Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Immunity ; 54(2): 225-234.e6, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33476547

RESUMO

Microglia are activated in many neurological diseases and have been suggested to play an important role in the development of affective disorders including major depression. To investigate how microglial signaling regulates mood, we used bidirectional chemogenetic manipulations of microglial activity in mice. Activation of microglia in the dorsal striatum induced local cytokine expression and a negative affective state characterized by anhedonia and aversion, whereas inactivation of microglia blocked aversion induced by systemic inflammation. Interleukin-6 signaling and cyclooxygenase-1 mediated prostaglandin synthesis in the microglia were critical for the inflammation-induced aversion. Correspondingly, microglial activation led to a prostaglandin-dependent reduction of the excitability of striatal neurons. These findings demonstrate a mechanism by which microglial activation causes negative affect through prostaglandin-dependent modulation of striatal neurons and indicate that interference with this mechanism could milden the depressive symptoms in somatic and psychiatric diseases involving microglial activation.


Assuntos
Anedonia/fisiologia , Corpo Estriado/imunologia , Depressão/imunologia , Microglia/imunologia , Neurônios/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal , Células Cultivadas , Modelos Animais de Doenças , Humanos , Inflamação , Interleucina-6/metabolismo , Ativação de Macrófagos , Camundongos , Inflamação Neurogênica , Prostaglandinas/metabolismo
2.
J Neurosci ; 44(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37968116

RESUMO

Reversal learning measures the ability to form flexible associations between choice outcomes with stimuli and actions that precede them. This type of learning is thought to rely on several cortical and subcortical areas, including the highly interconnected orbitofrontal cortex (OFC) and basolateral amygdala (BLA), and is often impaired in various neuropsychiatric and substance use disorders. However, the unique contributions of these regions to stimulus- and action-based reversal learning have not been systematically compared using a chemogenetic approach particularly before and after the first reversal that introduces new uncertainty. Here, we examined the roles of ventrolateral OFC (vlOFC) and BLA during reversal learning. Male and female rats were prepared with inhibitory designer receptors exclusively activated by designer drugs targeting projection neurons in these regions and tested on a series of deterministic and probabilistic reversals during which they learned about stimulus identity or side (left or right) associated with different reward probabilities. Using a counterbalanced within-subject design, we inhibited these regions prior to reversal sessions. We assessed initial and pre-/post-reversal changes in performance to measure learning and adjustments to reversals, respectively. We found that inhibition of the ventrolateral orbitofrontal cortex (vlOFC), but not BLA, eliminated adjustments to stimulus-based reversals. Inhibition of BLA, but not vlOFC, selectively impaired action-based probabilistic reversal learning, leaving deterministic reversal learning intact. vlOFC exhibited a sex-dependent role in early adjustment to action-based reversals, but not in overall learning. These results reveal dissociable roles for BLA and vlOFC in flexible learning and highlight a more crucial role for BLA in learning meaningful changes in the reward environment.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Ratos , Masculino , Feminino , Animais , Incerteza , Complexo Nuclear Basolateral da Amígdala/fisiologia , Ratos Long-Evans , Córtex Pré-Frontal/fisiologia , Reversão de Aprendizagem/fisiologia
3.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38514181

RESUMO

The initiation of abstinence after chronic drug self-administration is stressful. Cocaine-seeking behavior on the first day of the absence of the expected drug (Extinction Day 1, ED1) is reduced by blocking 5-HT signaling in dorsal hippocampal cornu ammonis 1 (CA1) in both male and female rats. We hypothesized that the experience of ED1 can substantially influence later relapse behavior and that dorsal raphe (DR) serotonin (5-HT) input to CA1 may be involved. We inhibited 5-HT1A/1B receptors (WAY-100635 plus GR-127935), or DR input (chemogenetics), in CA1 on ED1 to test the role of this pathway on cocaine-seeking persistence 2 weeks later. We also inhibited 5-HT1A or 5-HT1B receptors in CA1 during conditioned place preference (CPP) for cocaine, to examine mechanisms involved in the persistent effects of ED1 manipulations. Inhibition of DR inputs, or 5-HT1A/1B signaling, in CA1 decreased drug seeking on ED1 and decreased cocaine seeking 2 weeks later revealing that 5-HT signaling in CA1 during ED1 contributes to persistent drug seeking during abstinence. In addition, 5-HT1B antagonism alone transiently decreased drug-associated memory performance when given prior to a CPP test, whereas similar antagonism of 5-HT1A alone had no such effect but blocked CPP retrieval on a test 24 h later. These CPP findings are consistent with prior work showing that DR inputs to CA1 augment recall of the drug-associated context and drug seeking via 5-HT1B receptors and prevent consolidation of the updated nondrug context via 5-HT1A receptors. Thus, treatments that modulate 5-HT-dependent memory mechanisms in CA1 during initial abstinence may facilitate later maintenance of abstinence.


Assuntos
Cocaína , Comportamento de Procura de Droga , Oxidiazóis , Serotonina , Animais , Masculino , Comportamento de Procura de Droga/fisiologia , Comportamento de Procura de Droga/efeitos dos fármacos , Ratos , Serotonina/metabolismo , Feminino , Cocaína/administração & dosagem , Cocaína/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Piridinas/farmacologia , Antagonistas da Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Piperazinas/farmacologia , Ratos Sprague-Dawley , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Autoadministração , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Receptor 5-HT1B de Serotonina/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo
4.
Brain ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916480

RESUMO

BACKGROUND: Pain is a non-motor symptom that impairs quality of life in Parkinson's patients. Pathological nociceptive hypersensitivity in patients could be due to changes in the processing of somatosensory information at the level of the basal ganglia, including the subthalamic nucleus (STN), but the underlying mechanisms are not yet defined. Here, we investigated the interaction between the STN and the dorsal horn of the spinal cord (DHSC), by first examining the nature of STN neurons that respond to peripheral nociceptive stimulation and the nature of their responses under normal and pathological conditions. Next, we studied the consequences of deep brain stimulation (DBS) of the STN on the electrical activity of DHSC neurons. Then, we investigated whether the therapeutic effect of STN-DBS would be mediated by the brainstem descending pathway involving the rostral ventromedial medulla (RVM). Finally, to better understand how the STN modulates allodynia, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) expressed in the STN. METHODS: The study was carried out on the 6-OHDA rodent model of Parkinson's disease, obtained by stereotactic injection of the neurotoxin into the medial forebrain bundle of rats and mice. In these animals, we used motor and nociceptive behavioral tests, in vivo electrophysiology of STN and wide dynamic range (WDR) DHSC neurons in response to peripheral stimulation, deep brain stimulation of the STN and the selective DREADD approach. Vglut2-ires-cre mice were used to specifically target and inhibit STN glutamatergic neurons. RESULTS: STN neurons are able to detect nociceptive stimuli, encode their intensity and generate windup-like plasticity, like WDR neurons in the DHSC. These phenomena are impaired in dopamine-depleted animals, as the intensity response is altered in both spinal and subthalamic neurons. Furthermore, As with L-Dopa, STN-DBS in rats ameliorated 6-OHDA-induced allodynia, and this effect is mediated by descending brainstem projections leading to normalization of nociceptive integration in DHSC neurons. Furthermore, this therapeutic effect was reproduced by selective inhibition of STN glutamatergic neurons in Vglut2-ires-cre mice. CONCLUSION: Our study highlights the centrality of the STN in nociceptive circuits, its interaction with the DHSC and its key involvement in pain sensation in Parkinson's disease. Furthermore, our results provide for the first-time evidence that subthalamic DBS produces analgesia by normalizing the responses of spinal WDR neurons via descending brainstem pathways. These effects are due to direct inhibition, rather than activation of glutamatergic neurons in the STN or passage fibers, as shown in the DREADDs experiment.

5.
J Neurosci ; 43(34): 5996-6009, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37429717

RESUMO

Early-life stress (ELS) is one of the strongest lifetime risk factors for depression, anxiety, suicide, and other psychiatric disorders, particularly after facing additional stressful events later in life. Human and animal studies demonstrate that ELS sensitizes individuals to subsequent stress. However, the neurobiological basis of such stress sensitization remains largely unexplored. We hypothesized that ELS-induced stress sensitization would be detectable at the level of neuronal ensembles, such that cells activated by ELS would be more reactive to adult stress. To test this, we leveraged transgenic mice to genetically tag, track, and manipulate experience-activated neurons. We found that in both male and female mice, ELS-activated neurons within the nucleus accumbens (NAc), and to a lesser extent the medial prefrontal cortex, were preferentially reactivated by adult stress. To test whether reactivation of ELS-activated ensembles in the NAc contributes to stress hypersensitivity, we expressed hM4Dis receptor in control or ELS-activated neurons of pups and chemogenetically inhibited their activity during experience of adult stress. Inhibition of ELS-activated NAc neurons, but not control-tagged neurons, ameliorated social avoidance behavior following chronic social defeat stress in males. These data provide evidence that ELS-induced stress hypersensitivity is encoded at the level of corticolimbic neuronal ensembles.SIGNIFICANCE STATEMENT Early-life stress enhances sensitivity to stress later in life, yet the mechanisms of such stress sensitization are largely unknown. Here, we show that neuronal ensembles in corticolimbic brain regions remain hypersensitive to stress across the life span, and quieting these ensembles during experience of adult stress rescues stress hypersensitivity.


Assuntos
Experiências Adversas da Infância , Córtex Pré-Frontal , Adulto , Humanos , Masculino , Camundongos , Feminino , Animais , Córtex Pré-Frontal/fisiologia , Estresse Psicológico/psicologia , Neurônios , Ansiedade , Camundongos Transgênicos
6.
J Neurosci Res ; 102(1): e25258, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37814992

RESUMO

The basolateral amygdala (BLA) appears to serve an important function in the pathophysiology of depression. Depressive symptoms, such as anhedonia are largely caused by dysfunction in the brain's reward system, in which the ventral pallidum (VP) participates in by controlling dopamine release. However, the role of the BLA-VP pathway in the development of depression remains poorly understood. To investigate this pathway, we employed the Chronic Unpredictable Mild Stress (CUMS) mouse model, in which we injected retroAAV expressing GFP-Cre into the VP and AAV expressing hM4Di-mCherry into the BLA. We then used CNO to activate the Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) for all behavioral tests. The CUMS procedure resulted in significant depression symptoms such as decreased sucrose preference, limited weight gain, decreased immobile latency, and increased immobile time in the forced swim and tail suspension tests. Inhibition of the BLA-VP glutamatergic projections reversed these depression-like behaviors. We found that suppressing the BLA-VP circuitry had beneficial effects on CUMS-induced depression-like behaviors such as anorexia, anhedonia, and despair. Specifically, upon suppression of glutamatergic projections in the BLA-VP circuitry, these depression-like behaviors were significantly alleviated, which highlights the vital role of this circuitry in the development of depression. Furthermore, the beneficial effects of suppressing this circuitry seem to be associated with the brain's reward system, warranting further investigation.


Assuntos
Prosencéfalo Basal , Transtorno Depressivo , Camundongos , Masculino , Animais , Depressão/etiologia , Anedonia , Transtorno Depressivo/etiologia , Tonsila do Cerebelo , Estresse Psicológico/metabolismo , Modelos Animais de Doenças
7.
Brain Behav Immun ; 115: 406-418, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37926132

RESUMO

Microglia are key players in maintaining brain homeostasis and exhibit phenotypic alterations in response to epileptic stimuli. However, it is still relatively unknown if these alterations are pro- or anti-epileptic. To unravel this dilemma, we employed chemogenetic manipulation of microglia using the artificial Gi-Dreadd receptor within a kainic acid (KA) induced murine seizure model. Our results indicate that acute Gi-Dreadd activation with Clozapine-N-Oxide can reduce seizure severity. Additionally, we observed increased interaction between microglia and neuronal soma, which correlated with reduced neuronal hyperactivity. Interestingly, prolonged activation of microglial Gi-Dreadds by repeated doses of CNO over 3 days, arrested microglia in a less active, homeostatic-like state, which associated with increased neuronal loss after KA induced seizures. RNAseq analysis revealed that prolonged activation of Gi-Dreadd interferes with interferon ß signaling and microglia proliferation. Thus, our findings highlight the importance of microglial Gi signaling not only during status epilepticus (SE) but also within later seizure induced pathology.


Assuntos
Microglia , Estado Epiléptico , Camundongos , Animais , Microglia/patologia , Convulsões/induzido quimicamente , Estado Epiléptico/induzido quimicamente , Anticonvulsivantes , Encéfalo/patologia , Ácido Caínico/farmacologia
8.
Stress ; 27(1): 2361238, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38962839

RESUMO

Chronic stress leads to hypofunction of the medial prefrontal cortex (mPFC), mechanisms of which remain to be determined. Enhanced activation of GABAergic of parvalbumin (PV) expressing interneurons (INs) is thought to play a role in stress-induced prefrontal inhibition. In this study, we tested whether chemogenetic inhibition of mPFC PV INs after chronic stress can rescue chronic stress-related behavioral and physiological phenotypes. Mice underwent 2 weeks of chronic variable stress (CVS) followed by a battery of behavioral tests known to be affected by chronic stress exposure, e.g. an open field (OF), novel object recognition (NOR), tail suspension test (TST), sucrose preference test (SPT), and light dark (LD) box. Inhibitory DREADDs were actuated by 3 mg/kg CNO administered 30 min prior to each behavioral test. CVS caused hyperactivity in the OF, reduced sucrose preference in the SPT (indicative of enhanced anhedonia), and increased anxiety-like behavior in the LD box. Inhibition of PV IN after stress mitigated these effects. In addition, CVS also resulted in reduced thymus weight and body weight loss, which were also mitigated by PV IN inhibition. Our results indicate that chronic stress leads to plastic changes in PV INs that may be mitigated by chemogenetic inhibition. Our findings implicate cortical GABAergic INs as a therapeutic target in stress-related diseases.


Assuntos
Comportamento Animal , Interneurônios , Parvalbuminas , Córtex Pré-Frontal , Estresse Psicológico , Animais , Córtex Pré-Frontal/metabolismo , Parvalbuminas/metabolismo , Masculino , Interneurônios/metabolismo , Camundongos , Estresse Psicológico/fisiopatologia , Ansiedade , Camundongos Endogâmicos C57BL
9.
Cereb Cortex ; 33(6): 2612-2625, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35797708

RESUMO

Growth hormone secretagogue receptor 1a (GHSR1a)-the receptor for orexigenic hormone ghrelin-is a G protein-coupled receptor that is widely distributed in the brain, including the hippocampus. Studies have demonstrated that genetic deletion of GHSR1a affects memory, suggesting the importance of ghrelin/GHSR1a signaling in cognitive control. However, current reports are controversial, and the mechanism underlying GHSR1a modulation of memory is uncertain. Here, we first report that global GHSR1a knockout enhances hippocampus-dependent memory, facilitates initial LTP in dorsal hippocampal Schaffer Collateral-CA1 synapses, and downregulates Akt activity in the hippocampus. Moreover, we show that the intrinsic excitability of GAD67+ interneurons-rather than neighboring pyramidal neurons in the dCA1-is suppressed by GHSR1a deletion, an effect that is antagonized by acute application of the Akt activator SC79. In addition, the inhibitory postsynaptic currents (IPSCs) on dCA1 pyramidal neurons are selectively reduced in mice with a GHSR1a deficiency. Finally, we demonstrate that selectively increasing the excitability of parvalbumin-expressing interneurons by hM3Dq-DREADDs increases IPSCs on dCA1 pyramidal neurons and normalizes memory in Ghsr1a KO mice. Our findings thus reveal a novel mechanism underlying memory enhancement of GHSR1a deficiency and herein support an adverse effect of GHSR1a signaling in hippocampus-dependent memory processes.


Assuntos
Região CA1 Hipocampal , Grelina , Memória , Células Piramidais , Receptores de Grelina , Colaterais de Schaffer , Animais , Camundongos , Grelina/genética , Grelina/metabolismo , Hipocampo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Receptores de Grelina/deficiência , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Memória/fisiologia , Região CA1 Hipocampal/metabolismo , Colaterais de Schaffer/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33372130

RESUMO

How do firing patterns in a cortical circuit change when inhibitory neurons are excited? We virally expressed an excitatory designer receptor exclusively activated by a designer drug (Gq-DREADD) in all inhibitory interneuron types of the CA1 region of the hippocampus in the rat. While clozapine N-oxide (CNO) activation of interneurons suppressed firing of pyramidal cells, unexpectedly the majority of interneurons also decreased their activity. CNO-induced inhibition decreased over repeated sessions, which we attribute to long-term synaptic plasticity between interneurons and pyramidal cells. Individual interneurons did not display sustained firing but instead transiently enhanced their activity, interleaved with suppression of others. The power of the local fields in the theta band was unaffected, while power at higher frequencies was attenuated, likely reflecting reduced pyramidal neuron spiking. The incidence of sharp wave ripples decreased but the surviving ripples were associated with stronger population firing compared with the control condition. These findings demonstrate that DREADD activation of interneurons brings about both short-term and long-term circuit reorganization, which should be taken into account in the interpretation of chemogenic effects on behavior.


Assuntos
Região CA1 Hipocampal/metabolismo , Interneurônios/fisiologia , Células Piramidais/metabolismo , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Clozapina/análogos & derivados , Clozapina/farmacologia , Feminino , Hipocampo/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Masculino , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Parvalbuminas/metabolismo , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
11.
Int J Mol Sci ; 25(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38791587

RESUMO

Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility to seizures. PV+ interneurons are also key players in generating gamma oscillations, which are synchronized neural oscillations associated with various cognitive functions. PV+ interneuron are particularly vulnerable to aging and their degeneration has been associated with cognitive decline and memory impairment in dementia and Alzheimer's disease (AD). Overall, dysfunction of PV+ interneurons disrupts the normal excitatory/inhibitory balance within specific neurocircuits in the brain and thus has been linked to a wide range of neurodevelopmental and neuropsychiatric disorders. This review focuses on the role of dysfunctional PV+ inhibitory interneurons in the generation of epileptic seizures and cognitive impairment and their potential as targets in the design of future therapeutic strategies to treat these disorders. Recent research using cutting-edge optogenetic and chemogenetic technologies has demonstrated that they can be selectively manipulated to control seizures and restore the balance of neural activity in the brains of animal models. This suggests that PV+ interneurons could be important targets in developing future treatments for patients with epilepsy and comorbid disorders, such as AD, where seizures and cognitive decline are directly linked to specific PV+ interneuron deficits.


Assuntos
Doença de Alzheimer , Epilepsia , Interneurônios , Parvalbuminas , Humanos , Interneurônios/metabolismo , Interneurônios/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Parvalbuminas/metabolismo , Animais , Epilepsia/fisiopatologia , Epilepsia/metabolismo , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia
12.
J Neurosci ; 42(32): 6267-6275, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35794012

RESUMO

The orbitofrontal cortex (OFC) and its major downstream target within the basal ganglia-the rostromedial caudate nucleus (rmCD)-are involved in reward-value processing and goal-directed behavior. However, a causal contribution of the pathway linking these two structures to goal-directed behavior has not been established. Using the chemogenetic technology of designer receptors exclusively activated by designer drugs with a crossed inactivation design, we functionally and reversibly disrupted interactions between the OFC and rmCD in two male macaque monkeys. We injected an adeno-associated virus vector expressing an inhibitory designer receptor, hM4Di, into the OFC and contralateral rmCD, the expression of which was visualized in vivo by positron emission tomography and confirmed by postmortem immunohistochemistry. Functional disconnection of the OFC and rmCD resulted in a significant and reproducible loss of sensitivity to the cued reward value for goal-directed action. This decreased sensitivity was most prominent when monkeys had accumulated a certain amount of reward. These results provide causal evidence that the interaction between the OFC and the rmCD is needed for motivational control of action on the basis of the relative reward value and internal drive. This finding extends the current understanding of the physiological basis of psychiatric disorders in which goal-directed behavior is affected, such as obsessive-compulsive disorder.SIGNIFICANCE STATEMENT In daily life, we routinely adjust the speed and accuracy of our actions on the basis of the value of expected reward. Abnormalities in these kinds of motivational adjustments might be related to behaviors seen in psychiatric disorders such as obsessive-compulsive disorder. In the current study, we show that the connection from the orbitofrontal cortex to the rostromedial caudate nucleus is essential for motivational control of action in monkeys. This finding expands our knowledge about how the primate brain controls motivation and behavior and provides a particular insight into disorders like obsessive-compulsive disorder in which altered connectivity between the orbitofrontal cortex and the striatum has been implicated.


Assuntos
Núcleo Caudado , Motivação , Animais , Núcleo Caudado/fisiologia , Objetivos , Humanos , Masculino , Córtex Pré-Frontal/fisiologia , Recompensa
13.
J Neurosci ; 42(12): 2552-2561, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35110390

RESUMO

The chemogenetic technology referred to as designer receptors exclusively activated by designer drugs (DREADDs) offers reversible means to control neuronal activity for investigating its functional correlation with behavioral action. Deschloroclozapine (DCZ), a recently developed highly potent and selective DREADD actuator, displays a capacity to expand the utility of DREADDs for chronic manipulation without side effects in nonhuman primates, which has not yet been validated. Here we investigated the pharmacokinetics and behavioral effects of orally administered DCZ in female and male macaque monkeys. Pharmacokinetic analysis and PET occupancy examination demonstrated that oral administration of DCZ yielded slower and prolonged kinetics, and that its bioavailability was 10%-20% of that in the case of systemic injection. Oral DCZ (300-1000 µg/kg) induced significant working memory impairments for at least 4 h in monkeys with hM4Di expressed in the dorsolateral prefrontal cortex (Brodmann's area 46). Repeated daily oral doses of DCZ consistently caused similar impairments over two weeks without discernible desensitization. Our results indicate that orally delivered DCZ affords a less invasive strategy for chronic but reversible chemogenetic manipulation of neuronal activity in nonhuman primates, and this has potential for clinical application.SIGNIFICANCE STATEMENT The use of designer receptors exclusively activated by designer drugs (DREADDs) for chronic manipulation of neuronal activity for days to weeks may be feasible for investigating brain functions and behavior on a long time-scale, and thereby for developing therapeutics for brain disorders, such as epilepsy. Here we performed pharmacokinetics and in vivo occupancy study of orally administered deschloroclozapine to determine a dose range suitable for DREADDs studies. In monkeys expressing hM4Di in the prefrontal cortex, single and repeated daily doses significantly induced working-memory impairments for hours and over two weeks, respectively, without discernible desensitization. These results indicate that orally delivered deschloroclozapine produces long-term stable chemogenetic effects, and holds great promise for the translational use of DREADDs technology.


Assuntos
Clozapina , Drogas Desenhadas , Animais , Controle Comportamental , Clozapina/farmacologia , Drogas Desenhadas/farmacologia , Feminino , Macaca mulatta , Masculino , Neurônios
14.
J Neurosci ; 42(29): 5705-5716, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35701162

RESUMO

Chemogenetic techniques, such as designer receptors exclusively activated by designer drugs (DREADDs), enable transient, reversible, and minimally invasive manipulation of neural activity in vivo Their development in nonhuman primates is essential for uncovering neural circuits contributing to cognitive functions and their translation to humans. One key issue that has delayed the development of chemogenetic techniques in primates is the lack of an accessible drug-screening method. Here, we use resting-state fMRI, a noninvasive neuroimaging tool, to assess the impact of deschloroclozapine (DCZ) on brainwide resting-state functional connectivity in 7 rhesus macaques (6 males and 1 female) without DREADDs. We found that systemic administration of 0.1 mg/kg DCZ did not alter the resting-state functional connectivity. Conversely, 0.3 mg/kg of DCZ was associated with a prominent increase in functional connectivity that was mainly confined to the connections of frontal regions. Additional behavioral tests confirmed a negligible impact of 0.1 mg/kg DCZ on socio-emotional behaviors as well as on reaction time in a probabilistic learning task; 0.3 mg/kg DCZ did, however, slow responses in the probabilistic learning task, suggesting attentional or motivational deficits associated with hyperconnectivity in fronto-temporo-parietal networks. Our study highlights both the excellent selectivity of DCZ as a DREADD actuator, and the side effects of its excess dosage. The results demonstrate the translational value of resting-state fMRI as a drug-screening tool to accelerate the development of chemogenetics in primates.SIGNIFICANCE STATEMENT Chemogenetics, such as designer receptors exclusively activated by designer drugs (DREADDs), can afford control over neural activity with unprecedented spatiotemporal resolution. Accelerating the translation of chemogenetic neuromodulation from rodents to primates requires an approach to screen novel DREADD actuators in vivo Here, we assessed brainwide activity in response to a DREADD actuator deschloroclozapine (DCZ) using resting-state fMRI in macaque monkeys. We demonstrated that low-dose DCZ (0.1 mg/kg) did not change whole-brain functional connectivity or affective behaviors, while a higher dose (0.3 mg/kg) altered frontal functional connectivity and slowed response in a learning task. Our study highlights the excellent selectivity of DCZ at proper dosing, and demonstrates the utility of resting-state fMRI to screen novel chemogenetic actuators in primates.


Assuntos
Drogas Desenhadas , Imageamento por Ressonância Magnética , Animais , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Drogas Desenhadas/farmacologia , Feminino , Humanos , Macaca mulatta , Imageamento por Ressonância Magnética/métodos , Masculino
15.
J Physiol ; 601(19): 4309-4336, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37632733

RESUMO

The hypothalamic paraventricular nucleus (PVN) is essential to peripheral chemoreflex neurocircuitry, but the specific efferent pathways utilized are not well defined. The PVN sends dense projections to the nucleus tractus solitarii (nTS), which exhibits neuronal activation following a hypoxic challenge. We hypothesized that nTS-projecting PVN (PVN-nTS) neurons contribute to hypoxia-induced nTS neuronal activation and cardiorespiratory responses. To selectively target PVN-nTS neurons, rats underwent bilateral nTS nanoinjection of retrogradely transported adeno-associated virus (AAV) driving Cre recombinase expression. We then nanoinjected into PVN AAVs driving Cre-dependent expression of Gq or Gi designer receptors exclusively activated by designer drugs (DREADDs) to test the degree that selective activation or inhibition, respectively, of the PVN-nTS pathway affects the hypoxic ventilatory response (HVR) of conscious rats. We used immunohistochemistry for Fos and extracellular recordings to examine how DREADD activation influences PVN-nTS neuronal activation by hypoxia. Pathway activation enhanced the HVR at moderate hypoxic intensities and increased PVN and nTS Fos immunoreactivity in normoxia and hypoxia. In contrast, PVN-nTS inhibition reduced both the HVR and PVN and nTS neuronal activation following hypoxia. To further confirm selective pathway effects on central cardiorespiratory output, rats underwent hypoxia before and after bilateral nTS nanoinjections of C21 to activate or inhibit PVN-nTS terminals. PVN terminal activation within the nTS enhanced tachycardic, sympathetic and phrenic (PhrNA) nerve activity responses to hypoxia whereas inhibition attenuated hypoxia-induced increases in nTS neuronal action potential discharge and PhrNA. The results demonstrate the PVN-nTS pathway enhances nTS neuronal activation and is necessary for full cardiorespiratory responses to hypoxia. KEY POINTS: The hypothalamic paraventricular nucleus (PVN) contributes to peripheral chemoreflex cardiorespiratory responses, but specific PVN efferent pathways are not known. The nucleus tractus solitarii (nTS) is the first integration site of the peripheral chemoreflex, and the nTS receives dense projections from the PVN. Selective GqDREADD activation of the PVN-nTS pathway was shown to enhance ventilatory responses to hypoxia and activation (Fos immunoreactivity (IR)) of nTS neurons in conscious rats, augmenting the sympathetic and phrenic nerve activity (SSNA and PhrNA) responses to hypoxia in anaesthetized rats. Selective GiDREADD inhibition of PVN-nTS neurons attenuates ventilatory responses, nTS neuronal Fos-IR, action potential discharge and PhrNA responses to hypoxia. These results demonstrate that a projection from the PVN to the nTS is critical for full chemoreflex responses to hypoxia.


Assuntos
Núcleo Hipotalâmico Paraventricular , Núcleo Solitário , Ratos , Animais , Núcleo Solitário/fisiologia , Ratos Sprague-Dawley , Neurônios/fisiologia , Hipóxia
16.
Glia ; 71(9): 2096-2116, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37208933

RESUMO

Our prior work examining endogenous repair after spinal cord injury (SCI) in mice revealed that large numbers of new oligodendrocytes (OLs) are generated in the injured spinal cord, with peak oligodendrogenesis between 4 and 7 weeks post-injury (wpi). We also detected new myelin formation over 2 months post-injury (mpi). Our current work significantly extends these results, including quantification of new myelin through 6 mpi and concomitant examination of indices of demyelination. We also examined electrophysiological changes during peak oligogenesis and a potential mechanism driving OL progenitor cell (OPC) contact with axons. Results reveal peak in remyelination occurs during the 3rd mpi, and that myelin generation continues for at least 6 mpi. Further, motor evoked potentials significantly increased during peak remyelination, suggesting enhanced axon potential conduction. Interestingly, two indices of demyelination, nodal protein spreading and Nav1.2 upregulation, were also present chronically after SCI. Nav1.2 was expressed through 10 wpi and nodal protein disorganization was detectable throughout 6 mpi suggesting chronic demyelination, which was confirmed with EM. Thus, demyelination may continue chronically, which could trigger the long-term remyelination response. To examine a potential mechanism that may initiate post-injury myelination, we show that OPC processes contact glutamatergic axons in the injured spinal cord in an activity-dependent manner. Notably, these OPC/axon contacts were increased 2-fold when axons were activated chemogenetically, revealing a potential therapeutic target to enhance post-SCI myelin repair. Collectively, results show the surprisingly dynamic nature of the injured spinal cord over time and that the tissue may be amenable to treatments targeting chronic demyelination.


Assuntos
Doenças Desmielinizantes , Traumatismos da Medula Espinal , Camundongos , Animais , Bainha de Mielina/metabolismo , Proteína Nodal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Axônios/fisiologia , Oligodendroglia/metabolismo , Medula Espinal , Doenças Desmielinizantes/metabolismo
17.
Glia ; 71(9): 2071-2095, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37222453

RESUMO

Insights into the role astrocytes and microglia play in normal and diseased brain functioning has expanded drastically over the last decade. Recently, chemogenetic tools have emerged as cutting-edge techniques, allowing targeted and spatiotemporal precise manipulation of a specific glial cell type. As a result, significant advances in astrocyte and microglial cell function have been made, showing how glial cells can intervene in central nervous system (CNS) functions such as cognition, reward and feeding behavior in addition to their established contribution in brain diseases, pain, and CNS inflammation. Here, we discuss the latest insights in glial functions in health and disease that have been made through the application of chemogenetics. We will focus on the manipulation of intracellular signaling pathways induced by activation of the designer receptors exclusively activated by designer drugs (DREADDs) in astrocytes and microglia. We will also elaborate on some of the potential pitfalls and the translational potential of the DREADD technology.


Assuntos
Drogas Desenhadas , Microglia , Astrócitos , Drogas Desenhadas/farmacologia , Transdução de Sinais , Neuroglia
18.
Hippocampus ; 33(1): 6-17, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468186

RESUMO

The hippocampus, a medial temporal lobe brain region, is critical for the consolidation of information from short-term memory into long-term episodic memory and for spatial memory that enables navigation. Hippocampal damage in humans has been linked to amnesia and memory loss, characteristic of Alzheimer's disease and other dementias. Numerous studies indicate that the rodent hippocampus contributes significantly to long-term memory for spatial and nonspatial information. For example, muscimol-induced depression of CA1 neuronal activity in the dorsal hippocampus impairs the encoding, consolidation, and retrieval of nonspatial object memory in mice. Here, a chemogenetic designer receptor exclusively activated by designer drugs (DREADDs) approach was used to test the selective involvement of CA1 pyramidal neurons in memory retrieval for objects and for spatial location in a cohort of male C57BL/6J mice. Activation of the inhibitory (hM4Di) DREADDs receptor expressed in CA1 neurons significantly impaired the retrieval of object memory in the spontaneous object recognition task and of spatial memory in the Morris water maze. Silencing of CA1 neuronal activity in hM4Di-expressing mice was confirmed by comparing Fos expression in vehicle- and clozapine-N-oxide-treated mice after exploration of a novel environment. Histological analyses revealed that expression of the hM4Di receptor was limited to CA1 neurons of the dorsal hippocampus. These results suggest that a common subset of CA1 neurons (i.e., those expressing hM4Di receptors) in mouse hippocampus contributed to the retrieval of long-term memory for nonspatial and spatial information. Our findings support the view that the contribution of the rodent hippocampus is like that of the primate hippocampus, specifically essential for global memory. Our results further validate mice as a suitable model system to study the neurobiological mechanisms of human episodic memory, but also in developing treatments and understanding the underlying causes of diseases affecting long-term memory, such as Alzheimer's disease.


Assuntos
Doença de Alzheimer , Memória Espacial , Animais , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Hipocampo/fisiologia , Camundongos Endogâmicos C57BL , Células Piramidais/fisiologia , Memória Espacial/fisiologia , Drogas Desenhadas
19.
Mol Ther ; 30(3): 990-1005, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34861415

RESUMO

Chemogenetics enables precise, non-invasive, and reversible modulation of neural activity via the activation of engineered receptors that are pharmacologically selective to endogenous or exogenous ligands. With recent advances in therapeutic gene delivery, chemogenetics is poised to support novel interventions against neuropsychiatric diseases and disorders. To evaluate its translational potential, we performed a scoping review of applications of chemogenetics that led to the reversal of molecular and behavioral deficits in studies relevant to neuropsychiatric diseases and disorders. In this review, we present these findings and discuss the potential and challenges for using chemogenetics as a precision medicine-based neuromodulation strategy.


Assuntos
Terapia Genética , Ligantes
20.
BMC Anesthesiol ; 23(1): 213, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340348

RESUMO

OBJECTIVES: General anesthesia results in a state of unconsciousness that is similar to sleep. In recent years, increasing evidence has reported that astrocytes play a crucial role in regulating sleep. However, whether astrocytes are involved in general anesthesia is unknown. METHODS: In the present study, the designer receptors exclusively activated by designer drugs (DREADDs) approach was utilized to specifically activate astrocytes in the basal forebrain (BF) and observed its effect on isoflurane anesthesia. One the other side, L-α-aminoadipic acid was used to selectively inhibit astrocytes in the BF and investigated its influence on isoflurane-induced hypnotic effect. During the anesthesia experiment, cortical electroencephalography (EEG) signals were recorded as well. RESULTS: The chemogenetic activation group had a significantly shorter isoflurane induction time, longer recovery time, and higher delta power of EEG during anesthesia maintenance and recovery periods than the control group. Inhibition of astrocytes in the BF delayed isoflurane-induced loss of consciousness, promoted recovery, decreased delta power and increased beta and gamma power during maintenance and recovery periods. CONCLUSIONS: The present study suggests that astrocytes in the BF region are involved in isoflurane anesthesia and may be a potential target for regulating the consciousness state of anesthesia.


Assuntos
Prosencéfalo Basal , Isoflurano , Camundongos , Animais , Isoflurano/farmacologia , Estado de Consciência , Astrócitos , Inconsciência , Anestesia Geral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA