten-eleven-translocation (TET) 2 is a member of the TET family of proteins (TET1-3). DNMT1 gene deletion confers resistance to DNA methyltransferase (DNMT) inhibitors in colorectal, breast, and ovarian cancer cells. Currently, the effect of DNMT1 gene status on TET2 phenotype following DNMT inhibitor treatment is unclear in human malignancies. METHODS: Human colorectal carcinoma HCT116 cells (DNMT+/+) and their isogenic DNMT1 knockout (DNMT1-/-) counterpart were treated with DNMT inhibitors. Expression of TET2 and tumor suppressor (p16ink4A and p15ink4B) proteins were examined by Western blot. Apoptosis and CDKN2A promoter demethylation following drug treatment were detected by Annexin-V apoptosis assay and methylation-specific PCR. RESULTS: TET2 expression was robustly increased in DNMT1-/- cells by 0.5 µM and 5 µM decitabine and azacitidine treatment. Augmentation of TET2 expression was accompanied by re-expression of p16ink4A and p15ink4B proteins and CDKN2A promoter demethylation. TET2 upregulation and tumor suppressor re-expression were associated with resistance conferred by DNMT1 deletion. Treatment with 5-aza-4'-thio-2'-deoxycytidine at a low 0.5 µM dose only upregulated TET2 and reduced CDKN2A promoter methylation, and re-expression of p16ink4A in DNMT1-/- cells. DNMT inhibitors showed minimal effects on TET2 upregulation and re-expression of tumor suppressor proteins in cells with intact DNMT1. CONCLUSIONS: DNMT1 gene deletion made cancer cells prone to TET2 upregulation and activation of tumor suppressor expression upon DNMT inhibitor challenge. TET2 augmentation is concomitant with resistance to DNMT inhibitors in a DNMT1-deleted state.

20.
Ir J Med Sci ; 193(5): 2597-2606, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38740675

RESUMO

The nature versus nurture debate has intrigued scientific circles for decades. Although extensive research has established a clear relationship between genetics and disease development, recent evidence has highlighted the insufficiency of attributing adverse health outcomes to genetic factors alone. In fact, it has been suggested that environmental influences, such as socioeconomic position (SEP), may play a much larger role in the development of disease than previously thought, with extensive research suggesting that low SEP is associated with adverse health conditions. In relation to oral health, a higher prevalence of caries (tooth decay) exists among those of low SEP. Although little is known about the biological mechanisms underlying this relationship, epigenetic modifications resulting from environmental influences have been suggested to play an important role. This review explores the intersection of health inequalities and epigenetics, the role of early-life social adversity and its long-term epigenetic impacts, and how those living within the lower hierarchies of the socioeconomic pyramid are indeed at higher risk of developing diseases, particularly in relation to oral health. A deeper understanding of these mechanisms could lead to the development of targeted interventions for individuals of low SEP to improve oral health or identify those who are at higher risk of developing oral disease.


Assuntos
Epigenoma , Humanos , Doenças da Boca/genética , Saúde Bucal , Fatores Socioeconômicos , Epigênese Genética , Cárie Dentária/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA