Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36631399

RESUMO

Due to its promising capacity in improving drug efficacy, polypharmacology has emerged to be a new theme in the drug discovery of complex disease. In the process of novel multi-target drugs (MTDs) discovery, in silico strategies come to be quite essential for the advantage of high throughput and low cost. However, current researchers mostly aim at typical closely related target pairs. Because of the intricate pathogenesis networks of complex diseases, many distantly related targets are found to play crucial role in synergistic treatment. Therefore, an innovational method to develop drugs which could simultaneously target distantly related target pairs is of utmost importance. At the same time, reducing the false discovery rate in the design of MTDs remains to be the daunting technological difficulty. In this research, effective small molecule clustering in the positive dataset, together with a putative negative dataset generation strategy, was adopted in the process of model constructions. Through comprehensive assessment on 10 target pairs with hierarchical similarity-levels, the proposed strategy turned out to reduce the false discovery rate successfully. Constructed model types with much smaller numbers of inhibitor molecules gained considerable yields and showed better false-hit controllability than before. To further evaluate the generalization ability, an in-depth assessment of high-throughput virtual screening on ChEMBL database was conducted. As a result, this novel strategy could hierarchically improve the enrichment factors for each target pair (especially for those distantly related/unrelated target pairs), corresponding to target pair similarity-levels.


Assuntos
Descoberta de Drogas , Polifarmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala
2.
J Neurooncol ; 168(1): 139-149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38662151

RESUMO

PURPOSE: Medulloblastoma (MB), a common and heterogeneous posterior fossa tumor in pediatric patients, presents diverse prognostic outcomes. To advance our understanding of MB's intricate biology, the development of novel patient tumor-derived culture MB models with necessary data is still an essential requirement. METHODS: We continuously passaged PUMC-MB1 in vitro in order to establish a continuous cell line. We examined the in vitro growth using Cell Counting Kit-8 (CCK-8) and in vivo growth with subcutaneous and intracranial xenograft models. The xenografts were investigated histopathologically with Hematoxylin and Eosin (HE) staining and immunohistochemistry (IHC). Concurrently, we explored its molecular features using Whole Genome Sequencing (WGS), targeted sequencing, and RNA sequecing. Guided by bioinformatics analysis, we validated PUMC-MB1's drug sensitivity in vitro and in vivo. RESULTS: PUMC-MB1, derived from a high-risk MB patient, displayed a population doubling time (PDT) of 48.18 h and achieved 100% tumor growth in SCID mice within 20 days. HE and Immunohistochemical examination of the original tumor and xenografts confirmed the classification of PUMC-MB1 as a classic MB. Genomic analysis via WGS revealed concurrent MYC and OTX2 amplifications. The RNA-seq data classified it within the Group 3 MB subgroup, while according to the WHO classification, it fell under the Non-WNT/Non-SHH MB. Comparative analysis with D283 and D341med identified 4065 differentially expressed genes, with notable enrichment in the PI3K-AKT pathway. Cisplatin, 4-hydroperoxy cyclophosphamide/cyclophosphamide, vincristine, and dactolisib (a selective PI3K/mTOR dual inhibitor) significantly inhibited PUMC-MB1 proliferation in vitro and in vivo. CONCLUSIONS: PUMC-MB1, a novel Group 3 (Non-WNT/Non-SHH) MB cell line, is comprehensively characterized for its growth, pathology, and molecular characteristics. Notably, dactolisib demonstrated potent anti-proliferative effects with minimal toxicity, promising a potential therapeutic avenue. PUMC-MB1 could serve as a valuable tool for unraveling MB mechanisms and innovative treatment strategies.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Inibidores de Fosfoinositídeo-3 Quinase , Serina-Treonina Quinases TOR , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Meduloblastoma/tratamento farmacológico , Meduloblastoma/patologia , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos SCID , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Bioorg Med Chem Lett ; 110: 129851, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38906336

RESUMO

Alzheimer's disease (AD) is a major cause of dementia and one of the most common chronic diseases affecting the aging population. Because AD is considered a public health priority, there is a critical need to discover novel and effective agents for the treatment of this condition. In view of the known contribution of up-regulated glutaminyl cyclase (QC) and glycogen synthase kinase-3ß (GSK-3ß) to the initiation of AD, we previously evaluated a series of dual inhibitors containing maleimide and imidazole motifs as potential anti-AD agents. Here, we assessed another series of hybrids containing maleimide and imidazole motifs to gain an in-depth understanding of the structure-activity relationship (SAR). Based on the primary screening, the introduction of 5-methyl imidazole at one side of the molecule did not enhance the QC-specific inhibitory activity of these hybrids (2, IC50 = 1.22 µM), although the potency was increased by 2' substitution on the maleimide motif at the other side of the molecule. Interestingly, compounds containing 5-methyl imidazole exhibited stronger GSK-3ß-specific inhibitory activity (2, IC50 = 0.0021 µM), and the electron-withdrawing group and 2' and 3' substitution were favorable. Further investigation of substitutions on the maleimide motif in compounds 14-35 revealed that QC-specific inhibition in the presence of piperidine was improved by introduction of a methoxy group (R2). Increasing the linker length and introduction of a methoxy group (R2) also increased the GSK-3ß-specific inhibitory potency. These findings were further confirmed by molecular docking analysis of 33 and 24 with QC and GSK-3ß. Overall, these hybrids exhibited enhanced inhibitory potency against both QC and GSK-3ß, highlighting an important strategy for improving the potency of hybrids as dual-targeting anti-AD agents.


Assuntos
Aminoaciltransferases , Glicogênio Sintase Quinase 3 beta , Imidazóis , Maleimidas , Relação Estrutura-Atividade , Maleimidas/química , Maleimidas/farmacologia , Maleimidas/síntese química , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Humanos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Estrutura Molecular , Doença de Alzheimer/tratamento farmacológico , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Relação Dose-Resposta a Droga
4.
Bioorg Chem ; 153: 107833, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39357170

RESUMO

The treatment of KRAS mutant tumors remains challenging and dual-targeted small-molecule drugs are considered to be innovative therapeutic alternatives. Herein, we discovered a series of SOS1 and EGFR dual inhibitors by employing a fused pharmacophore strategy and structural optimization. Notably, compound 4 exhibited potent SOS1 (IC50 = 8.3 nM) and EGFR (IC50 = 14.6 nM) inhibitory activities and markedly inhibited the proliferation of other KRAS-mutant cancer cell lines. Furthermore, Western blot analysis confirmed that compound 4 effectively reduced the level of downstream p-ERK. These results indicated that compound 4 could serve as a potential compound for treating KRAS mutant tumors.

5.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257391

RESUMO

Mer and c-Met kinases, which are commonly overexpressed in various tumors, are ideal targets for the development of antitumor drugs. This study focuses on the design, synthesis, and evaluation of several 2-substituted aniline pyrimidine derivatives as highly potent dual inhibitors of Mer and c-Met kinases for effective tumor treatment. Compound 18c emerged as a standout candidate, demonstrating robust inhibitory activity against Mer and c-Met kinases, with IC50 values of 18.5 ± 2.3 nM and 33.6 ± 4.3 nM, respectively. Additionally, compound 18c displayed good antiproliferative activities on HepG2, MDA-MB-231, and HCT116 cancer cells, along with favorable safety profiles in hERG testing. Notably, it exhibited exceptional liver microsomal stability in vitro, with a half-life of 53.1 min in human liver microsome. Compound 18c also exhibited dose-dependent cytotoxicity and hindered migration of HCT116 cancer cells, as demonstrated in apoptosis and migration assays. These findings collectively suggest that compound 18c holds promise as a dual Mer/c-Met agent for cancer treatment.


Assuntos
Compostos de Anilina , Anti-Hipertensivos , Humanos , Compostos de Anilina/farmacologia , Apoptose , Pirimidinas/farmacologia
6.
BMC Cancer ; 23(1): 1200, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057772

RESUMO

BACKGROUND: The mammalian target of rapamycin (mTOR) kinase, a central component of the PI3K/AKT/mTOR pathway, plays a critical role in tumor biology as an attractive therapeutic target. We conducted this first-in-human study to investigate the safety, pharmacokinetics (PK), and pilot efficacy of LXI-15029, an mTORC1/2 dual inhibitor, in Chinese patients with advanced malignant solid tumors. METHODS: Eligible patients with advanced, unresectable malignant solid tumors after failure of routine therapy or with no standard treatment were enrolled to receive ascending doses (10, 20, 40, 60, 80, 110, and 150 mg) of oral LXI-15029 twice daily (BID) (3 + 3 dose-escalation pattern) until disease progression or intolerable adverse events (AEs). The primary endpoints were safety and tolerability. RESULTS: Between June 2017 and July 2021, a total of 24 patients were enrolled. LXI-15029 was well tolerated at all doses. Only one dose-limiting toxicity (grade 3 increased alanine aminotransferase) occurred in the 150 mg group, and the maximum tolerated dose was 110 mg BID. The most common treatment-related AEs were leukocytopenia (41.7%), increased alanine aminotransferase (20.8%), increased aspartate aminotransferase (20.8%), prolonged electrocardiogram QT interval (20.8%), and hypertriglyceridemia (20.8%). No other serious treatment-related AEs were reported. LXI-15029 was absorbed rapidly after oral administration. The increases in the peak concentration and the area under the curve were greater than dose proportionality over the dose range. Eight patients had stable disease. The disease control rate was 40.0% (8/20; 95% CI 21.7-60.6). In evaluable patients, the median progression-free survival was 29 days (range 29-141). CONCLUSIONS: LXI-15029 demonstrated reasonable safety and tolerability profiles and encouraging preliminary antitumor activity in Chinese patients with advanced malignant solid tumors, which warranted further validation in phase II trials. TRIAL REGISTRATION: NCT03125746(24/04/2017), http://ClinicalTrials.gov/show/NCT03125746.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Alanina Transaminase , Antineoplásicos/uso terapêutico , População do Leste Asiático , Inibidores Enzimáticos/uso terapêutico , Dose Máxima Tolerável , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Serina-Treonina Quinases TOR
7.
Bioorg Med Chem Lett ; 94: 129466, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37660833

RESUMO

The Jumonji domain-containing protein demethylase 3 (JMJD3) and histone deacetylase (HADC) are related to various cancers and regard as antitumor targets for drug discovery. In this study, based on rational drug design strategy, we designed and synthesized a series of pyrimidine derivatives with hydroxamic acid as novel dual JMJD3 and HDAC inhibitors for synergistic cancer treatment. Compound A5b exhibited inhibitory potency against JMJD3 and HDAC1/6 simultaneously and favorable cytotoxicity against human cancer cells such as A549 and U937. Furthermore, mechanistic studies showed that A5b treatment in A549 cells increased the hypermethylation of histone H3K27 and hyperacetylation of H3K9, suppressed clonogenicity, migration and invasion of cancer cells. Besides, A5b induced apoptosis via the cleavage of caspase-7 and PARP, and G1 cell cycle arrest via upregulated p21 expression. All these results suggested that A5b was the first dual inhibitor against JMJD3 and HDAC and can be a potential compound for cancer therapy.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Humanos , Células A549 , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Pirimidinas/farmacologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia
8.
Bioorg Med Chem ; 92: 117437, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37563016

RESUMO

Tubulin and histone deacetylase have been clinically proven as promising targets for cancer therapy. Herein, we describe the design and synthesis of chiral 1,4-diarylazetidin-2-one-based hydroxamic acids as novel tubulin/HDAC dual inhibitors. Among them, compound 12a was validated to effectively disrupt tubulin polymerization, and exhibited potent HDAC1/8 inhibitory activities. Meanwhile, 12a showed good antiproliferative activities against four tumor cell lines. Further studies showed 12a works through blocking cellular cycle, inducing apoptosis and inhibiting colony formation. In addition, 12a has suitable physicochemical properties and high liver microsomal metabolic stability. Importantly, compound 12a was found to exhibit significant antitumor efficacy in vivo, thus warranting it as a promising tubulin/HDAC dual inhibitor for further development.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Moduladores de Tubulina/farmacologia , Ácidos Hidroxâmicos/química , Relação Estrutura-Atividade , Antineoplásicos/química , Tubulina (Proteína)/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases , Histona Desacetilases/metabolismo
9.
Bioorg Chem ; 136: 106563, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121107

RESUMO

The exploration of novel anaplastic lymphoma kinase (ALK) and tropomyosin receptor kinase (TRK) dual inhibitors tended to serve as targeted treatment of cancer. Herein, a series of phenyl triazole derivatives were designed and synthesized as ALK/TRK dual regulators based on structure-based drug design (SBDD) strategy and were evaluated for antiproliferative activity by MTT assay. Accordingly, all compounds showed surprising cytotoxicity with IC50 values below 10 µM on KM12, H2228 and KARPAS299 cell lines. Among them, compound 13a bearing (2-(4-methylpiperazin-1-yl)phenyl)morpholinomethanone moiety was identified as the optimal hit in enzymatic screening with IC50 values of 1.9 nM (TRKA), 7.2 nM (ALK) and 65.2 nM (ALKL1196M), respectively. Furthermore, 13a could inhibit KM12 cell migration and colony formation in a dose dependent manner. Meanwhile, AO/EB staining indicated that the pro-apoptotic effect of 13a was comparable to that of Entrectinib at the dose of 200 nM. Ultimately, the binding model of 13a with TRKA and ALK well established its mode of action which accounted for the superior activities as a promising antitumor candidate.


Assuntos
Antineoplásicos , Proteínas Tirosina Quinases , Quinase do Linfoma Anaplásico , Triazóis/farmacologia , Estudos Prospectivos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Relação Estrutura-Atividade
10.
Bioorg Chem ; 139: 106685, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37418786

RESUMO

Inflammatory responses are orchestrated by a plethora of lipid mediators, and perturbations of their biosynthesis or degradation hinder resolution and lead to uncontrolled inflammation, which contributes to diverse pathologies. Small molecules that induce a switch from pro-inflammatory to anti-inflammatory lipid mediators are considered valuable for the treatment of chronic inflammatory diseases. Commonly used non-steroidal anti-inflammatory drugs (NSAIDs) are afflicted with side effects caused by the inhibition of beneficial prostanoid formation and redirection of arachidonic acid (AA) into alternative pathways. Multi-target inhibitors like diflapolin, the first dual inhibitor of soluble epoxide hydrolase (sEH) and 5-lipoxygenase-activating protein (FLAP), promise improved efficacy and safety but are confronted by poor solubility and bioavailability. Four series of derivatives bearing isomeric thiazolopyridines as bioisosteric replacement of the benzothiazole core and two series additionally containing mono- or diaza-isosteres of the phenylene spacer were designed and synthesized to improve solubility. The combination of thiazolo[5,4-b]pyridine, a pyridinylen spacer and a 3,5-Cl2-substituted terminal phenyl ring (46a) enhances solubility and FLAP antagonism, while preserving sEH inhibition. Moreover, the thiazolo[4,5-c]pyridine derivative 41b, although being a less potent sEH/FLAP inhibitor, additionally decreases thromboxane production in activated human peripheral blood mononuclear cells. We conclude that the introduction of nitrogen, depending on the position, not only enhances solubility and FLAP antagonism (46a), but also represents a valid strategy to expand the scope of application towards inhibition of thromboxane biosynthesis.


Assuntos
Inibidores da Proteína Ativadora de 5-Lipoxigenase , Inibidores de Lipoxigenase , Humanos , Inibidores de Lipoxigenase/farmacologia , Inibidores da Proteína Ativadora de 5-Lipoxigenase/farmacologia , Solubilidade , Leucócitos Mononucleares/metabolismo , Epóxido Hidrolases/metabolismo , Inibidores Enzimáticos/farmacologia , Anti-Inflamatórios/farmacologia , Piridinas/farmacologia , Tromboxanos , Lipídeos
11.
Bioorg Chem ; 139: 106721, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37467620

RESUMO

Heat shock protein 90, also known as Hsp90, is an extensively preserved molecular chaperone that performs a critical function in organizing various biological pathways and cellular operations. As a potential drug target, Hsp90 is closely linked to cancer. Hsp90 inhibitors are a class of drugs that have been extensively studied in preclinical models and have shown promise in a variety of diseases, especially cancer. However, Hsp90 inhibitors have encountered several challenges in clinical development, such as low efficacy, toxicity, or drug resistance, few Hsp90 small molecule inhibitors have been approved worldwide. Nonetheless, combining Hsp90 inhibitors with other tumor inhibitors, such as HDAC inhibitors, tubulin inhibitors, and Topo II inhibitors, has been shown to have synergistic antitumor effects. Consequently, the development of Hsp90 dual-target inhibitors is an effective strategy in cancer treatment, as it enhances potency while reducing drug resistance. This article provides an overview of Hsp90's domain structure and biological functions, as well as a discussion of the design, discovery, and structure-activity relationships of Hsp90 dual inhibitors, aiming to provide insights into clinical drug research from a medicinal chemistry perspective and discover novel Hsp90 dual inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Proteínas de Choque Térmico HSP90 , Relação Estrutura-Atividade , Sistemas de Liberação de Medicamentos
12.
Bioorg Chem ; 134: 106442, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36878064

RESUMO

Dual inhibitors of JAK2 and FLT3 can synergistically control the development of acute myeloid leukemia (AML), and overcome secondary drug resistance of AML that is associated with FLT3 inhibition. We therefore designed and synthesized a series of 4-piperazinyl-2-aminopyrimidines as dual inhibitors of JAK2 and FLT3, and improved their selectivity for JAK2. Screening cascades revealed that compound 11r exhibited inhibitory activity with IC50 values of 2.01, 0.51, and 104.40 nM against JAK2, FLT3, and JAK3, respectively. Compound 11r achieved a high selectivity for JAK2 at a ratio of 51.94, and also showed potent antiproliferative activity in HEL (IC50 = 1.10 µM) and MV4-11 (IC50 = 9.43 nM) cell lines. In an in vitro metabolism assay, 11r exhibited moderate stability in human liver microsomes (HLMs), with a half-life time of 44.4 min, and in rat liver microsomes (RLMs), with a half-life of 143 min. In pharmacokinetic studies, compound 11r showed moderate absorption (Tmax = 5.33 h), with a peak concentration of 38.7 ng/mL and an AUC of 522 ng h/mL in rats, and an oral bioavailability of 25.2%. In addition, 11r induced MV4-11 cell apoptosis in a dose-dependent manner. These results indicate that 11r is a promising selective JAK2/FLT3 dual inhibitor.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Ratos , Humanos , Animais , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Microssomos Hepáticos/metabolismo , Apoptose , Tirosina Quinase 3 Semelhante a fms/metabolismo , Proliferação de Células , Antineoplásicos/uso terapêutico , Janus Quinase 2/metabolismo
13.
Int J Mol Sci ; 24(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37834269

RESUMO

An imbalance in PI3K/AKT/mTOR pathway signaling in humans often leads to cancer. Therefore, the investigation of anti-cancer medications that inhibit PI3K and mTOR has emerged as a significant area of research. The aim of this study was to explore the effect of XIN-10, a dual PI3K/mTOR inhibitor, on the growth as well as antiproliferation of tumor cells and to investigate the anti-tumor mechanism of XIN-10 by further exploration. We screened three cell lines for more in-depth exploration by MTT experiments. From the AO staining, cell cycle and apoptosis, we found that XIN-10 had a more obvious inhibitory effect on the MCF-7 breast cancer cell line and used this as a selection for more in-depth experiments. A series of in vitro and in vivo experiments showed that XIN-10 has superior antiproliferative activity compared with the positive drug GDC-0941. Meanwhile, through the results of protein blotting and PCR experiments, we concluded that XIN-10 can block the activation of the downstream pathway of mTOR by inhibiting the phosphorylation of AKT(S473) as well as having significant inhibitory effects on the gene exons of PI3K and mTOR. These results indicate that XIN-10 is a highly potent inhibitor with low toxicity and has a strong potential to be developed as a novel PI3Kα/mTOR dual inhibitor candidate for the treatment of positive breast cancer.


Assuntos
Neoplasias da Mama , Inibidores de MTOR , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase , Feminino , Humanos , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
14.
Molecules ; 28(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985460

RESUMO

CDK4/6 and aromatase are prominent targets for breast cancer drug discovery and are involved in abnormal cell proliferation and growth. Although aromatase inhibitors have proven to be effective (for example exemestane, anastrozole, letrozole), resistance to treatment eventually occurs through the activation of alternative signaling pathways, thus evading the antiproliferative effects of aromatase inhibitors. One of the evasion pathways is Cylin D-CDK4/6-Rb signaling that promotes tumor proliferation and resistance to aromatase inhibitors. There is significant evidence that the sequential inhibition of both proteins provides therapeutic benefits over the inhibition of one target. The basis of this study objective is the identification of molecules that are likely to inhibit both CDK4/6 and aromatase by computational chemistry techniques, which need further biochemical studies to confirm. Initially, a structure-based pharmacophore model was constructed for each target to screen the sc-PDB database. Consequently, pharmacophore screening and molecular docking were performed to evaluate the potential lead candidates that effectively mapped both of the target pharmacophore models. Considering abemaciclib (CDK4/6 inhibitor) and exemestane (aromatase inhibitor) as reference drugs, four potential virtual hit candidates (1, 2, 3, and 4) were selected based on their fit values and binding interaction after screening a sc-PDB database. Further, molecular dynamics simulation studies solidify the stability of the lead candidate complexes. In addition, ADMET and DFT calculations bolster the lead candidates. Hence, these combined computational approaches will provide a better therapeutic potential for developing CDK4/6-aromatase dual inhibitors for HR+ breast cancer therapy.


Assuntos
Inibidores da Aromatase , Neoplasias da Mama , Humanos , Feminino , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/química , Aromatase , Simulação de Acoplamento Molecular , Anastrozol/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Simulação de Dinâmica Molecular , Inibidores Enzimáticos/uso terapêutico , Quinase 4 Dependente de Ciclina
15.
Bioorg Med Chem Lett ; 71: 128825, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35644299

RESUMO

The synergistic anti-tumor effect by simultaneous inhibitions of PI3K and HDAC has been verified to provide the rationality of PI3K/HDAC dual inhibitors for cancer treatment. Notably, the outstanding effect of PI3K/HDAC dual inhibitors against DLBCL has been paid much attention, especially for RR-DLBCL. Our previously reported 4-methylquinazoine scaffold based PI3K/HDAC dual inhibitors could suppress the growth of solid tumors and hematologic malignancies both in vitro and in vivo, validating the potential as new therapeutic agents for cancer. In this research, we further investigated the anti-tumor activity of one of our compounds against DLBCL cell lines and in vivo zebrafish xenograft model as well as the underlying mechanism, hoping to provide a novel therapeutic agent for treating DLBCL.


Assuntos
Inibidores de Histona Desacetilases , Linfoma Difuso de Grandes Células B , Animais , Apoptose , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
16.
Bioorg Med Chem ; 75: 117085, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36395680

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. Here, we exploited the synergy between histone deacetylase inhibitors (HDACi) and cyclooxygenase 2 (COX-2) inhibitors by generating and testing a series of hybrid Celecoxib-HDAC inhibitors (selenium-containing analogues of Celecoxib) on ALL cells, of which compound 11 exhibited significant inducement to kill NALM6 cells with an average IC50 of 9.95 ± 0.44 µM compared with control Celecoxib at 28.58 ± 1.44 µM and inhibited NALM6 cells growth via the inhibition of the cell cycle in G2 phase. Furthermore, compound 11 induced apoptosis by activating PARP cleavage. Taken together, compound 11 possessed the potential to be developed further as a chemotherapeutic agent for ALL.

17.
Bioorg Med Chem ; 70: 116922, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35849914

RESUMO

Mitogen-activated extracellular signal-regulated kinase 1 and 2 (MEK1/2) are the critical components of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) signaling pathway which is one of the well-characterized kinase cascades regulating cell proliferation, differentiation, growth, metabolism, survival and mobility both in normal and cancer cells. The aberrant activation of MAPK/ERK1/2 pathway is a hallmark of numerous human cancers, therefore targeting the components of this pathway to inhibit its dysregulation is a promising strategy for cancer treatment. Enormous efforts have been done in the development of MEK1/2 inhibitors and encouraging advancements have been made, including four inhibitors approved for clinical use. However, due to the multifactorial property of cancer and rapidly arising drug resistance, the clinical efficacy of these MEK1/2 inhibitors as monotherapy are far from ideal. Several alternative strategies have been developed to improve the limited clinical efficacy, including the dual inhibitor which is a single drug molecule able to simultaneously inhibit two targets. In this review, we first introduced the activation and function of the MAPK/ERK1/2 components and discussed the advantages of MEK1/2-based dual inhibitors compared with the single inhibitors and combination therapy in the treatment of cancers. Then, we overviewed the MEK1/2-based dual inhibitors for the treatment of cancers and highlighted the theoretical basis of concurrent inhibition of MEK1/2 and other targets for development of these dual inhibitors. Besides, the status and results of these dual inhibitors in both preclinical and clinical studies were also the focus of this review.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Neoplasias , Humanos , MAP Quinase Quinase 1 , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno , Mitógenos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
18.
Bioorg Med Chem ; 72: 116970, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063653

RESUMO

Nitric oxide (NO) is a signalling molecule that controls a multitude of regulatory functions including neurotransmission, vascular tone, immune response, and angiogenesis. Regulating NO concentrations in cells using small molecules is an active area of research in the treatment of several pathologies such as cardiovascular disease, cancer, and inflammatory conditions. Small molecule-inhibition of critical NO regulatory enzymes, NO synthase (NOS), arginase, and dimethylarginine dimethyaminohydrolase-1 (DDAH1), has shown therapeutic benefits as well as limitations and is a focus of current research.In recent years, DDAH1 has been explored as a potential target to indirectly regulate NO in diseases characterized by excessive NO production. This review discusses the biological and pathophysiological role of the NO pathway, the existing inhibitors of NOS, arginase and DDAH1, and the conventional and structure-guided structure-activity relationship studies involved in their discovery. The key structural elements of amino acid-derived inhibitors responsible for selective inhibition of each enzyme, and the chemical features responsible for dual enzyme inhibition are also discussed. Finally, a synthetic scheme for developing both selective and dual inhibitors using common starting materials is provided, offering unique insights in the quest for the rational design of novel NO pathway inhibitors.


Assuntos
Arginase , Óxido Nítrico , Amidoidrolases , Arginina/metabolismo , Arginina/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase
19.
Bioorg Chem ; 128: 106112, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36070628

RESUMO

Herein, two series of HDAC/tubulin dual inhibitors via introducing the key pharmacophore of HDAC inhibitor into the skeletons of 2,6-diarylpyridine and 2'-arylchalcone were synthesized. Among them, 2,6-diarylpyridine-based hydroxamic acid 10a exhibited good inhibitory activity against HDAC8 (IC50 = 117 nM) with 50-fold and 42-fold high selectivity relative to HDAC1 and HDAC6, respectively. Meanwhile, 10a disrupted tubulin polymerization effectively and exhibited potent antiproliferative activity against BE-(2)-C cell line, with IC50 value of 17 nM. Mechanism studies revealed that 10a blocked cell cycle, induced cellular apoptosis and suppressed colony formation. Moreover, 10a possessed good physicochemical properties and metabolic stability. Importantly, 10a exhibited better antitumor effects in human neuroblastoma xenograft mice model than those of clinical HDAC inhibitor and tubulin inhibitor, whether used alone or in combination. These results highlighted the advantages of the HDAC8/tubulin dual inhibitor 10a as an outstanding antitumor agent.


Assuntos
Antineoplásicos , Neuroblastoma , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Camundongos , Neuroblastoma/tratamento farmacológico , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico
20.
Bioorg Chem ; 121: 105669, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35180490

RESUMO

FMS-like tyrosine kinase-3 (FLT3) and cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have been proven to play a significant role in tumor therapy. Herein, based on the previously reported JAK2/FLT3 inhibitor 18e, we described the synthesis, structure-activity relationship and biological evaluation of a series of unique 6-(pyrimidin-4-yl)-1H-pyrazolo[4,3-b]pyridine derivatives that inhibited FLT3 and CDK4 kinases. The optimized compound 23k exhibited low nanomolar range activities with IC50 values of 11 and 7 nM for FLT3 and CDK4, respectively. In the MV4-11 xenograft tumor model, the tumor growth inhibition rate of 23k dosed at 200 mg/kg was 67%, suggesting that 23k possessed an antitumor therapeutic effect.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Linhagem Celular Tumoral , Proliferação de Células , Quinase 4 Dependente de Ciclina , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases , Piridinas , Relação Estrutura-Atividade , Tirosina Quinase 3 Semelhante a fms
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA