Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
1.
J Appl Clin Med Phys ; : e14538, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365744

RESUMO

PURPOSE: To investigate dose differences between the planning CT (pCT) and dose calculated on pre-treatment verification CBCTs using DIR and dose summation for cervical cancer patients. METHODS: Cervical cancer patients treated at our institution with 45 Gy EBRT undergo a pCT and 5 CBCTs, once every five fractions of treatment. A free-form intensity-based DIR in MIM was performed between the pCT and each CBCT using the "Merged CBCT" feature to generate an extended FOV-CBCT (mCBCT). DIR-generated bladder and rectum contours were adjusted by a physician, and dice similarity coefficients (DSC) were calculated. After deformation, the investigated doses were (1) recalculated in Eclipse using original plan parameters (ecD), and (2) deformed from planning dose (pD) using the deformation matrix in MIM (mdD). Dose summation was performed to the first week's mCBCT. Dose distributions were compared for the bladder, rectum, and PTV in terms of percent dose difference, dose volume histograms (DVHs), and gamma analysis between the calculated doses. RESULTS: For the 20 patients, the mean DSC was 0.68 ± 0.17 for bladder and 0.79 ± 0.09 for rectum. Most patients were within 5% of pD for D2cc (19/20), Dmax (17/20), and Dmean (16/20). All patients demonstrated a percent difference > 5% for bladder V45 due to variations in bladder volume from the pCT. D90 showed fewer differences with 19/20 patients within 2% of pD. Gamma rates between pD and ecD averaged 94% for bladder and 94% for rectum, while pD and mdD exhibited slightly better performance for bladder (93%) and lower for rectum (85%). CONCLUSION: Using DIR with weekly CBCT images, the MIM deformed dose (mdD) was found to be in close agreement with the Eclipse calculated dose (ecD). The proposed workflow should be used on a case-by-case basis when the weekly CBCT shows marked difference in organs-at-risk from the planning CT.

2.
J Appl Clin Med Phys ; : e14490, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39270157

RESUMO

PURPOSE: Kilovoltage cone beam computed tomography (kVCBCT)-guided adaptive radiation therapy (ART) uses daily deformed CT (dCT), which is generated automatically through deformable registration methods. These registration methods may perform poorly in reproducing volumes of the target organ, rectum, and bladder during treatment. We analyzed the registration errors between the daily kVCBCTs and corresponding dCTs for these organs using the default optical flow algorithm and two registration procedures. We validated the effectiveness of these registration methods in replicating the geometry for dose calculation on kVCBCT for ART. METHODS: We evaluated three deformable image registration (DIR) methods to assess their registration accuracy and dose calculation effeciency in mapping target and critical organs. The DIR methods include (1) default intensity-based deformable registration, (2) hybrid deformable registration, and (3) a two-step deformable registration process. Each technique was applied to a computerized imaging reference system (CIRS) phantom (Model 062 M) and to five patients who received volumetric modulated arc therapy to the prostate. Registration accuracy was assessed using the 95% Hausdorff distance (HD95) and Dice similarity coefficient (DSC), and each method was compared with the intensity-based registration method. The improvement in the dCT image quality of the CIRS phantom and five patients was assessed by comparing dCT with kVCBCT. Image quality quantitative metrics for the phantom included the signal-to-noise ratio (SNR), uniformity, and contrast-to-noise ratio (CNR), whereas those for the patients included the mean absolute error (MAE), mean error, peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM). To determine dose metric differences, we used a dose-volume histogram (DVH) and 3.0%/0.3 mm gamma analysis to compare planning computed tomography (pCT) and kVCBCT recalculations with restimulated CT images used as a reference. RESULTS: The dCT images generated by the hybrid (dCTH) and two-step (dCTC) registration methods resulted in significant improvements compared to kVCBCT in the phantom model. Specifically, the SNR improved by 107% and 107.2%, the uniformity improved by 90% and 75%, and the CNR improved by 212.2% and 225.6 for dCTH and dCTC methods, respectively. For the patient images, the MAEs improved by 98% and 94%, the PSNRs improved by 16.3% and 22.9%, and the SSIMs improved by 1% and 1% in the dCTH and dCTC methods, respectively. For the geometric evaluation, only the two-step registration method improved registration accuracy. The dCTH method yielded an average HD95 of 12 mm and average DSC of 0.73, whereas dCTC yielded an average HD95 of 2.9 mm and average DSC of 0.902. The DVH showed that the dCTC-based dose calculations differed by <2% from the expected results for treatment targets and volumes of organs at risk. Additionally, gamma indices for dCTC-based treatment plans were >95% at all points, whereas they were <95% for kVCBCT-based treatment plans. CONCLUSION: The two-step registration method outperforms the intensity-based and hybrid registration methods. While the hybrid and two-step-based methods improved the image quality of kVCBCT in a linear accelerator, only the two-step method improved the registration accuracy of the corresponding structures among the pCT and kVCBCT datasets. A two-step registration process is recommended for applying kVCBCT to ART, which achieves better registration accuracy for local and global image structures. This method appears to be beneficial for radiotherapy dose calculation in patients with pelvic cancer.

3.
J Appl Clin Med Phys ; 25(6): e14330, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38478368

RESUMO

BACKGROUND: This study aimed to evaluate the clinical acceptability of rotational gantry-based single-position carbon-ion radiotherapy (CIRT) to reduce the gastrointestinal (GI) dose in pancreatic cancer. We also evaluated the usefulness of the deformable image registration (DIR)-based dosimetry method for CIRT. MATERIAL AND METHODS: Fifteen patients with pancreatic cancer were analyzed. The treatment plans were developed for four beam angles in the supine (SP plan) and prone (PR plan) positions. In the case of using multiple positions, the treatment plan was created with two angles for each of the supine and prone position (SP + PR plan). Dose evaluation for multiple positions was performed in two ways: by directly adding the values of the DVH parameters for each position treatment plan (DVH sum), and by calculating the DVH parameters from the accumulative dose distribution created using DIR (DIR sum). The D2cc and D6cc of the stomach and duodenum were recorded for each treatment plan and dosimetry method and compared. RESULTS: There were no significant differences among any of the treatment planning and dosimetry methods (p > 0.05). The DVH parameters for the stomach and duodenum were higher in the PR plan and SP plan, respectively, and DVH sum tended to be between the SP and PR plans. DVH sum and DIR sum, DVH sum tended to be higher for D2cc and DIR sum tended to be higher for D6cc. CONCLUSION: There were no significant differences in the GI dose, which suggests that treatment with a simple workflow performed in one position should be clinically acceptable. In CIRT, DIR-based dosimetry should be carefully considered because of the potential for increased uncertainty due to the steep dose distributions.


Assuntos
Radioterapia com Íons Pesados , Órgãos em Risco , Neoplasias Pancreáticas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia com Íons Pesados/métodos , Órgãos em Risco/efeitos da radiação , Radioterapia de Intensidade Modulada/métodos , Posicionamento do Paciente , Masculino , Feminino , Processamento de Imagem Assistida por Computador/métodos , Idoso , Pessoa de Meia-Idade , Prognóstico
4.
J Appl Clin Med Phys ; 25(6): e14358, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634799

RESUMO

PURPOSE: We evaluate the performance of a deformable image registration (DIR) software package in registering abdominal magnetic resonance images (MRIs) and then develop a mechanical modeling method to mitigate detected DIR uncertainties. MATERIALS AND METHODS: Three evaluation metrics, namely mean displacement to agreement (MDA), DICE similarity coefficient (DSC), and standard deviation of Jacobian determinants (STD-JD), are used to assess the multi-modality (MM), contour-consistency (CC), and image-intensity (II)-based DIR algorithms in the MIM software package, as well as an in-house developed, contour matching-based finite element method (CM-FEM). Furthermore, we develop a hybrid FEM registration technique to modify the displacement vector field of each MIM registration. The MIM and FEM registrations were evaluated on MRIs obtained from 10 abdominal cancer patients. One-tailed Wilcoxon-Mann-Whitney (WMW) tests were conducted to compare the MIM registrations with their FEM modifications. RESULTS: For the registrations performed with the MIM-CC, MIM-MM, MIM-II, and CM-FEM algorithms, their average MDAs are 0.62 ± 0.27, 2.39 ± 1.30, 3.07 ± 2.42, 1.04 ± 0.72 mm, and average DSCs are 0.94 ± 0.03, 0.80 ± 0.12, 0.77 ± 0.15, 0.90 ± 0.11, respectively. The p-values of the WMW tests between the MIM registrations and their FEM modifications are less than 0.0084 for STD-JDs and greater than 0.87 for MDA and DSC. CONCLUSIONS: Among the three MIM DIR algorithms, MIM-CC shows the smallest errors in terms of MDA and DSC but exhibits significant Jacobian uncertainties in the interior regions of abdominal organs. The hybrid FEM technique effectively mitigates the Jacobian uncertainties in these regions.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Software , Incerteza , Neoplasias Abdominais/radioterapia , Neoplasias Abdominais/diagnóstico por imagem
5.
J Xray Sci Technol ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39240617

RESUMO

BACKGROUND: Deformable image registration (DIR) plays an important part in many clinical tasks, and deep learning has made significant progress in DIR over the past few years. OBJECTIVE: To propose a fast multiscale unsupervised deformable image registration (referred to as FMIRNet) method for monomodal image registration. METHODS: We designed a multiscale fusion module to estimate the large displacement field by combining and refining the deformation fields of three scales. The spatial attention mechanism was employed in our fusion module to weight the displacement field pixel by pixel. Except mean square error (MSE), we additionally added structural similarity (ssim) measure during the training phase to enhance the structural consistency between the deformed images and the fixed images. RESULTS: Our registration method was evaluated on EchoNet, CHAOS and SLIVER, and had indeed performance improvement in terms of SSIM, NCC and NMI scores. Furthermore, we integrated the FMIRNet into the segmentation network (FCN, UNet) to boost the segmentation task on a dataset with few manual annotations in our joint leaning frameworks. The experimental results indicated that the joint segmentation methods had performance improvement in terms of Dice, HD and ASSD scores. CONCLUSIONS: Our proposed FMIRNet is effective for large deformation estimation, and its registration capability is generalizable and robust in joint registration and segmentation frameworks to generate reliable labels for training segmentation tasks.

6.
Acta Oncol ; 62(8): 923-931, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37488951

RESUMO

Background: Delivered radiotherapy doses do not exactly match those planned for a course of treatment, largely due to inter-fraction changes in anatomy. In this study, accumulated delivered dose was calculated for a sample of cervical cancer patients, by deformably registering daily cone beam computed tomography (CBCT) images to the planning computed tomography (CT) scan. Planned and accumulated doses were compared for the clinical target volume (CTV), bladder, and rectum.Material and Methods: For 10 patients receiving 45 Gy in 25 fractions of external beam radiotherapy, daily dose distributions were calculated on CBCT. These images were deformed onto the planning CT and the dose was accumulated using Velocity 4.1 (Varian Medical Systems, Palo Alto, USA). The quality of deformable image registration was evaluated visually and by calculating Dice similarity coefficients and mean distance to agreement.Results: V95%>99% was achieved for the primary CTV in 9/10 patients for the planned dose distribution and 7/10 patients for the accumulated dose distribution. Primary CTV coverage by 95% of the prescription dose was reduced in one patient, due to an increase in anterior-posterior separation. Comparison of planned and accumulated dose volume histograms (DVHs) for the bladder and rectum found agreement within 5% at low and intermediate doses, but differences exceeded 20% at higher doses. Direct addition of CBCT DVHs was seen to be a poor estimate for the accumulated DVH at higher doses.Conclusion: Computation of delivered radiotherapy dose that accounts for inter-fraction anatomical changes is important for establishing dose-effect relationships. Updating delivered dose distributions after each fraction would support informed clinical decision making on any potential treatment interventions.


Assuntos
Radioterapia de Intensidade Modulada , Tomografia Computadorizada de Feixe Cônico Espiral , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Dosagem Radioterapêutica , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada por Raios X , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
7.
Acta Oncol ; 62(10): 1230-1238, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37713179

RESUMO

BACKGROUND AND PURPOSE: Radiotherapy for vulvar carcinoma is challenging due to relatively high risk of locoregional disease recurrence, a technically challenging target, and postoperative lymphocele, and a high risk radiation sequelae. We aim to explore, if it is possible to reduce dose to normal tissue, while maintaining CTV coverage for this patient group with online adaptive radiotherapy. MATERIALS AND METHODS: 20 patients with vulvar carcinoma (527 fractions) were treated with online adaptation on a Varian Ethos accelerator. Setup CBCTs were acquired daily for adaptive planning. Verification CBCTs were acquired immediately prior to dose delivery. CTV dose coverage and dose to bladder and rectum were extracted from the scheduled and adapted plans as well as from adapted plans recalculated based on verification CBCTs. In addition, analysis of the decision of the adaptive procedure was performed for 17 patients (465 fractions). RESULTS: Mean CTV D95% and standard deviation was 98% ± 5% for the scheduled plan compared to 100.0 ± 0.3% and 100.0 ± 0.8% for the adapted plan on the setup and verification CBCT respectively. Dose to OARs varied substantially and did not show any benefit from adaption itself, however a margin reduction was implemented after the first patients treated. The adapted plan was chosen for 63.5% of the fractions and dominant reasons for not adapting were 'no significant dosimetric gain' (75 fractions, 14%) and 'Medical doctor (MD) not available for treatment' (50 fractions, 9.5%). The median adaption time was 15 min and the 25th and 75th percentile was 12 and 17 min, respectively. CONCLUSION: CTVs and PTVs dose coverage were significantly improved with adaptation compared to image-guided RT. This gain was robust during the treatment time.


Assuntos
Carcinoma , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Recidiva Local de Neoplasia , Bexiga Urinária , Pelve , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos
8.
J Appl Clin Med Phys ; 24(6): e13925, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36747376

RESUMO

INTRODUCTION: Cardiac radioablation (CR) is a noninvasive treatment option for patients with refractory ventricular tachycardia (VT) during which high doses of radiation, typically 25 Gy, are delivered to myocardial scar. In this study, we investigate motion from cardiac cycle and evaluate the dosimetric impact in a cohort of patients treated with CR. METHODS: This retrospective study included eight patients treated at our institution who had respiratory-correlated and ECG-gated 4DCT scans acquired within 2 weeks of CR. Deformable image registration was applied between maximum systole (SYS) and diastole (DIAS) CTs to assess cardiac motion. The average respiratory-correlated CT (AVGresp ) was deformably registered to the average cardiac (AVGcardiac ), SYS, and DIAS CTs, and contours were propagated using the deformation vector fields (DVFs). Finally, the original treatment plan was recalculated on the deformed AVGresp CT for dosimetric assessment. RESULTS: Motion magnitudes were measured as the mean (SD) value over the DVFs within each structure. Displacement during the cardiac cycle for all chambers was 1.4 (0.9) mm medially/laterally (ML), 1.6 (1.0) mm anteriorly/posteriorly (AP), and 3.0 (2.8) mm superiorly/inferiorly (SI). Displacement for the 12 distinct clinical target volumes (CTVs) was 1.7 (1.5) mm ML, 2.4 (1.1) mm AP, and 2.1 (1.5) SI. Displacements between the AVGresp and AVGcardiac scans were 4.2 (2.0) mm SI and 5.8 (1.4) mm total. Dose recalculations showed that cardiac motion may impact dosimetry, with dose to 95% of the CTV dropping from 27.0 (1.3) Gy on the AVGresp to 20.5 (7.1) Gy as estimated on the AVGcardiac . CONCLUSIONS: Cardiac CTV motion in this patient cohort is on average below 3 mm, location-dependent, and when not accounted for in treatment planning may impact target coverage. Further study is needed to assess the impact of cardiac motion on clinical outcomes.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Taquicardia Ventricular , Humanos , Estudos Retrospectivos , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria/métodos , Tomografia Computadorizada Quadridimensional/métodos
9.
J Appl Clin Med Phys ; 24(4): e13890, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36609786

RESUMO

PURPOSE: To study the dosimetry impact of deformable image registration (DIR) using radiophotoluminescent glass dosimeter (RPLD) and custom developed phantom with various inserts. METHODS: The phantom was developed to facilitate simultaneous evaluation of geometric and dosimetric accuracy of DIR. Four computed tomography (CT) images of the phantom were acquired with four different configurations. Four volumetric modulated arc therapy (VMAT) plans were computed for different phantom. Two different patterns were applied to combination of four phantom configurations. RPLD dose measurement was combined between corresponding two phantom configurations. DIR-based dose accumulation was calculated between corresponding two CT images with two commercial DIR software and various DIR parameter settings, and an open source software. Accumulated dose calculated using DIR was then compared with measured dose using RPLD. RESULTS: The mean ± standard deviation (SD) of dose difference was 2.71 ± 0.23% (range, 2.22%-3.01%) for tumor-proxy and 3.74 ± 0.79% (range, 1.56%-4.83%) for rectum-proxy. The mean ± SD of target registration error (TRE) was 1.66 ± 1.36 mm (range, 0.03-4.43 mm) for tumor-proxy and 6.87 ± 5.49 mm (range, 0.54-17.47 mm) for rectum-proxy. These results suggested that DIR accuracy had wide range among DIR parameter setting. CONCLUSIONS: The dose difference observed in our study was 3% for tumor-proxy and within 5% for rectum-proxy. The custom developed physical phantom with inserts showed potential for accurate evaluation of DIR-based dose accumulation. The prospect of simultaneous evaluation of geometric and dosimetric DIR accuracy in a single phantom may be useful for validation of DIR for clinical use.


Assuntos
Processamento de Imagem Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Processamento de Imagem Assistida por Computador/métodos , Dosímetros de Radiação , Radiometria , Tomografia Computadorizada por Raios X/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Planejamento da Radioterapia Assistida por Computador/métodos
10.
J Appl Clin Med Phys ; 24(5): e13917, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840512

RESUMO

The purpose of this study was to evaluate the deformable image registration (DIR) accuracy using various CT scan parameters with deformable thorax phantom. Our developed deformable thorax phantom (Dephan, Chiyoda Technol Corp, Tokyo, Japan) was used. The phantom consists of a base phantom, an inner phantom, and a motor-derived piston. The base phantom is an acrylic cylinder phantom with a diameter of 180 mm, which simulates the chest wall. The inner phantom consists of deformable, 20 mm thick disk-shaped sponges with 48 Lucite beads and 48 nylon cross-wires which simulate the vascular and bronchial bifurcations of the lung. Peak-exhale and peak-inhale images of the deformable phantom were acquired using a CT scanner (Aquilion LB, TOSHIBA). To evaluate the impact of CT scan parameters on DIR accuracy, we used the four tube voltages (80, 100, 120, and 135 kV) and six reconstruction algorithms (FC11, FC13, FC15, FC41, FC44, and FC52). Intensity-based DIR was performed between the two images using MIM Maestro (MIM software, Cleveland, USA). Fiducial markers (beads and cross-wires) based target registration error (TRE) was used for quantitative evaluation of DIR. In case with different tube voltages, the range of average TRE were 4.44-5.69 mm (reconstruction algorithm: FC13). In case with different reconstruction algorithms, the range of average TRE were 4.26-4.59 mm (tube voltage: 120 kV). The TRE were differed by up to 3.0 mm (3.96-6.96 mm) depending on the combination of tube voltage and reconstruction algorithm. Our result indicated that CT scan parameters had moderate impact of TRE, especially for reconstruction algorithms for the deformable thorax phantom.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Software , Algoritmos , Tórax , Imagens de Fantasmas
11.
J Digit Imaging ; 36(2): 574-587, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36417026

RESUMO

In this study, an inter-fraction organ deformation simulation framework for the locally advanced cervical cancer (LACC), which considers the anatomical flexibility, rigidity, and motion within an image deformation, was proposed. Data included 57 CT scans (7202 2D slices) of patients with LACC randomly divided into the train (n = 42) and test (n = 15) datasets. In addition to CT images and the corresponding RT structure (bladder, cervix, and rectum), the bone was segmented, and the coaches were eliminated. The correlated stochastic field was simulated using the same size as the target image (used for deformation) to produce the general random deformation. The deformation field was optimized to have a maximum amplitude in the rectum region, a moderate amplitude in the bladder region, and an amplitude as minimum as possible within bony structures. The DIRNet is a convolutional neural network that consists of convolutional regressors, spatial transformation, as well as resampling blocks. It was implemented by different parameters. Mean Dice indices of 0.89 ± 0.02, 0.96 ± 0.01, and 0.93 ± 0.02 were obtained for the cervix, bladder, and rectum (defined as at-risk organs), respectively. Furthermore, a mean average symmetric surface distance of 1.61 ± 0.46 mm for the cervix, 1.17 ± 0.15 mm for the bladder, and 1.06 ± 0.42 mm for the rectum were achieved. In addition, a mean Jaccard of 0.86 ± 0.04 for the cervix, 0.93 ± 0.01 for the bladder, and 0.88 ± 0.04 for the rectum were observed on the test dataset (15 subjects). Deep learning-based non-rigid image registration is, therefore, proposed for the high-dose-rate brachytherapy in inter-fraction cervical cancer since it outperformed conventional algorithms.


Assuntos
Braquiterapia , Aprendizado Profundo , Neoplasias do Colo do Útero , Feminino , Humanos , Braquiterapia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Reto , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia
12.
J Digit Imaging ; 36(3): 923-931, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36717520

RESUMO

The aim of this study is to evaluate a regional deformable model based on a deep unsupervised learning model for automatic contour propagation in breast cone-beam computed tomography-guided adaptive radiation therapy. A deep unsupervised learning model was introduced to map breast's tumor bed, clinical target volume, heart, left lung, right lung, and spinal cord from planning computed tomography to cone-beam CT. To improve the traditional image registration method's performance, we used a regional deformable framework based on the narrow-band mapping, which can mitigate the effect of the image artifacts on the cone-beam CT. We retrospectively selected 373 anonymized cone-beam CT volumes from 111 patients with breast cancer. The cone-beam CTs are divided into three sets. 311 / 20 / 42 cone-beam CT images were used for training, validating, and testing. The manual contour was used as reference for the testing set. We compared the results between the reference and the model prediction for evaluating the performance. The mean Dice between manual reference segmentations and the model predicted segmentations for breast tumor bed, clinical target volume, heart, left lung, right lung, and spinal cord were 0.78 ± 0.09, 0.90 ± 0.03, 0.88 ± 0.04, 0.94 ± 0.03, 0.95 ± 0.02, and 0.77 ± 0.07, respectively. The results demonstrated a good agreement between the reference and the proposed contours. The proposed deep learning-based regional deformable model technique can automatically propagate contours for breast cancer adaptive radiotherapy. Deep learning in contour propagation was promising, but further investigation was warranted.


Assuntos
Neoplasias da Mama , Aprendizado de Máquina não Supervisionado , Humanos , Feminino , Estudos Retrospectivos , Algoritmos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Processamento de Imagem Assistida por Computador/métodos
13.
Acta Oncol ; 61(1): 64-72, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34586938

RESUMO

BACKGROUND: Re-irradiation (reRT) is a promising technique for patients with localized recurrence in a previously irradiated area but presents major challenges. These include how to deal with anatomical change between two courses of radiotherapy and integration of radiobiology when summating original and re-irradiation doses. The Support Tool for Re-Irradiation Decisions guided by Radiobiology (STRIDeR) project aims to develop a software tool for use in a commercial treatment planning system to facilitate more informed reRT by accounting for anatomical changes and incorporating radiobiology. We evaluated three approaches to dose summation, incorporating anatomical change and radiobiology to differing extents. METHODS: In a cohort of 21 patients who previously received pelvic re-irradiation the following dose summation strategies were compared: (1) Rigid registration (RIR) and physical dose summation, to reflect the current clinical approach, (2) RIR and radiobiological dose summation in equivalent dose in 2 Gy fractions (EQD2), and (3) Patient-specific deformable image registration (DIR) with EQD2 dose summation. RESULTS: RIR and physical dose summation (Strategy 1) resulted in high cumulative organ at risk (OAR) doses being 'missed' in 14% of cases, which were highlighted by EQD2 dose summation (Strategy 2). DIR (with EQD2 dose summation; Strategy 3) resulted in improved OAR overlap and distance to agreement metrics compared to RIR (with EQD2 dose summation; Strategy 2) and was consistently preferred in terms of clinical utility. DIR was considered to have a clinically important impact on dose summation in 38% of cases. CONCLUSION: Re-irradiation cases require individualized assessment when considering dose summation with the previous treatment plan. Fractionation correction is necessary to meaningfully assess cumulative doses and reduce the risk of unintentional OAR overdose. DIR can add clinically relevant information in selected cases, especially for significant anatomical change. Robust solutions for cumulative dose assessment offer the potential for future improved understanding of cumulative OAR tolerances.


Assuntos
Reirradiação , Fracionamento da Dose de Radiação , Humanos , Pelve , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
14.
J Appl Clin Med Phys ; 23(2): e13500, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34962065

RESUMO

PURPOSE: Magnetic resonance imaging (MRI)-based investigations into radiotherapy (RT)-induced cardiotoxicity require reliable registrations of magnetic resonance (MR) imaging to planning computed tomography (CT) for correlation to regional dose. In this study, the accuracy of intra- and inter-modality deformable image registration (DIR) of longitudinal four-dimensional CT (4D-CT) and MR images were evaluated for heart, left ventricle (LV), and thoracic aorta (TA). METHODS AND MATERIALS: Non-cardiac-gated 4D-CT and T1 volumetric interpolated breath-hold examination (T1-VIBE) MRI datasets from five lung cancer patients were obtained at two breathing phases (inspiration/expiration) and two time points (before treatment and 5 weeks after initiating RT). Heart, LV, and TA were manually contoured. Each organ underwent three intramodal DIRs ((A) CT modality over time, (B) MR modality over time, and (C) MR contrast effect at the same time) and two intermodal DIRs ((D) CT/MR multimodality at same time and (E) CT/MR multimodality over time). Hausdorff distance (HD), mean distance to agreement (MDA), and Dice were evaluated and assessed for compliance with American Association of Physicists in Medicine (AAPM) Task Group (TG)-132 recommendations. RESULTS: Mean values of HD, MDA, and Dice under all registration scenarios for each region of interest ranged between 8.7 and 16.8 mm, 1.0 and 2.6 mm, and 0.85 and 0.95, respectively, and were within the TG-132 recommended range (MDA < 3 mm, Dice > 0.8). Intramodal DIR showed slightly better results compared to intermodal DIR. Heart and TA demonstrated higher registration accuracy compared to LV for all scenarios except for HD and Dice values in Group A. Significant differences for each metric and tissue of interest were noted between Groups B and D and between Groups B and E. MDA and Dice significantly differed between LV and heart in all registrations except for MDA in Group E. CONCLUSIONS: DIR of the heart, LV, and TA between non-cardiac-gated longitudinal 4D-CT and MRI across two modalities, breathing phases, and pre/post-contrast is acceptably accurate per AAPM TG-132 guidelines. This study paves the way for future evaluation of RT-induced cardiotoxicity and its related factors using multimodality DIR.


Assuntos
Tomografia Computadorizada Quadridimensional , Ventrículos do Coração , Algoritmos , Aorta Torácica/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador
15.
J Appl Clin Med Phys ; 23(7): e13611, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35413145

RESUMO

BACKGROUND AND PURPOSE: A novel method of retrospective liver modeling was developed based on four-dimensional magnetic resonance (4D-MR) images. The 4D-MR images will be utilized in generation of the subject-specific deformable liver model to be used in radiotherapy planning (RTP). The purpose of this study was to test and validate the developed 4D-magnetic resonance imaging (MRI) method with extensive phantom tests. We also aimed to build a motion model with image registration methods from liver simulating phantom images. MATERIALS AND METHODS: A deformable phantom was constructed by combining deformable tissue-equivalent material and a programmable 4D CIRS-platform. The phantom was imaged in 1.5 T MRI scanner with T2-weighted 4D SSFSE and T1-weighted Ax dual-echo Dixon SPGR sequences, and in computed tomography (CT). In addition, geometric distortion of the 4D sequence was measured with a GRADE phantom. The motion model was developed; the phases of the 4D-MRI were used as surrogate data, and displacement vector fields (DVF's) were used as a motion measurement. The motion model and the developed 4D-MRI method were evaluated and validated with extensive tests. RESULT: The 4D-MRI method enabled an accuracy of 2 mm using our deformable phantom compared to the 4D-CT. Results showed a mean accuracy of <2 mm between coordinates and DVF's measured from the 4D images. Three-dimensional geometric accuracy results with the GRADE phantom were: 0.9-mm mean and 2.5 mm maximum distortion within a 100 mm distance, and 2.2 mm mean, 5.2 mm maximum distortion within a 150 mm distance from the isocenter. CONCLUSIONS: The 4D-MRI method was validated with phantom tests as a necessary step before patient studies. The subject-specific motion model was generated and will be utilized in the generation of the deformable liver model of patients to be used in RTP.


Assuntos
Tomografia Computadorizada Quadridimensional , Imageamento por Ressonância Magnética , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Imagens de Fantasmas , Estudos Retrospectivos
16.
J Appl Clin Med Phys ; 23(12): e13793, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36265074

RESUMO

BACKGROUND AND PURPOSE: For postoperative breast cancer patients, deformable image registration (DIR) is challenged due to the large deformations and non-correspondence caused by tumor resection and clip insertion. To deal with it, three metrics (fiducial-, region-, and intensity-based) were jointly used in DIR algorithm for improved accuracy. MATERIALS AND METHODS: Three types of metrics were combined to form a single-objective function in DIR algorithm. Fiducial-based metric was used to minimize the distance between the corresponding point sets of two images. Region-based metric was used to improve the overlap between the corresponding areas of two images. Intensity-based metric was used to maximize the correlation between the corresponding voxel intensities of two images. The two CT images, one before surgery and the other after surgery, were acquired from the same patient in the same radiotherapy treatment position. Twenty patients who underwent breast-conserving surgery and postoperative radiotherapy were enrolled in this study. RESULTS: For target registration error, the difference between the proposed and the conventional registration methods was statistically significant for soft tissue (2.06 vs. 7.82, p = 0.00024 < 0.05) and body boundary (3.70 vs. 6.93, p = 0.021 < 0.05). For visual assessment, the proposed method achieved better matching result for soft tissue and body boundary. CONCLUSIONS: Comparing to the conventional method, the registration accuracy of the proposed method was significantly improved. This method provided a feasible way for target volume delineation of tumor bed in postoperative radiotherapy of breast cancer patients.


Assuntos
Algoritmos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Mastectomia Segmentar , Benchmarking , Processamento de Imagem Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos
17.
J Appl Clin Med Phys ; 23(9): e13731, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35920116

RESUMO

Accurate coregistration of computed tomography (CT) and magnetic resonance (MR) imaging can provide clinically relevant and complementary information and can serve to facilitate multiple clinical tasks including surgical and radiation treatment planning, and generating a virtual Positron Emission Tomography (PET)/MR for the sites that do not have a PET/MR system available. Despite the long-standing interest in multimodality co-registration, a robust, routine clinical solution remains an unmet need. Part of the challenge may be the use of mutual information (MI) maximization and local phase difference (LPD) as similarity metrics, which have limited robustness, efficiency, and are difficult to optimize. Accordingly, we propose registering MR to CT by mapping the MR to a synthetic CT intermediate (sCT) and further using it in a sCT-CT deformable image registration (DIR) that minimizes the sum of squared differences. The resultant deformation field of a sCT-CT DIR is applied to the MRI to register it with the CT. Twenty-five sets of abdominopelvic imaging data are used for evaluation. The proposed method is compared to standard MI- and LPD-based methods, and the multimodality DIR provided by a state of the art, commercially available FDA-cleared clinical software package. The results are compared using global similarity metrics, Modified Hausdorff Distance, and Dice Similarity Index on six structures. Further, four physicians visually assessed and scored registered images for their registration accuracy. As evident from both quantitative and qualitative evaluation, the proposed method achieved registration accuracy superior to LPD- and MI-based methods and can refine the results of the commercial package DIR when using its results as a starting point. Supported by these, this manuscript concludes the proposed registration method is more robust, accurate, and efficient than the MI- and LPD-based methods.


Assuntos
Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X/métodos
18.
J Appl Clin Med Phys ; 23(3): e13540, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35084081

RESUMO

An in-house hybrid deformable image registration (DIR) method, which combines free-form deformation (FFD) and the viscous fluid registration method, is proposed. Its results on the planning computed tomography (CT) and the day 1 treatment cone-beam CT (CBCT) image from 68 head and neck cancer patients are compared with the results of NiftyReg, which uses B-spline FFD alone. Several similarity metrics, the target registration error (TRE) of annotated points, as well as the Dice similarity coefficient (DSC) and Hausdorff distance (HD) of the propagated organs at risk are employed to analyze their registration accuracy. According to quantitative analysis on mutual information, normalized cross-correlation, and the absolute pixel value differences, the results of the proposed DIR are more similar to the CBCT images than the NiftyReg results. Smaller TRE of the annotated points is observed in the proposed method, and the overall mean TRE for the proposed method and NiftyReg was 2.34 and 2.98 mm, respectively (p < 0.001). The mean DSC in the larynx, spinal cord, oral cavity, mandible, and parotid given by the proposed method ranged from 0.78 to 0.91, significantly higher than the NiftyReg results (ranging from 0.77 to 0.90), and the HD was significantly lower compared to NiftyReg. Furthermore, the proposed method did not suffer from unrealistic deformations as the NiftyReg did in the visual evaluation. Meanwhile, the execution time of the proposed method was much higher than NiftyReg (96.98 ± 11.88 s vs. 4.60 ± 0.49 s). In conclusion, the in-house hybrid method gave better accuracy and more stable performance than NiftyReg.


Assuntos
Neoplasias de Cabeça e Pescoço , Radioterapia de Intensidade Modulada , Tomografia Computadorizada de Feixe Cônico Espiral , Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X/métodos
19.
Strahlenther Onkol ; 197(12): 1084-1092, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34351454

RESUMO

BACKGROUND: Functional planning based merely on 4DCT ventilation imaging has limitations. In this study, we proposed a radiotherapy planning strategy based on 4DCT ventilation imaging and CT density characteristics. MATERIALS AND METHODS: For 20 stage III non-small-cell lung cancer (NSCLC) patients, clinical plans and lung-avoidance plans were generated. Through deformable image registration (DIR) and quantitative image analysis, a 4DCT ventilation map was calculated. High-, medium-, and low-ventilation regions of the lung were defined based on the ventilation value. In addition, the total lung was also divided into high-, medium-, and low-density areas according to the HU threshold. The lung-avoidance plan aimed to reduce the dose to functional and high-density lungs while meeting standard target and critical structure constraints. Standard and dose-function metrics were compared between the clinical and lung-avoidance plans. RESULTS: Lung avoidance plans led to significant reductions in high-function and high-density lung doses, without significantly increasing other organ at risk (OAR) doses, but at the expense of a significantly degraded homogeneity index (HI) and conformity index (CI; p < 0.05) of the planning target volume (PTV) and a slight increase in monitor units (MU) as well as in the number of segments (p > 0.05). Compared with the clinical plan, the mean lung dose (MLD) in the high-function and high-density areas was reduced by 0.59 Gy and 0.57 Gy, respectively. CONCLUSION: A lung-avoidance plan based on 4DCT ventilation imaging and CT density characteristics is feasible and implementable, with potential clinical benefits. Clinical trials will be crucial to show the clinical relevance of this lung-avoidance planning strategy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos
20.
Acta Oncol ; 60(5): 589-597, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33688793

RESUMO

BACKGROUND AND PURPOSE: Deformable image registration (DIR) and contour propagation are used in daily online adaptation for hybrid MRI linac (MRL) treatments. The accuracy of the propagated contours may vary depending on the chosen workflow (WF), affecting the amount of required manual corrections. This study investigated the impact of three different WFs of contour propagations produced by a clinical treatment planning system for a high-field MRL on head and neck cancer patients. METHODS: Seventeen patients referred for curative radiotherapy for oropharyngeal cancer underwent standard CT-based dose planning and MR scans in the treatment position for planning (pMR), and at the 10th (MR10), 20th (MR20) and 30th (MR30) fraction (±2). The primary tumour, a metastatic lymph node and 8 organs at risk were manually delineated on each set of T2 weighted images. Delineations were repeated one month later on the pMR by the same observer to determine the intra-observer variation (IOV). Three WFs were used to deform images in the treatment planning system for the high-field MRL: In WF1, only the planning image and contours were used as a reference for DIR and propagation to MR10,20,30. The most recently acquired image set prior to the daily images was deformed and uncorrected (WF2) versus manually corrected (WF3) structures propagated to the session image. Dice similarity coefficient (DSC), mean surface distance (MSD) and Hausdorff distance (HD) were calculated for each structure in each model. RESULTS: Population median DSC, MSD and HD for WF1 and WF3 were similar and slightly better than for WF2. WF3 provided higher accuracy than WF1 for structures that are likely to shrink. All DIR workflows were less accurate than the IOV. CONCLUSIONS: WF1 and WF3 provide higher accuracy in structure propagation than WF2. Manual revision and correction of propagated structures are required for all evaluated workflows.


Assuntos
Neoplasias de Cabeça e Pescoço , Radioterapia Guiada por Imagem , Algoritmos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Interpretação de Imagem Radiográfica Assistida por Computador , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA