Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(31): e2403212121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042688

RESUMO

Some mental health problems such as depression and anxiety are more common in females, while others such as autism and attention deficit/hyperactivity (AD/H) are more common in males. However, the neurobiological origins of these sex differences are poorly understood. Animal studies have shown substantial sex differences in neuronal and glial cell structure, while human brain imaging studies have shown only small differences, which largely reflect overall body and brain size. Advanced diffusion MRI techniques can be used to examine intracellular, extracellular, and free water signal contributions and provide unique insights into microscopic cellular structure. However, the extent to which sex differences exist in these metrics of subcortical gray matter structures implicated in psychiatric disorders is not known. Here, we show large sex-related differences in microstructure in subcortical regions, including the hippocampus, thalamus, and nucleus accumbens in a large sample of young adults. Unlike conventional T1-weighted structural imaging, large sex differences remained after adjustment for age and brain volume. Further, diffusion metrics in the thalamus and amygdala were associated with depression, anxiety, AD/H, and antisocial personality problems. Diffusion MRI may provide mechanistic insights into the origin of sex differences in behavior and mental health over the life course and help to bridge the gap between findings from experimental, epidemiological, and clinical mental health research.


Assuntos
Encéfalo , Caracteres Sexuais , Humanos , Feminino , Masculino , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Saúde Mental , Adulto Jovem , Imagem de Difusão por Ressonância Magnética , Adolescente , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Tálamo/diagnóstico por imagem , Núcleo Accumbens/diagnóstico por imagem , Depressão/diagnóstico por imagem , Depressão/patologia , Ansiedade/diagnóstico por imagem
2.
Proc Natl Acad Sci U S A ; 121(9): e2313831121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377216

RESUMO

Auditory dorsal and ventral pathways in the human brain play important roles in supporting speech and language processing. However, the evolutionary root of the dual auditory pathways in the primate brain is unclear. By parcellating the auditory cortex of marmosets (a New World monkey species), macaques (an Old World monkey species), and humans using the same individual-based analysis method and tracking the pathways from the auditory cortex based on multi-shell diffusion-weighted MRI (dMRI), homologous auditory dorsal and ventral fiber tracks were identified in these primate species. The ventral pathway was found to be well conserved in all three primate species analyzed but extend to more anterior temporal regions in humans. In contrast, the dorsal pathway showed a divergence between monkey and human brains. First, frontal regions in the human brain have stronger connections to the higher-level auditory regions than to the lower-level auditory regions along the dorsal pathway, while frontal regions in the monkey brain show opposite connection patterns along the dorsal pathway. Second, the left lateralization of the dorsal pathway is only found in humans. Moreover, the connectivity strength of the dorsal pathway in marmosets is more similar to that of humans than macaques. These results demonstrate the continuity and divergence of the dual auditory pathways in the primate brains along the evolutionary path, suggesting that the putative neural networks supporting human speech and language processing might have emerged early in primate evolution.


Assuntos
Córtex Auditivo , Callithrix , Animais , Humanos , Imagem de Difusão por Ressonância Magnética , Idioma , Córtex Auditivo/diagnóstico por imagem , Vias Auditivas , Macaca , Vias Neurais , Mapeamento Encefálico
3.
J Neurosci ; 44(23)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839341

RESUMO

The hippocampus is a brain structure that plays key roles in a variety of cognitive processes. Critically, a wide range of neurological disorders are associated with degeneration of the hippocampal microstructure, defined as neurons, dendrites, glial cells, and more. Thus, the hippocampus is a key target for methods that are sensitive to these microscale properties. Diffusion MRI is one such method, which can noninvasively probe neural architecture. Here we review the extensive use of diffusion MRI to capture hippocampal microstructure in both health and disease. The results of these studies indicate that (1) diffusion tensor imaging is sensitive but not specific to the hippocampal microstructure; (2) biophysical modeling of diffusion MRI signals is a promising avenue to capture more specific aspects of the hippocampal microstructure; (3) use of ultra-short diffusion times have shown unique laminar-specific microstructure and response to hippocampal injury; (4) dispersion of microstructure is likely abundant in the hippocampus; and (5) the angular richness of the diffusion MRI signal can be leveraged to improve delineation of the internal hippocampal circuitry. Overall, extant findings suggest that diffusion MRI offers a promising avenue for characterizing hippocampal microstructure.


Assuntos
Imagem de Difusão por Ressonância Magnética , Hipocampo , Hipocampo/diagnóstico por imagem , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Animais
4.
Brain ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875488

RESUMO

Epileptic seizures recorded with stereoelectroencephalography (SEEG) can take a fraction of a second or several seconds to propagate from one region to another. What explains such propagation patterns? We combine tractography and SEEG to determine the relationship between seizure propagation and the white matter architecture and to describe seizure propagation mechanisms. Patient-specific spatiotemporal seizure propagation maps were combined with tractography from diffusion imaging of matched subjects from the Human Connectome Project. The onset of seizure activity was marked on a channel-by-channel basis by two board-certified neurologists for all channels involved in the seizure. We measured the tract connectivity (number of tracts) between regions-of-interest pairs among the seizure onset zone, regions of seizure spread, and non-involved regions. We also investigated how tract-connected the seizure onset zone is to regions of early seizure spread compared to regions of late spread. Comparisons were made after correcting for differences in distance. Sixty-nine seizures were marked across 26 patients with drug-resistant epilepsy; 11 were seizure free after surgery (Engel IA) and 15 were not (Engel IB-IV). The seizure onset zone was more tract connected to regions of seizure spread than to non-involved regions (p<0.0001); however, regions of seizure spread were not differentially tract-connected to other regions of seizure spread compared to non-involved regions. In seizure free patients only, regions of seizure spread were more tract connected to the seizure onset zone than to other regions of spread (p<0.0001). Over the temporal evolution of a seizure, the seizure onset zone was significantly more tract connected to regions of early spread compared to regions of late spread in seizure free patients only (p<0.0001). By integrating information on structure, we demonstrate that seizure propagation is likely mediated by white matter tracts. The pattern of connectivity between seizure onset zone, regions of spread and non-involved regions demonstrates that the onset zone may be largely responsible for seizures propagating throughout the brain, rather than seizures propagating to intermediate points, from which further propagation takes place. Our findings also suggest that seizure propagation over seconds may be the result of a continuous bombardment of action potentials from the seizure onset zone to regions of spread. In non-seizure free patients, the paucity of tracts from the presumed seizure onset zone to regions of spread suggests that the onset zone was missed. Fully understanding the structure-propagation relationship may eventually provide insight into selecting the correct targets for epilepsy surgery.

5.
Neuroimage ; 287: 120516, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244878

RESUMO

Numerous filtering methods have been proposed for estimating asymmetric orientation distribution functions (ODFs) for diffusion magnetic resonance imaging (dMRI). It can be hard to make sense of all these different methods, which share similar features and result in similar outputs. In this work, we disentangle these many filtering methods proposed in the past and combine them into a novel, unified filtering equation. We also propose a self-supervised data-driven approach for calibrating the filtering parameter values. Our equation is implemented in an open-source GPU-accelerated python software to facilitate its integration into any existing dMRI processing pipeline. Our method is applied on multi-shell multi-tissue fiber ODFs from the Human Connectome Project dataset (1.25 mm3 native resolution) and on single-shell single-tissue fiber ODFs from the Bilingualism and the Brain dataset (2.0 mm3 isotropic resolution) to evaluate the occurrence of asymmetric patterns on different spatial resolutions, representing cutting-edge and "clinical" research data. Asymmetry measures such as the asymmetric index (ASI) and our novel number of fiber directions (NuFiD) are then used to explain the behaviour of our method in these images. The contributions of this work are: (i) the disentanglement and unification of filtering methods for estimating asymmetric ODFs; (ii) a calibration method for automatically fixing the parameters governing the filtering; (iii) an open-source, efficient implementation of our unified filtering method for estimating asymmetric ODFs; (iv) a novel number of fiber directions (NuFiD) index for explaining asymmetric fiber configurations; and (v) a novel template of asymmetries, revealing that our filtering method estimates asymmetric configurations in at least 50% of the brain voxels (∼31% of the white matter and ∼63% of the gray matter).


Assuntos
Processamento de Imagem Assistida por Computador , Substância Branca , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos
6.
Neuroimage ; 297: 120723, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39029605

RESUMO

Diffusion-weighted Magnetic Resonance Imaging (dMRI) is increasingly used to study the fetal brain in utero. An important computation enabled by dMRI is streamline tractography, which has unique applications such as tract-specific analysis of the brain white matter and structural connectivity assessment. However, due to the low fetal dMRI data quality and the challenging nature of tractography, existing methods tend to produce highly inaccurate results. They generate many false streamlines while failing to reconstruct the streamlines that constitute the major white matter tracts. In this paper, we advocate for anatomically constrained tractography based on an accurate segmentation of the fetal brain tissue directly in the dMRI space. We develop a deep learning method to compute the segmentation automatically. Experiments on independent test data show that this method can accurately segment the fetal brain tissue and drastically improve the tractography results. It enables the reconstruction of highly curved tracts such as optic radiations. Importantly, our method infers the tissue segmentation and streamline propagation direction from a diffusion tensor fit to the dMRI data, making it applicable to routine fetal dMRI scans. The proposed method can facilitate the study of fetal brain white matter tracts with dMRI.


Assuntos
Encéfalo , Imagem de Tensor de Difusão , Feto , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , Encéfalo/embriologia , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/embriologia , Substância Branca/anatomia & histologia , Feto/diagnóstico por imagem , Feto/anatomia & histologia , Feminino , Aprendizado Profundo , Gravidez , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos
7.
Neuroimage ; 297: 120747, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39033790

RESUMO

The anatomy of the human piriform cortex (PC) is poorly understood. We used a bimodal connectivity-based-parcellation approach to investigate subregions of the PC and its connectional differentiation from the amygdala. One hundred (55 % female) genetically unrelated subjects from the Human Connectome Project were included. A region of interest (ROI) was delineated bilaterally covering PC and amygdala, and functional and structural connectivity of this ROI with the whole gray matter was computed. Spectral clustering was performed to obtain bilateral parcellations at granularities of k = 2-10 clusters and combined bimodal parcellations were computed. Validity of parcellations was assessed via their mean individual-to-group similarity per adjusted rand index (ARI). Individual-to-group similarity was higher than chance in both modalities and in all clustering solutions. The amygdala was clearly distinguished from PC in structural parcellations, and olfactory amygdala was connectionally more similar to amygdala than to PC. At higher granularities, an anterior and ventrotemporal and a posterior frontal cluster emerged within PC, as well as an additional temporal cluster at their boundary. Functional parcellations also showed a frontal piriform cluster, and similar temporal clusters were observed with less consistency. Results from bimodal parcellations were similar to the structural parcellations. Consistent results were obtained in a validation cohort. Distinction of the human PC from the amygdala, including its olfactory subregions, is possible based on its structural connectivity alone. The canonical fronto-temporal boundary within PC was reproduced in both modalities and with consistency. All obtained parcellations are freely available.


Assuntos
Tonsila do Cerebelo , Conectoma , Córtex Piriforme , Humanos , Feminino , Masculino , Córtex Piriforme/anatomia & histologia , Córtex Piriforme/diagnóstico por imagem , Córtex Piriforme/fisiologia , Adulto , Conectoma/métodos , Tonsila do Cerebelo/anatomia & histologia , Tonsila do Cerebelo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Adulto Jovem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/anatomia & histologia
8.
Neuroimage ; 290: 120553, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38403092

RESUMO

Recent advances in neuroscience requires high-resolution MRI to decipher the structural and functional details of the brain. Developing a high-performance gradient system is an ongoing effort in the field to facilitate high spatial and temporal encoding. Here, we proposed a head-only gradient system NeuroFrontier, dedicated for neuroimaging with an ultra-high gradient strength of 650 mT/m and 600 T/m/s. The proposed system features in 1) ultra-high power of 7MW achieved by running two gradient power amplifiers using a novel paralleling method; 2) a force/torque balanced gradient coil design with a two-step mechanical structure that allows high-efficiency and flexible optimization of the peripheral nerve stimulation; 3) a high-density integrated RF system that is miniaturized and customized for the head-only system; 4) an AI-empowered compressed sensing technique that enables ultra-fast acquisition of high-resolution images and AI-based acceleration in q-t space for diffusion MRI (dMRI); and 5) a prospective head motion correction technique that effectively corrects motion artifacts in real-time with 3D optical tracking. We demonstrated the potential advantages of the proposed system in imaging resolution, speed, and signal-to-noise ratio for 3D structural MRI (sMRI), functional MRI (fMRI) and dMRI in neuroscience applications of submillimeter layer-specific fMRI and dMRI. We also illustrated the unique strength of this system for dMRI-based microstructural mapping, e.g., enhanced lesion contrast at short diffusion-times or high b-values, and improved estimation accuracy for cellular microstructures using diffusion-time-dependent dMRI or for neurite microstructures using q-space approaches.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imagem de Difusão por Ressonância Magnética/métodos , Neuroimagem/métodos , Inteligência Artificial , Processamento de Imagem Assistida por Computador/métodos
9.
Neuroimage ; 296: 120672, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38851551

RESUMO

Age-related white matter hyperintensities are a common feature and are known to be negatively associated with structural integrity, functional connectivity, and cognitive performance. However, this has yet to be fully understood mechanistically. We analyzed multiple MRI modalities acquired in 465 non-demented individuals from the Swedish BioFINDER study including 334 cognitively normal and 131 participants with mild cognitive impairment. White matter hyperintensities were automatically quantified using fluid-attenuated inversion recovery MRI and parameters from diffusion tensor imaging were estimated in major white matter fibre tracts. We calculated fMRI resting state-derived functional connectivity within and between predefined cortical regions structurally linked by the white matter tracts. How change in functional connectivity is affected by white matter lesions and related to cognition (in the form of executive function and processing speed) was explored. We examined the functional changes using a measure of sample entropy. As expected hyperintensities were associated with disrupted structural white matter integrity and were linked to reduced functional interregional lobar connectivity, which was related to decreased processing speed and executive function. Simultaneously, hyperintensities were also associated with increased intraregional functional connectivity, but only within the frontal lobe. This phenomenon was also associated with reduced cognitive performance. The increased connectivity was linked to increased entropy (reduced predictability and increased complexity) of the involved voxels' blood oxygenation level-dependent signal. Our findings expand our previous understanding of the impact of white matter hyperintensities on cognition by indicating novel mechanisms that may be important beyond this particular type of brain lesions.


Assuntos
Disfunção Cognitiva , Imageamento por Ressonância Magnética , Substância Branca , Humanos , Masculino , Feminino , Idoso , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/patologia , Imagem de Tensor de Difusão/métodos , Idoso de 80 Anos ou mais , Função Executiva/fisiologia , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Conectoma/métodos , Encéfalo/diagnóstico por imagem
10.
Neuroimage ; 298: 120766, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142523

RESUMO

Streamline tractography locally traces peak directions extracted from fiber orientation distribution (FOD) functions, lacking global information about the trend of the whole fiber bundle. Therefore, it is prone to producing erroneous tracks while missing true positive connections. In this work, we propose a new bundle-specific tractography (BST) method based on a bundle-specific tractogram distribution (BTD) function, which directly reconstructs the fiber trajectory from the start region to the termination region by incorporating the global information in the fiber bundle mask. A unified framework for any higher-order streamline differential equation is presented to describe the fiber bundles with disjoint streamlines defined based on the diffusion vectorial field. At the global level, the tractography process is simplified as the estimation of BTD coefficients by minimizing the energy optimization model, and is used to characterize the relations between BTD and diffusion tensor vector under the prior guidance by introducing the tractogram bundle information to provide anatomic priors. Experiments are performed on simulated Hough, Sine, Circle data, ISMRM 2015 Tractography Challenge data, FiberCup data, and in vivo data from the Human Connectome Project (HCP) for qualitative and quantitative evaluation. Results demonstrate that our approach reconstructs complex fiber geometry more accurately. BTD reduces the error deviation and accumulation at the local level and shows better results in reconstructing long-range, twisting, and large fanning tracts.

11.
Neuroimage ; 297: 120653, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795798

RESUMO

Perivascular cerebrospinal fluid (pCSF) flow is a key component of the glymphatic system. Arterial pulsation has been proposed as the main driving force of pCSF influx along the superficial and penetrating arteries; however, evidence of this mechanism in humans is limited. We proposed an experimental framework of dynamic diffusion tensor imaging with low b-values and ultra-long echo time (dynDTIlow-b) to capture pCSF flow properties during the cardiac cycle in human brains. Healthy adult volunteers (aged 17-28 years; seven men, one woman) underwent dynDTIlow-b using a 3T scanner (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany) with simultaneously recorded cardiac output. The results showed that diffusion tensors reconstructed from pCSF were mainly oriented in the direction of the neighboring arterial flow. When switching from vasoconstriction to vasodilation, the axial and radial diffusivities of the pCSF increased by 5.7 % and 4.94 %, respectively, suggesting that arterial pulsation alters the pCSF flow both parallel and perpendicular to the arterial wall. DynDTIlow-b signal intensity at b=0 s/mm2 (i.e., T2-weighted, [S(b=0 s/mm2)]) decreased in systole, but this change was ∼7.5 % of a cardiac cycle slower than the changes in apparent diffusivity, suggesting that changes in S(b=0 s/mm2) and apparent diffusivity arise from distinct physiological processes and potential biomarkers associated with perivascular space volume and pCSF flow, respectively. Additionally, the mean diffusivities of white matter showed cardiac-cycle dependencies similar to pCSF, although a delay relative to the peak time of apparent diffusivity in pCSF was present, suggesting that dynDTIlow-b could potentially reveal the dynamics of magnetic resonance imaging-invisible pCSF surrounding small arteries and arterioles in white matter; this delay may result from pulse wave propagation along penetrating arteries. In conclusion, the vasodilation-induced increases in axial and radial diffusivities of pCSF and mean diffusivities of white matter are consistent with the notion that arterial pulsation can accelerate pCSF flow in human brain. Furthermore, the proposed dynDTIlow-b technique can capture various pCSF dynamics in artery pulsation.


Assuntos
Líquido Cefalorraquidiano , Imagem de Tensor de Difusão , Sistema Glinfático , Humanos , Adulto , Feminino , Masculino , Adulto Jovem , Imagem de Tensor de Difusão/métodos , Adolescente , Líquido Cefalorraquidiano/fisiologia , Líquido Cefalorraquidiano/diagnóstico por imagem , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Fluxo Pulsátil/fisiologia , Artérias Cerebrais/diagnóstico por imagem , Artérias Cerebrais/fisiologia
12.
Neuroimage ; 290: 120555, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447683

RESUMO

Aberrant susceptibility due to iron level abnormality and brain network disconnections are observed in Alzheimer's disease (AD), with disrupted iron homeostasis hypothesized to be linked to AD pathology and neuronal loss. However, whether associations exist between abnormal quantitative susceptibility mapping (QSM), brain atrophy, and altered brain connectome in AD remains unclear. Based on multi-parametric brain imaging data from 30 AD patients and 26 healthy controls enrolled at the China-Japan Friendship Hospital, we investigated the abnormality of the QSM signal and volumetric measure across 246 brain regions in AD patients. The structural and functional connectomes were constructed based on diffusion MRI tractography and functional connectivity, respectively. The network topology was quantified using graph theory analyses. We identified seven brain regions with both reduced cortical thickness and abnormal QSM (p < 0.05) in AD, including the right superior frontal gyrus, left superior temporal gyrus, right fusiform gyrus, left superior parietal lobule, right superior parietal lobule, left inferior parietal lobule, and left precuneus. Correlations between cortical thickness and network topology computed across patients in the AD group resulted in statistically significant correlations in five of these regions, with higher correlations in functional compared to structural topology. We computed the correlation between network topological metrics, QSM value and cortical thickness across regions at both individual and group-averaged levels, resulting in a measure we call spatial correlations. We found a decrease in the spatial correlation of QSM and the global efficiency of the structural network in AD patients at the individual level. These findings may provide insights into the complex relationships among QSM, brain atrophy, and brain connectome in AD.


Assuntos
Doença de Alzheimer , Conectoma , Humanos , Doença de Alzheimer/patologia , Conectoma/métodos , Encéfalo , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia , Ferro
13.
Neuroimage ; 292: 120601, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588832

RESUMO

PURPOSE: Intravoxel incoherent motion (IVIM) is a quantitative magnetic resonance imaging (MRI) method used to quantify perfusion properties of tissue non-invasively without contrast. However, clinical applications are limited by unreliable parameter estimates, particularly for the perfusion fraction (f) and pseudodiffusion coefficient (D*). This study aims to develop a high-fidelity reconstruction for reliable estimation of IVIM parameters. The proposed method is versatile and amenable to various acquisition schemes and fitting methods. METHODS: To address current challenges with IVIM, we adapted several advanced reconstruction techniques. We used a low-rank approximation of IVIM images and temporal subspace modeling to constrain the magnetization dynamics of the bi-exponential diffusion signal decay. In addition, motion-induced phase variations were corrected between diffusion directions and b-values, facilitating the use of high SNR real-valued diffusion data. The proposed method was evaluated in simulations and in vivo brain acquisitions in six healthy subjects and six individuals with a history of SARS-CoV-2 infection and compared with the conventionally reconstructed magnitude data. Following reconstruction, IVIM parameters were estimated voxel-wise. RESULTS: Our proposed method reduced noise contamination in simulations, resulting in a 60%, 58.9%, and 83.9% reduction in the NRMSE for D, f, and D*, respectively, compared to the conventional reconstruction. In vivo, anisotropic properties of D, f, and D* were preserved with the proposed method, highlighting microvascular differences in gray matter between individuals with a history of COVID-19 and those without (p = 0.0210), which wasn't observed with the conventional reconstruction. CONCLUSION: The proposed method yielded a more reliable estimation of IVIM parameters with less noise than the conventional reconstruction. Further, the proposed method preserved anisotropic properties of IVIM parameter estimates and demonstrated differences in microvascular perfusion in COVID-affected subjects, which weren't observed with conventional reconstruction methods.


Assuntos
COVID-19 , Processamento de Imagem Assistida por Computador , Humanos , COVID-19/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Adulto , Encéfalo/diagnóstico por imagem , Movimento (Física) , Feminino , Masculino , SARS-CoV-2 , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos
14.
Neuroimage ; 285: 120496, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101495

RESUMO

Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Matrix (FIM) and uncertainty propagation as a generally applicable method for quantifying the parameter uncertainties in linear and non-linear diffusion MRI models. In direct comparison with Markov Chain Monte Carlo (MCMC) sampling, the FIM produces similar uncertainty estimates at much lower computational cost. Using acquired and simulated data, we then list several characteristics that influence the parameter variances, including data complexity and signal-to-noise ratio. For practical purposes we investigate a possible use of uncertainty estimates in decreasing intra-group variance in group statistics by uncertainty-weighted group estimates. This has potential use cases for detection and suppression of imaging artifacts.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neuritos , Humanos , Incerteza , Imagem de Difusão por Ressonância Magnética/métodos , Cadeias de Markov , Axônios
15.
Neurobiol Dis ; 199: 106577, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38914171

RESUMO

Proper topographically organized neural connections between the thalamus and the cerebral cortex are mandatory for thalamus function. Thalamocortical (TC) fiber growth begins during the embryonic period and completes by the third trimester of gestation, so that human neonates at birth have a thalamus with a near-facsimile of adult functional parcellation. Whether congenital neocortical anomaly (e.g., lissencephaly) affects TC connection in humans is unknown. Here, via diffusion MRI fiber-tractography analysis of long-term formalin-fixed postmortem fetal brain diagnosed as lissencephaly in comparison with an age-matched normal one, we found similar topological patterns of thalamic subregions and of internal capsule parcellated by TC fibers. However, lissencephaly fetal brain showed white matter structural changes, including fewer/less organized TC fibers and optic radiations, and much less cortical plate invasion by TC fibers - particularly around the shallow central sulcus. Diffusion MRI fiber tractography of normal fetal brains at 15, 23, and 26 gestational weeks (GW) revealed dynamic volumetric change of each parcellated thalamic subregion, suggesting coupled developmental progress of the thalamus with the corresponding cortex. Moreover, from GW23 and GW26 normal fetal brains, TC endings in the cortical plate could be delineated to reflect cumulative progressive TC invasion of cortical plate. By contrast, lissencephaly brain showed a dramatic decrease in TC invasion of the cortical plate. Our study thus shows the feasibility of diffusion MRI fiber tractography in postmortem long-term formalin-fixed fetal brains to disclose the developmental progress of TC tracts coordinating with thalamic and neocortical growth both in normal and lissencephaly fetal brains at mid-gestational stage.


Assuntos
Córtex Cerebral , Imagem de Tensor de Difusão , Lisencefalia , Vias Neurais , Tálamo , Humanos , Tálamo/diagnóstico por imagem , Tálamo/patologia , Tálamo/embriologia , Córtex Cerebral/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/embriologia , Lisencefalia/patologia , Lisencefalia/diagnóstico por imagem , Vias Neurais/patologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/embriologia , Imagem de Tensor de Difusão/métodos , Feto/patologia , Feto/diagnóstico por imagem , Idade Gestacional , Feminino , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Substância Branca/embriologia , Imagem de Difusão por Ressonância Magnética/métodos
16.
Hum Brain Mapp ; 45(5): e26661, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520363

RESUMO

One fundamental challenge in diffusion magnetic resonance imaging (dMRI) harmonization is to disentangle the contributions of scanner-related effects from the variable brain anatomy for the observed imaging signals. Conventional harmonization methods rely on establishing an atlas space to resolve anatomical variability and generate a unified inter-site mapping function. However, this approach is limited in accounting for the misalignment of neuroanatomy that still widely persists even after registration, especially in regions close to cortical boundaries. To overcome this challenge, we propose a personalized framework in this paper to more effectively address the confounding from the misalignment of neuroanatomy in dMRI harmonization. Instead of using a common template representing site-effects for all subjects, the main novelty of our method is the adaptive computation of personalized templates for both source and target scanning sites to estimate the inter-site mapping function. We integrate our method with the rotation invariant spherical harmonics (RISH) features to achieve the harmonization of dMRI signals between sites. In our experiments, the proposed approach is applied to harmonize the dMRI data acquired from two scanning platforms: Siemens Prisma and GE MR750 from the Adolescent Brain Cognitive Development dataset and compared with a state-of-the-art method based on RISH features. Our results indicate that the proposed harmonization framework achieves superior performance not only in reducing inter-site variations due to scanner differences but also in preserving sex-related biological variability in original cohorts. Moreover, we assess the impact of harmonization on the estimation of fiber orientation distributions and show the robustness of the personalized harmonization procedure in preserving the fiber orientation of original dMRI signals.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Adolescente , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/patologia , Desenvolvimento do Adolescente , Processamento de Imagem Assistida por Computador/métodos
17.
Hum Brain Mapp ; 45(4): e26659, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491564

RESUMO

This study introduces a novel brain connectome matrix, track-weighted PET connectivity (twPC) matrix, which combines positron emission tomography (PET) and diffusion magnetic resonance imaging data to compute a PET-weighted connectome at the individual subject level. The new method is applied to characterise connectivity changes in the Alzheimer's disease (AD) continuum. The proposed twPC samples PET tracer uptake guided by the underlying white matter fibre-tracking streamline point-to-point connectivity calculated from diffusion MRI (dMRI). Using tau-PET, dMRI and T1-weighted MRI from the Alzheimer's Disease Neuroimaging Initiative database, structural connectivity (SC) and twPC matrices were computed and analysed using the network-based statistic (NBS) technique to examine topological alterations in early mild cognitive impairment (MCI), late MCI and AD participants. Correlation analysis was also performed to explore the coupling between SC and twPC. The NBS analysis revealed progressive topological alterations in both SC and twPC as cognitive decline progressed along the continuum. Compared to healthy controls, networks with decreased SC were identified in late MCI and AD, and networks with increased twPC were identified in early MCI, late MCI and AD. The altered network topologies were mostly different between twPC and SC, although with several common edges largely involving the bilateral hippocampus, fusiform gyrus and entorhinal cortex. Negative correlations were observed between twPC and SC across all subject groups, although displaying an overall reduction in the strength of anti-correlation with disease progression. twPC provides a new means for analysing subject-specific PET and MRI-derived information within a hybrid connectome using established network analysis methods, providing valuable insights into the relationship between structural connections and molecular distributions. PRACTITIONER POINTS: New method is proposed to compute patient-specific PET connectome guided by MRI fibre-tracking. Track-weighted PET connectivity (twPC) matrix allows to leverage PET and structural connectivity information. twPC was applied to dementia, to characterise the PET nework abnormalities in Alzheimer's disease and mild cognitive impairment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Conectoma , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Tomografia por Emissão de Pósitrons , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia
18.
Hum Brain Mapp ; 45(11): e26784, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39031955

RESUMO

Early brain development is characterized by the formation of a highly organized structural connectome, which underlies brain's cognitive abilities and influences its response to diseases and environmental factors. Hence, quantitative assessment of structural connectivity in the perinatal stage is useful for studying normal and abnormal neurodevelopment. However, estimation of the connectome from diffusion MRI data involves complex computations. For the perinatal period, these computations are further challenged by the rapid brain development, inherently low signal quality, imaging difficulties, and high inter-subject variability. These factors make it difficult to chart the normal development of the structural connectome. As a result, there is a lack of reliable normative baselines of structural connectivity metrics at this critical stage in brain development. In this study, we developed a computational method based on spatio-temporal averaging in the image space for determining such baselines. We used this method to analyze the structural connectivity between 33 and 44 postmenstrual weeks using data from 166 subjects. Our results unveiled clear and strong trends in the development of structural connectivity in the perinatal stage. We observed increases in measures of network integration and segregation, and widespread strengthening of the connections within and across brain lobes and hemispheres. We also observed asymmetry patterns that were consistent between different connection weighting approaches. Connection weighting based on fractional anisotropy and neurite density produced the most consistent results. Our proposed method also showed considerable agreement with an alternative technique based on connectome averaging. The new computational method and results of this study can be useful for assessing normal and abnormal development of the structural connectome early in life.


Assuntos
Encéfalo , Conectoma , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Feminino , Conectoma/métodos , Masculino , Adulto , Imagem de Tensor de Difusão/métodos , Vias Neurais/diagnóstico por imagem , Vias Neurais/crescimento & desenvolvimento , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Adulto Jovem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento
19.
Hum Brain Mapp ; 45(4): e26646, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433705

RESUMO

Comprising numerous subnuclei, the thalamus intricately interconnects the cortex and subcortex, orchestrating various facets of brain functions. Extracting personalized parcellation patterns for these subnuclei is crucial, as different thalamic nuclei play varying roles in cognition and serve as therapeutic targets for neuromodulation. However, accurately delineating the thalamic nuclei boundary at the individual level is challenging due to intersubject variability. In this study, we proposed a prior-guided parcellation (PG-par) method to achieve robust individualized thalamic parcellation based on a central-boundary prior. We first constructed probabilistic atlas of thalamic nuclei using high-quality diffusion MRI datasets based on the local diffusion characteristics. Subsequently, high-probability voxels in the probabilistic atlas were utilized as prior guidance to train unique multiple classification models for each subject based on a multilayer perceptron. Finally, we employed the trained model to predict the parcellation labels for thalamic voxels and construct individualized thalamic parcellation. Through a test-retest assessment, the proposed prior-guided individualized thalamic parcellation exhibited excellent reproducibility and the capacity to detect individual variability. Compared with group atlas registration and individual clustering parcellation, the proposed PG-par demonstrated superior parcellation performance under different scanning protocols and clinic settings. Furthermore, the prior-guided individualized parcellation exhibited better correspondence with the histological staining atlas. The proposed prior-guided individualized thalamic parcellation method contributes to the personalized modeling of brain parcellation.


Assuntos
Núcleos Talâmicos , Tálamo , Humanos , Reprodutibilidade dos Testes , Tálamo/diagnóstico por imagem , Encéfalo , Córtex Cerebral
20.
Hum Brain Mapp ; 45(8): e26722, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38780442

RESUMO

In this study we explore the spatio-temporal trajectory and clinical relevance of microstructural white matter changes within and beyond subcortical stroke lesions detected by free-water imaging. Twenty-seven patients with subcortical infarct with mean age of 66.73 (SD 11.57) and median initial NIHSS score of 4 (IQR 3-7) received diffusion MRI 3-5 days, 1 month, 3 months, and 12 months after symptom-onset. Extracellular free-water and fractional anisotropy of the tissue (FAT) were averaged within stroke lesions and the surrounding tissue. Linear models showed increased free-water and decreased FAT in the white matter of patients with subcortical stroke (lesion [free-water/FAT, mean relative difference in %, ipsilesional vs. contralesional hemisphere at 3-5 days, 1 month, 3 months, and 12 months after symptom-onset]: +41/-34, +111/-37, +208/-26, +251/-18; perilesional tissue [range in %]: +[5-24]/-[0.2-7], +[2-20]/-[3-16], +[5-43]/-[2-16], +[10-110]/-[2-12]). Microstructural changes were most prominent within the lesion and gradually became less pronounced with increasing distance from the lesion. While free-water elevations continuously increased over time and peaked after 12 months, FAT decreases were most evident 1 month post-stroke, gradually returning to baseline values thereafter. Higher perilesional free-water and higher lesional FAT at baseline were correlated with greater reductions in lesion size (rho = -0.51, p = .03) in unadjusted analyses only, while there were no associations with clinical measures. In summary, we find a characteristic spatio-temporal pattern of extracellular and cellular alterations beyond subcortical stroke lesions, indicating a dynamic parenchymal response to ischemia characterized by vasogenic edema, cellular damage, and white matter atrophy.


Assuntos
Imagem de Difusão por Ressonância Magnética , AVC Isquêmico , Substância Branca , Humanos , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Estudos Longitudinais , Água , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Anisotropia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA