RESUMO
The conventional proportional-gain-feedback link can only obtain the smallest effective damping region (EDR) due to the control delay among all the active damping methods regarding the capacitor current feedback. The digitally controlled system tends to be unstable when the system resonant frequency reaches the critical frequency caused by the grid impedance variation. To weaken the adverse effect on the system caused by the control delay, phase-lead feedback links are applied along the feedback path to provide phase compensation. By taking the simplicity and reliability of the feedback links into account, this paper proposes an alternative to an ideal differentiator, which consists of the Tustin discrete form of 's' and a digital low-pass filter. This proposed method has an identical phase frequency characteristic as an ideal differentiator but a better magnitude frequency characteristic, and its EDR can reach [0, fs/3]. The system stability analysis is conducted under different resonant frequencies, and under the condition of a weak grid, the co-design approach of the active damper and digital controller is presented. Finally, the experimental results are shown to verify the proposed method.
RESUMO
With the advantages of small size, low cost, and moderate accuracy, an open-loop fiber-optic gyroscope (FOG) has a wide range of applications around control and automation. For the most cost-sensitive applications, a simple and stable digital algorithm with a reduced control-circuit volume and cost is highly desirable to realize high-precision control of a FOG. In this work, a new algorithm for an open-loop FOG is proposed based on the discrete multi-point demodulation in the sinusoidal modulation period. Utilizing this algorithm, stable control and angular velocity calculation of a gyro are realized with effectively suppressed gyro error. The use of this algorithm greatly reduces the requirements for processing power and simplifies the gyro circuit. Based on this algorithm, a digital FOG with a volume of only 25 × 20 × 40 mm3 achieves a bias instability of less than 0.15°/h, an angle random walk (ARW) of less than 0.015°/âh, a start-up time of less than 1 s, and a 3 dB bandwidth beyond 160 Hz. This low-cost, compact, and high-performance gyro is sufficient to satisfy the requirements of applications in the navigation and control fields such as unmanned driving.
RESUMO
PURPOSE: This study aimed to establish an animal model in which we can precisely displace the spinal cord and therefore mimic the chronic spinal compression of cervical spondylotic myelopathy. METHODS: In vivo intervertebral compression devices (IVCDs) connected with subcutaneous control modules (SCCMs) were implanted into the C2-3 intervertebral disk spaces of sheep and connected by Bluetooth to an in vitro control system. Sixteen sheep were divided into four groups: (Group A) control; (Group B) 10-week progressive compression, then held; (Group C) 20-week progressive compression, then held; and (Group D) 20-week progressive compression, then decompression. Electrophysiological analysis (latency and amplitude of the N1-P1-N2 wave in somatosensory evoked potentials, SEP), behavioral changes (Tarlov score), imaging test (encroachment ratio (ER) of intraspinal invasion determined by X-ray and CT scan), and histological examinations (hematoxylin and eosin, Nissl, and TUNEL staining) were performed to assess the efficacy of our model. RESULTS: Tarlov scores gradually decreased as compression increased with time and partially recovered after decompression. The Pearson correlation coefficient between ER and time was r = 0.993 (p < 0.001) in Group B at 10 weeks and Groups C and D at 20 weeks. And ER was negatively correlated with the Tarlov score (r = -0.878, p < 0.001). As compression progressed, the SEP latency was significantly extended (p < 0.001), and the amplitude significantly decreased (p < 0.001), while they were both partially restored after decompression. The number of abnormal motor neurons and TUNEL-positive cells increased significantly (p < 0.001) with compression. CONCLUSION: Our implantable and wireless intervertebral compression model demonstrated outstanding controllability and reproducibility in simulating chronic cervical spinal cord compression in animals.
Assuntos
Compressão da Medula Espinal , Doenças da Medula Espinal , Osteofitose Vertebral , Animais , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/patologia , Vértebras Cervicais/cirurgia , Potenciais Somatossensoriais Evocados/fisiologia , Humanos , Reprodutibilidade dos Testes , Ovinos , Compressão da Medula Espinal/etiologia , Compressão da Medula Espinal/patologia , Compressão da Medula Espinal/cirurgia , Doenças da Medula Espinal/patologiaRESUMO
The composite converter allows integrating the high-efficiency converter modules to achieve superior efficiency performance, becoming a prominent solution for electric transport power conversion. In this work, the versatile buck-boost dc-dc converter is proposed to be integrated into an electric vehicle composite architecture that requires a wide voltage range in the dc link to improve the electric motor efficiency. The inductor core of this versatile buck-boost converter has been redesigned for high voltage applications. The versatile buck-boost converter module of the composite architecture is in charge of the control stage. It provides a dc bus voltage regulation at a wide voltage operation range, which requires step-up (boost) and step-down (buck) operating modes. The PLECS thermal simulation of the composite architecture shows a superior power conversion efficiency of the proposed topology over the well-known classical noninverting buck-boost converter under the same operating conditions. The obtained results have been validated via experimental efficiency measures and experimental transient responses of the versatile buck-boost converter. Finally, a hardware-in-the-loop (HIL) real-time simulation system of a 4.4 kW powertrain is presented using a PLECS RT Box 1 device. The HIL simulation results verified the accuracy of the theoretical analysis and the effectiveness of the proposed architecture.
Assuntos
Fontes de Energia Elétrica , Eletricidade , Simulação por ComputadorRESUMO
In this study, we designed a new type of digital hydraulic transformer using four gear-pump/motor units with a displacement ratio of 20:21:22:23 and two control valve groups that consist of four solenoid directional valves. The driving gear shafts of the four gear-pump/motor units are fixedly connected to achieve synchronous rotation. The two control valve groups are respectively installed through an integrated valve block on the inlet and outlet of each gear-pump/motor unit. With the objective of reducing the installed power and energy consumption of hydraulic traction systems, we propose a new energy-saving hydraulic system based on a digital hydraulic transformer. This hydraulic system uses a digital hydraulic transformer as a pressure/flow control element. By controlling the power on/off states of eight solenoid directional valves, the digital hydraulic transformer can realize a change in output flow and then a change in speed of the hydraulic cylinder piston rod. Through the theoretical derivation and simulation analysis of the hydraulic system pressure/flow change process, and the experimental verification of the built hydraulic traction system based on the experimental platform, a conclusion is drawn that the proposed digital hydraulic transformer can change the output pressure/flow of a hydraulic system through a binary digital control, verifying the feasibility of the pressure change principle of the designed digital hydraulic transformer and the rationality of the hydraulic traction system circuit.
RESUMO
Digital control for high switching frequency converter enables new features on DC-DC power conversion for a minimum cost. Frequency response identification is one such enabled functionality used in auto tunning, measurement of components to assess the converter's state of health, or system stability monitoring. High accuracy, flexibility to operate in open or closed loop, and minimum impact in the converter's regular operation are the frequency response identification system's goals. We propose in this paper a nonparametric identification system addressing these main goals. First, it can autoadjust the perturbation size to reduce the perturbation's impact on the converter's output quantities. Second, as it is based on spectral analysis, it is suitable for open and closed-loop operation. Third, we demonstrate the identification system's high accuracy, achieving a very low difference between the experimental measurements and the discrete model used as reference.
RESUMO
A digital closed-loop system design of a microelectromechanical systems (MEMS) disk resonator gyroscope (DRG) is proposed in this paper. Vibration models with non-ideal factors are provided based on the structure characteristics and operation mode of the sensing element. The DRG operates in force balance mode with four control loops. A closed self-excited loop realizes stable vibration amplitude on the basis of peak detection technology and phase control loop. Force-to-rebalance technology is employed for the closed sense loop. A high-frequency carrier loaded on an anchor weakens the effect of parasitic capacitances coupling. The signal detected by the charge amplifier is demodulated and converted into a digital output for subsequent processing. Considering compatibility with digital circuits and output precision demands, a low passband sigma-delta (ΣΔ) analog-to-digital converter (ADC) is implemented with a 111.8dB signal-to-noise ratio (SNR). The analog front-end and digital closed self-excited loop is manufactured with a standard 0.35 µm complementary metal-oxide-semiconductor (CMOS) technology. The experimental results show a bias instability of 2.1 °/h and a nonlinearity of 0.035% over the ± 400° full-scale range.
RESUMO
In this paper, a bi-level Delta-Sigma modulator-based MEMS gyroscope design is presented based on a Model Predictive Control (MPC) approach. The MPC is popular because of its capability of handling hard constraints. In this work, we propose to combine the 1-bit nature of the bi-level Delta-Sigma modulator output with the MPC to develop a 1-bit processing-based MPC (OBMPC). This paper will focus on the affine relationship between the 1-bit feedback and the in-loop MPC controller, as this can potentially remove the multipliers from the controller. In doing so, the computational requirement of the MPC control is significantly alleviated, which makes the 1-bit MEMS Gyroscope feasible for implementation. In addition, a stable constrained MPC is designed, so that the input will not overload the quantizer while maintaining a higher Signal-to-Noise Ratio (SNR).
RESUMO
Classical frequency-stabilized lasers have achieved high-frequency stability and reproducibility; however, their extensive wavelength spacing limits their utility in various scenarios. This study introduces a novel frequency-stabilized laser scheme that integrates a Fabry-Perot etalon (FPE) with digital control technology and wavelength modulation techniques. The FPE, characterized by multiple transmission peaks at minimal frequency intervals, provides stable frequency references for different lasers, thereby enhancing the system's flexibility and adaptability. An error signal is derived from the first-order differentiation of the FPE's transmission curve. A 180° phase difference was observed in the feedback output signal when the laser's central frequency diverged from the reference, determining that the direction of the frequency control was accordingly determined.Employing feedback control, the laser's output frequency is stabilized at the transmission peak frequency of the FPE. Experimental results demonstrate that this stabilization scheme effectively locks the laser's output wavelength to different transmission peak frequencies of the FPE, achieving 25 GHz wavelength spacing. The frequency stability is improved by two orders of magnitude on a second-level timescale, maintained within hundreds of kHz, equating to a frequency stability level of 10-10.
RESUMO
The possible utilization of biological logic circuit(s) in the integration and regulation of DNA repair is discussed. The author believes this mode of regulation likely applies to many other areas of cell biology; however, there are currently more experimental data to support its involvement in the control of DNA repair. Sequential logic processes always require a clock to orchestrate the orderly processing of events. In the proposed hypothesis, the pulses in the expression of p53 serve this function. Given the many advantages of logic type control, one would expect that in the course of ~ 3 billion years of evolution, where single cell life forms were likely the only forms of life, a biological logic type control system would have evolved to control at least some biological processes. Several other required components in addition to the 'clock' have been identified, such as; a method to temporarily inactivate repair processes when they are not required (e.g. the reversible inactivation of MGMT, a suicide repair protein, by phosphorylation); this prevents complex DNA repair systems with potentially overlapping repair functions from interfering with each other.
Assuntos
Reparo do DNA , Lógica , HumanosRESUMO
This paper describes a model predictive control method for Nine-Switch Inverter (NSI)-based AC drive systems. Two separate three-phase AC loads (dual-output mode operation) or a single six-phase load (six-phase mode operation) can be connected to output terminals of an NSI. Three different Finite Control Set Model Predictive Control (FCS-MPC) strategies are presented and described. Firstly, dual-output mode FCS-MPC provides flexible control of detached load stages without any undesirable interaction. When disseminated loads are needed to be controlled, the output terminals of NSI are individually connected to separate load stages. Secondly, six-phase mode FCS-MPC provides robust control of six-phase load current. Thirdly, the predictive control scheme for controlling multiple induction machines is presented. Experimental and simulation tests have demonstrated that the proposed method exhibits a secured converter operation. The proposed predictive control strategies of Nine-Switch Inverter are accomplished using a Field Programmable Gate Arrays (FPGA).
RESUMO
In this paper, the digital implementation of a continuous-time robust nonlinear optimal controller is presented as an experimental study with real-time computations. Complicated computations, solutions, and algorithms of nonlinear optimal policies were always reported as limits to experimental implementations. This work uses a combination of integral sliding mode control (ISMC) and the state-dependent Riccati equation (SDRE) approach for controlling an experimental setup, a rotary inverted pendulum (RIP) with nonlinear dynamics. Designing in the continuous-time domain and performing an experiment using digital computers are common and that leads to extra tuning in practice. Digital components are considered in simulations to provide a more real output and omit extra tuning. Analysis of sampling time effect on instability of a stable controller was done and the obtained bound of sampling time was verified in the experiment. The experimental study showed that the computations of the proposed controller were able to be programmed into the platform interface with time-varying sampling time which was bounded to the generated sampling time in the simulation. Successful swinging up and stabilization of the RIP demonstrated the effectiveness of the ISMC plus SDRE approach. The comparison of the proposed controller with the solo SDRE controller validated the results and showed the performance of the design.
RESUMO
In this paper, a novel control scheme for systems with input and output time-varying delays is provided in discrete-time domain. The control strategy combines predictor-like techniques with a delay-dependent gain-scheduled extended state observer. The main goal is twofold: (i) to minimize the negative effect of time-varying delays in the closed-loop performance and, (ii) to actively compensate the effect of mismatched disturbances in the controlled output. Moreover, a sufficient condition based on Linear Matrix Inequalities (LMI) is provided to obtain the maximum delay interval that ensures the stability of the closed-loop system. Finally, the achieved benefits of the proposal are shown by simulation in open-loop unstable plants, and experimentally validated in a test-bed quadrotor platform.
RESUMO
Analytical tuning rules for digital PID type-I controllers are presented regardless of the process complexity. This explicit solution allows control engineers 1) to make an accurate examination of the effect of the controller's sampling time to the control loop's performance both in the time and frequency domain 2) to decide when the control has to be I, PI and when the derivative, D, term has to be added or omitted 3) apply this control action to a series of stable benchmark processes regardless of their complexity. The former advantages are considered critical in industry applications, since 1) most of the times the choice of the digital controller's sampling time is based on heuristics and past criteria, 2) there is little a-priori knowledge of the controlled process making the choice of the type of the controller a trial and error exercise 3) model parameters change often depending on the control loop's operating point making in this way, the problem of retuning the controller's parameter a much challenging issue. Basis of the proposed control law is the principle of the PID tuning via the Magnitude Optimum criterion. The final control law involves the controller's sampling time Ts within the explicit solution of the controller's parameters. Finally, the potential of the proposed method is justified by comparing its performance with the conventional PID tuning when controlling the same process. Further investigation regarding the choice of the controller's sampling time Ts is also presented and useful conclusions for control engineers are derived.
RESUMO
Managing the aging of digital control systems ensures that nuclear power plant systems are in adequate safety margins during their life cycles. Software is a core component in the execution of control logic and differs between digital and analog control systems. The hardware aging management for the digital control system is similar to that for the analog system, which has matured over decades of study. However, software aging management is still in the exploratory stage. Software aging evaluation is critical given the higher reliability and safety requirements of nuclear power plants. To ensure effective inputs for reliability assessment, this paper provides the required software aging information during the life cycle. Moreover, the software aging management scheme for safety digital control system is proposed on the basis of collected aging information.
RESUMO
In this paper, we proposed a robust discrete-time controller. This control system, which is derived from the idea of the normalized plant, does not include plant parameters. Thus, we obtain a control system independent of plant parameters and that has the same structure as a conventional optimal servo control system. Simulation and experimental results show that the proposed method is fairly robust to plant parameter variations and external disturbances.
RESUMO
A computer-based system that automates sleep studies, including sleep deprivation paradigms, is described. The system allows for total or REM-specific sleep deprivation and is based on a reliable, fast-responding, on-line state detection algorithm linked to a dependable intervention device. Behavioral state detection is achieved by dimension reduction of short-term EEG power spectrum. Interventions are made by serial outputs to servomotors that move a cage with different patterns and variable intensity. The system can adapt itself to individual characteristics and to changes in recording conditions. Customized protocols can be designed by defining the states or stages to be deprived, including scheduling temporal patterns. A detailed analysis of the relevant signals during and after deprivation is readily available. Data is presented from two experimental designs in rats. One consisted of specific REM-sleep short-term deprivation and the other of 10-hour total sleep deprivation. An outline of conceptual and practical considerations involved in the automation of laboratory set-ups oriented to biosignal analysis is provided. Careful monitoring of sleep EEG variables during sleep deprivation suggests peculiarities of brain functioning in that condition. A corollary is that sleep deprivation should not be considered to be merely a forced prolonged wakefulness.