Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nanotechnology ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284313

RESUMO

The charge neutrality point (CNP) is one of the essential parameters in the development of graphene field-effect transistors (GFET). For GFET with an intrinsic graphene channel layer, the CNP is typically near-zero-volt gate voltage, implying that a well-balanced density of electrons and holes exists in the graphene channel layer. Fabricated GFET, however, typically exhibits CNP that is either positively or negatively shifted from the near-zero-volt gate voltage, implying that the graphene channel layer is unintentionally doped, leading to a unipolar GFET transfer characteristic. Furthermore, the CNP is also modulated in time, indicating that charges are dynamically induced in the graphene channel layer. In this work, understanding and mitigating the CNP shift were attempted by introducing passivation layers made of polyvinyl alcohol (PVA) and polydimethylsiloxane (PDMS) onto the graphene channel layer. The CNP was found to be negatively shifted, recovered back to near-zero-volt gate voltage, and then positively shifted in time. By analyzing the charge density, carrier mobility, and correlation between the CNP and the charge density, it can be concluded that positive CNP shifts can be attributed to the charge trapping at the graphene/SiO2 interface. The negative CNP shift, on the other hand, is caused by dipole coupling between dipoles in the polymer layer and carriers on the surface of the graphene layer. By gaining a deeper understanding of the intricate mechanisms governing the CNP shifts, an ambiently stable GFET suitable for next-generation electronics could be realized. .

2.
Macromol Rapid Commun ; : e2400200, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875712

RESUMO

Thermosets having low dielectric constant (Dk < 3) and low dielectric dissipation factor (Df < 0.003), high glass transition temperature (Tg > 150 °C), and good adhesion to copper are desirable for the low loss layers of the copper clad laminates (CCL) in next generation printed circuit boards. Three different difunctional diazirines are evaluated for both thermal and photochemical crosslinking of a high Tg vinyl-addition polynorbornene resin: poly(5-hexyl-1-norbornene) (poly(HNB)). The substrate polymer, crosslinked by the carbenes generated from the activated diazirines, forms thermosets with Dk < 2.3 and Df < 0.001 at 10 GHz depending on the identity of the diazirine and the loading. The Dk and Df values for one composition are stable for 1600 h at 125 °C in air and for 1400 h at 85 °C and 85% relative humidity, suggesting good long-term reliability of this thermoset. Adhesion of poly(HNB) to copper can be enhanced by priming the copper surface with a diazirine prior to high temperature lamination; peel strength values of greater than 7.5 N cm-1 are achieved. Negative-tone photopatterning of poly(HNB) with diazirines upon exposure to 365 nm light is demonstrated.

3.
Macromol Rapid Commun ; 45(12): e2400059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38538294

RESUMO

Many crucial components inside electronic devices are made from non-renewable, non-biodegradable, and potentially toxic materials, leading to environmental damage. Finding alternative green dielectric materials is mandatory to align with global sustainable goals. Carboxymethyl cellulose (CMC) is a bio-polymer derived from cellulose and has outstanding properties. Herein, citric acid, dextrin, and CMC based hydrogels are prepared, which are biocompatible and biodegradable and exhibit rubber-like mechanical properties, with Young modulus values of 0.89 MPa. Hence, thin film CMC-based hydrogel is explored as a suitable green high-k dielectric candidate for operation at low voltages, demonstrating a high dielectric constant of up to 78. These fabricated transistors reveal stable high capacitance (2090 nF cm-2) for ≈±3 V operation. Using a polyelectrolyte-type approach and poly-(2-vinyl anthracene) (PVAn) surface modification, this study demonstrates a thin dielectric layer (d ≈30 nm) with a small voltage threshold (Vth ≈-0.8 V), moderate transconductance (gm ≈65 nS), and high ON-OFF ratio (≈105). Furthermore, the dielectric layer exhibits stable performance under bias stress of ± 3.5 V and 100 cycles of switching tests. The modified CMC-based hydrogel demonstrates desirable performance as a green dielectric for low-voltage operation, further highlighting its biocompatibility.


Assuntos
Carboximetilcelulose Sódica , Dextrinas , Hidrogéis , Dextrinas/química , Carboximetilcelulose Sódica/química , Hidrogéis/química , Hidrogéis/síntese química , Materiais Biocompatíveis/química , Química Verde
4.
Nano Lett ; 23(6): 2187-2194, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36888651

RESUMO

Near-field radiative heat transfer (NFRHT) arises between objects separated by nanoscale gaps and leads to dramatic enhancements in heat transfer rates compared to the far-field. Recent experiments have provided first insights into these enhancements, especially using silicon dioxide (SiO2) surfaces, which support surface phonon polaritons (SPhP). Yet, theoretical analysis suggests that SPhPs in SiO2 occur at frequencies far higher than optimal. Here, we first show theoretically that SPhP-mediated NFRHT, at room temperature, can be 5-fold larger than that of SiO2, for materials that support SPhPs closer to an optimal frequency of 67 meV. Next, we experimentally demonstrate that MgF2 and Al2O3 closely approach this limit. Specifically, we demonstrate that near-field thermal conductance between MgF2 plates separated by 50 nm approaches within nearly 50% of the global SPhP bound. These findings lay the foundation for exploring the limits to radiative heat transfer rates at the nanoscale.

5.
Small ; 19(28): e2300526, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37010008

RESUMO

Polymer-based nanocomposites are desirable materials for next-generation dielectric capacitors. 2D dielectric nanosheets have received significant attention as a filler. However, randomly spreading the 2D filler causes residual stresses and agglomerated defect sites in the polymer matrix, which leads to the growth of an electric tree, resulting in a more premature breakdown than expected. Therefore, realizing a well-aligned 2D nanosheet layer with a small amount is a key challenge; it can inhibit the growth of conduction paths without degrading the performance of the material. Here, an ultrathin Sr1.8 Bi0.2 Nb3 O10 (SBNO) nanosheet filler is added as a layer into poly(vinylidene fluoride) (PVDF) films via the Langmuir-Blodgett method. The structural properties, breakdown strength, and energy storage capacity of a PVDF and multilayer PVDF/SBNO/PVDF composites as a function of the thickness-controlled SBNO layer are examined. The seven-layered (only 14 nm) SBNO nanosheets thin film can sufficiently prevent the electrical path in the PVDF/SBNO/PVDF composite and shows a high energy density of 12.8 J cm-3 at 508 MV m-1 , which is significantly higher than that of the bare PVDF film (9.2 J cm-3 at 439 MV m-1 ). At present, this composite has the highest energy density among the polymer-based nanocomposites under the filler of thin thickness.

6.
Macromol Rapid Commun ; 44(12): e2200956, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37026742

RESUMO

The ever increasing demand for high-speed communication at high frequency promotes the rapid development of low-dielectric polymer films. Aromatic polyimide (PI) has been widely used as the main dielectrics in the flexible circuit board due to its excellent dielectric, mechanical, and thermal properties. Nevertheless, the dielectric constant of PI films at a high frequency range (several GHz) is relatively high and cannot satisfy the requirement of high-frequency communication. On this basis, a hyper-crosslinked polymer (HCP) and fabricated all-organic HCP/PI composite films through a physical blending method is synthesized. The porous structure of HCP is helpful to reduce the dielectric constant of PI matrix. The effects of HCP loadings on the dielectric, mechanical, and thermal properties of HCP/PI composite films are systematically investigated. The dielectric constants of the composite films can be reduced to 1.6-1.8 in the frequency range of 8.2-9.6 GHz when the HCP content reached 10 wt.%. The proposed method in this work is simple and effective to reduce the dielectric constant of PI and can be easily extended to other organic component-filled PI systems.


Assuntos
Polímeros , Porosidade
7.
Nano Lett ; 21(2): 973-979, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33372805

RESUMO

Subwavelength nanostructures with tunable compositions and geometries show favorable optical functionalities for the implementation of nanophotonic systems. Precise and versatile control of structural configurations on solid substrates is essential for their applications in on-chip devices. Here, we report all-solid-phase reconfigurable chiral nanostructures with silicon nanoparticles and nanowires as the building blocks in which the configuration and chiroptical response can be tailored on-demand by dynamic manipulation of the silicon nanoparticle. We reveal that the optical chirality originates from the handedness-dependent coupling between optical resonances of the silicon nanoparticle and the silicon nanowire via numerical simulations and coupled-mode theory analysis. Furthermore, the coexisting electric and magnetic resonances support strong enhancement of optical near-field chirality, which enables label-free enantiodiscrimination of biomolecules in single nanostructures. Our results not only provide insight into the design of functional high-index materials but also bring new strategies to develop adaptive devices for photonic and electronic applications.


Assuntos
Nanopartículas , Nanoestruturas , Óptica e Fotônica , Fótons , Silício
8.
Molecules ; 26(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477519

RESUMO

Dielectric capacitors are widely used in pulse power systems, electric vehicles, aerospace, and defense technology as they are crucial for electronic components. Compact, lightweight, and diversified designs of electronic components are prerequisites for dielectric capacitors. Additionally, wide temperature stability and high energy storage density are equally important for dielectric materials. Ferroelectric materials, as special (spontaneously polarized) dielectric materials, show great potential in the field of pulse power capacitors having high dielectric breakdown strength, high polarization, low-temperature dependence and high energy storage density. The first part of this review briefly introduces dielectric materials and their energy storage performance. The second part elaborates performance characteristics of various ferroelectric materials in energy storage and refrigeration based on electrocaloric effect and briefly shed light on advantages and disadvantages of various common ferroelectric materials. Especially, we summarize the polarization effects of underlying substrates (such as GaN and Si) on the performance characteristics of ferroelectric materials. Finally, the review will be concluded with an outlook, discussing current challenges in the field of dielectric materials and prospective opportunities to assess their future progress.


Assuntos
Temperatura Baixa , Capacitância Elétrica , Fontes de Energia Elétrica/tendências , Eletricidade , Metabolismo Energético , Polímeros/química
9.
Small ; 16(30): e2001686, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32521107

RESUMO

Herein, a supermolecular-scale cage-confinement pyrolysis strategy is proposed to build two dielectric electromagnetic wave absorbents, in which MoO2 nanoparticles are sandwiched uniformly between porous carbon shells and reduced graphene oxide (RGO). Both sandwich structures are derived from hybrid hydrogels doped by two different crosslinkers (with/without oxygen bridge), which can precisely confine Mo source (e.g., PMo12 ). Without adding magnetic components, both absorbents exhibit excellent low frequency absorption performance in combination with electrically tunable ability and enhanced reflection loss value, which is superior over other relative 2D dielectric absorbers and satisfies the requirements of portable electronics. Notably, introducing oxygen bridges in the crosslinker generates a more stable confining configuration, which in turn renders its corresponding derivative exhibiting an extra multifrequency electromagnetic wave absorption trait. The intrinsic electromagnetic wave adjustment mechanism of the ternary hybrid absorbent is also explored. The result reveals that the elevated electromagnetic wave absorbing property is attributed to moderate attenuation constant and glorious impendence matching. The cage-confinement pyrolysis route to fabricate 2D MoO2 -based dielectric electromagnetic wave absorbents opens a new path for the design of electromagnetic wave absorbents used in multi/low frequency.

10.
Macromol Rapid Commun ; 41(24): e2000012, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32212189

RESUMO

Heat-resistant and crosslinked polymers/ceramic composites have been prepared and investigated for enhancing high-temperature dielectric properties to adapt the development of advanced electric and electronic systems. Here, a series of crosslinkable heat-resistant poly(arylene ether sulfone)s (DPAES) with large dipole units of -SO2 - are designed and synthesized as matrix, which are blended with BaTiO3 (BT) nanoparticles to fabricate crosslinked polymer composites for boosting high-temperature dielectric properties. The results show that BT/c-DPAES possess great dielectric stability at measured frequency and temperature. Meanwhile, the discharged energy density and efficiency of BT/c-DPAES composites are higher than that of BT/DPAES at high temperatures, e.g., 10 vol% BT/c-DPAES has a discharged energy density of 1.7 J cm-3 and efficiency of 73%, increasing by 42% and 128% in contrast to BT/DPAES, respectively. The enhanced high-temperature energy storage properties can be attributed to the construction of a crosslinked polymer network, reducing leakage current density of composites.


Assuntos
Temperatura Alta , Nanocompostos , Compostos de Bário , Éter , Éteres , Sulfonas , Temperatura , Titânio
11.
Sci Technol Adv Mater ; 21(1): 92-99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32165989

RESUMO

Dielectric materials that can realize downsizing and higher performance in electric devices are in demand. Perovskite-type materials of the form ABO3 are potential candidates. However, because of the numerous conceivable compositions of perovskite-type oxides, finding the best composition is technically difficult. To obtain a reasonable guideline for material design, we aim to clarify the relationship between the dielectric constants and other physical and chemical properties of perovskite-type oxides using first-principles density functional theory (DFT) and partial least-squares regression analysis. The more important factors affecting the dielectric constants are predicted based on variable importance in projection (VIP) scores. The dielectric constant strongly correlates with the ionicity of the B cations and the density of states of the conduction bands of the B cations.

12.
J Med Syst ; 43(7): 186, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101989

RESUMO

Due to the development of modern wearable mobile devices, the need of antenna with smaller size and internally flexible to fit becomes necessary. Miniaturization of Micro Strip Patch (MSP) antenna increases its employability for communication in different aspects. The use of flexible material for the fabrication of MSP antenna still improves its use for Wireless Body Area Networks (WBAN) which includes devices for monitoring systems in military, surveillance and medical applications. The devices designed specifically in Industrial Scientific Medical (ISM) band are used for communication in these applications. Defected Ground Structure (DGS) is adopted as an emerging technique for improving the various parameters of microwave circuits, that is, narrow bandwidth, cross-polarization, low gain, and so forth. In this paper, the design of compact micro strip patch antenna using different flexible substrate materials with DGS is proposed to resonate the antenna at 2.45GHz ISM band which can be used as biomedical sensors. Felt and Teflon with dielectric constant 1.36 and 2.1respectively are chosen as flexible substrate material among various flexible materials like cotton, rubber, paper, jeans etc. Using CST studio suite software, the designed antenna is simulated and the fabricated antenna is tested with Vector Network Analyzer (VNA). The performance parameters like return loss, gain, directivity and Voltage Standing Wave Ratio (VSWR) of the antenna are analyzed.


Assuntos
Desenho de Equipamento , Monitorização Fisiológica/instrumentação , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio/instrumentação , Humanos
13.
Magn Reson Med ; 79(2): 1192-1199, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28543615

RESUMO

PURPOSE: To explore the effect of using extremely high permittivity (εr ∼1,000) materials on image quality and power requirements of spine imaging at 3 T. THEORY AND METHODS: A linear array of high permittivity dielectric blocks made of lead zirconate titanate (PZT) was designed and characterized by electromagnetic simulations and experiments. Their effect on the transmit efficiency, receive sensitivity, power deposition, and diagnostic image quality was analyzed in vivo in 10 healthy volunteers. RESULTS: Simulation results showed that for quadrature mode excitation, the PZT blocks improve the transmit efficiency by 75% while reducing the maximum 10g average specific absorption rate (SAR10 ) by 20%. In vivo experiments in 10 healthy volunteers showed statistically significant improvements for the transmit efficiency, and image quality. Compared to active radiofrequency shimming, image quality was similar, but the required system input power was significantly lower for quadrature excitation using the PZT blocks. CONCLUSION: For single-channel transmit systems, using high permittivity PZT blocks offer a way to improve transmit efficiency and image quality in the spine. Results show that the effect, and therefore optimal design, is body mass index and sex specific. Magn Reson Med 79:1192-1199, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Coluna Vertebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Modelos Biológicos , Imagens de Fantasmas , Sensibilidade e Especificidade
14.
Sensors (Basel) ; 18(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142965

RESUMO

A broadband soil dielectric spectra retrieval approach ( 1 MHz⁻ 2 GHz) has been implemented for a layered half space. The inversion kernel consists of a two-port transmission line forward model in the frequency domain and a constitutive material equation based on a power law soil mixture rule (Complex Refractive Index Model - CRIM). The spatially-distributed retrieval of broadband dielectric spectra was achieved with a global optimization approach based on a Shuffled Complex Evolution (SCE) algorithm using the full set of the scattering parameters. For each layer, the broadband dielectric spectra were retrieved with the corresponding parameters thickness, porosity, water saturation and electrical conductivity of the aqueous pore solution. For the validation of the approach, a coaxial transmission line cell measured with a network analyzer was used. The possibilities and limitations of the inverse parameter estimation were numerically analyzed in four scenarios. Expected and retrieved layer thicknesses, soil properties and broadband dielectric spectra in each scenario were in reasonable agreement. Hence, the model is suitable for an estimation of in-homogeneous material parameter distributions. Moreover, the proposed frequency domain approach allows an automatic adaptation of layer number and thickness or regular grids in time and/or space.

15.
Sensors (Basel) ; 17(9)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28902147

RESUMO

Chloride presence affects different environments (soil, water, concrete) decreasing their qualities. In order to assess chloride concentration this paper proposes a novel sensor for detecting and measuring it. This sensor is based on electric changes of commercial monocalcium aluminate (CA) when it interacts with chloride aqueous solutions. CA is used as a dielectric material between two coplanar capacitors. The geometry proposed for this sensor allows to assess the chloride content profile, or to make four times the same measurement. Besides, the experimental design gives us the possibility of study not just the chloride effect, but also the time and some geometric effects due to the sensor design. As a result, this sensor shows a limit of detection, sensitivity, and response time: 0.01 wt % Cl- and 0.06 wt % Cl-, and 2 min, respectively, comparable with other non invasive techniques as optical fibre sensors.

16.
IEEE Trans Electromagn Compat ; 59(5): 1382-1389, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29456259

RESUMO

This study investigates the use of pads with high dielectric constant (HDC) materials to alter electromagnetic field distributions in patients during magnetic resonance imaging (MRI). The study was performed with numerical simulations and phantom measurements. An initial proof-of-concept and validation was performed using a phantom at 64 MHz, showing increases of up to 10% in electromagnetic field when using distilled water as the high dielectric material. Additionally, numerical simulations with computational models of human anatomy were performed at 128 MHz. Results of these simulations using barium titanate (BaTiO3) beads showed a 61% increase of [Formula: see text] with a quadrature driven RF coil and a 64% increase with a dual-transmit array. The presence of the HDC material also allowed for a decrease of SAR up to twofold (e.g., peak 10 g-averaged SAR from 54 to 22 W/kg with a quadrature driven RF coil and from 27 to 22 W/kg with a dual-transmit array using CaTiO3 powder at 128 MHz). The results of this study show that the use of HDC pads at 128 MHz for MRI spine applications could result in improved magnetic fields within the region of interest, while decreasing SAR outside the region.

17.
Angew Chem Int Ed Engl ; 54(3): 914-8, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25430633

RESUMO

A new perovskite-like coordination polymer [(CH3)2NH2][Cd(N3)3] is reported which undergoes a reversible ferroelastic phase transition. This transition is due to varied modes of motion of the [(CH3)2NH2](+) guest accompanied by a synergistic deformation of the [Cd(N3)3](-) framework. The unusual two-staged switchable dielectric relaxation reveals the molecular dynamics of the polar cation guest, which are well controlled by the variable confined space of the host framework. As the material switches from the ferroelastic phase to the paraelastic phase, a remarkable increase of the rotational energy barrier is detected. As a result, upon heating at low temperature, this compound shows a notable change from a low to a high dielectric state in the ferroelastic phase. This thermoresponsive host-guest system may serve as a model compound for the development of sensitive thermoresponsive dielectric materials and may be key to understanding and modulating molecular/ionic dynamics of guest molecules in confined space.

18.
Heliyon ; 10(13): e33999, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071559

RESUMO

The fabrication of low-porosity ceramics for humidity sensing is crucial to prevent moisture entrapment, which poses significant challenges. Using Spark Plasma Sintering (SPS), we successfully densified fine-grained ceramic materials based on LiF-doped MgTiO3, comparing them with conventionally sintered counterparts. Structural and microstructural analyses, employing X-ray diffraction and Scanning Electron Microscopy (SEM), were conducted. Investigation into electrical and dielectric properties' variations concerning humidity levels was conducted and revealed that SPS sintered ceramics exhibit heightened sensitivity to moisture, as evidenced by resistivity, capacitance, and response time measurements. The implications of these results are discussed in depth, highlighting the potential of SPS as a promising method for fabricating humidity sensors with improved performance and reduced porosity-related issues.

19.
Smart Med ; 3(2): e20230043, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39188701

RESUMO

Ferroptosis is a predominant contributor to graft kidney ischemia‒reperfusion injury (IRI), resulting in delayed graft function (DGF). However, much less is known about the early predicting biomarkers and therapeutic targets of DGF, especially aiming at ferroptosis. Here, we propose a precise predicting model for DGF, relying on the Akirin1 level in extracellular vesicles (EVs) derived from recipient urine 48 h after kidney transplant. In addition, we decipher a new molecular mechanism whereby Akirin1 induces ferroptosis by strengthening TP53-mediated suppression of SLC7A11 during the graft kidney IRI process, that is, Akirin1 activates the EGR1/TP53 axis and inhibits MDM2-mediated TP53 ubiquitination, accordingly upregulating TP53 in two ways. Meanwhile, we present the first evidence that miR-136-5p enriched in EVs secreted by human umbilical cord mesenchymal stem cells (UM-EVs) confers robust protection against ferroptosis and graft kidney IRI by targeted inhibition of Akirin1 but knockout of miR-136-5p in UM sharply mitigates the protection of UM-EVs. The functional and mechanistic regulation of Akirin1 is further corroborated in an allograft kidney transplant model in wild-type and Akirin1-knockout mice. In summary, these findings suggest that Akirin1, which prominently induces ferroptosis, is a pivotal biomarker and target for early diagnosis and treatment of graft kidney IRI and DGF after kidney transplant.

20.
Adv Mater ; : e2314380, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517171

RESUMO

Triboelectric nanogenerator (TENG) manifests distinct advantages such as multiple structural selectivity, diverse selection of materials, environmental adaptability, low cost, and remarkable conversion efficiency, which becomes a promising technology for micro-nano energy harvesting and self-powered sensing. Tribo-dielectric materials are the fundamental and core components for high-performance TENGs. In particular, the charge generation, dissipation, storage, migration of the dielectrics, and dynamic equilibrium behaviors determine the overall performance. Herein, a comprehensive summary is presented to elucidate the dielectric charge transport mechanism and tribo-dielectric material modification principle toward high-performance TENGs. The contact electrification and charge transport mechanism of dielectric materials is started first, followed by introducing the basic principle and dielectric materials of TENGs. Subsequently, modification mechanisms and strategies for high-performance tribo-dielectric materials are highlighted regarding physical/chemical, surface/bulk, dielectric coupling, and structure optimization. Furthermore, representative applications of dielectric materials based TENGs as power sources, self-powered sensors are demonstrated. The existing challenges and promising potential opportunities for advanced tribo-dielectric materials are outlined, guiding the design, fabrication, and applications of tribo-dielectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA