Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.093
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(14): 3702-3716.e30, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34133940

RESUMO

Many embryonic organs undergo epithelial morphogenesis to form tree-like hierarchical structures. However, it remains unclear what drives the budding and branching of stratified epithelia, such as in the embryonic salivary gland and pancreas. Here, we performed live-organ imaging of mouse embryonic salivary glands at single-cell resolution to reveal that budding morphogenesis is driven by expansion and folding of a distinct epithelial surface cell sheet characterized by strong cell-matrix adhesions and weak cell-cell adhesions. Profiling of single-cell transcriptomes of this epithelium revealed spatial patterns of transcription underlying these cell adhesion differences. We then synthetically reconstituted budding morphogenesis by experimentally suppressing E-cadherin expression and inducing basement membrane formation in 3D spheroid cultures of engineered cells, which required ß1-integrin-mediated cell-matrix adhesion for successful budding. Thus, stratified epithelial budding, the key first step of branching morphogenesis, is driven by an overall combination of strong cell-matrix adhesion and weak cell-cell adhesion by peripheral epithelial cells.


Assuntos
Junções Célula-Matriz/metabolismo , Morfogênese , Animais , Membrana Basal/metabolismo , Adesão Celular , Divisão Celular , Movimento Celular , Rastreamento de Células , Embrião de Mamíferos/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Integrinas/metabolismo , Camundongos , Modelos Biológicos , Glândulas Salivares/citologia , Glândulas Salivares/embriologia , Glândulas Salivares/metabolismo , Transcriptoma/genética
2.
Genes Dev ; 34(3-4): 179-193, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31879358

RESUMO

The GATA-type zinc finger transcription factor TRPS1 has been implicated in breast cancer. However, its precise role remains unclear, as both amplifications and inactivating mutations in TRPS1 have been reported. Here, we used in vitro and in vivo loss-of-function approaches to dissect the role of TRPS1 in mammary gland development and invasive lobular breast carcinoma, which is hallmarked by functional loss of E-cadherin. We show that TRPS1 is essential in mammary epithelial cells, since TRPS1-mediated suppression of interferon signaling promotes in vitro proliferation and lactogenic differentiation. Similarly, TRPS1 expression is indispensable for proliferation of mammary organoids and in vivo survival of luminal epithelial cells during mammary gland development. However, the consequences of TRPS1 loss are dependent on E-cadherin status, as combined inactivation of E-cadherin and TRPS1 causes persistent proliferation of mammary organoids and accelerated mammary tumor formation in mice. Together, our results demonstrate that TRPS1 can function as a context-dependent tumor suppressor in breast cancer, while being essential for growth and differentiation of normal mammary epithelial cells.


Assuntos
Neoplasias da Mama/fisiopatologia , Carcinogênese/genética , Diferenciação Celular/genética , Células Epiteliais/citologia , Proteínas Repressoras/metabolismo , Animais , Neoplasias da Mama/genética , Caderinas/genética , Sobrevivência Celular/genética , Cromatina/genética , Cromatina/metabolismo , Modelos Animais de Doenças , Feminino , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Camundongos , Ligação Proteica/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética
3.
Proc Natl Acad Sci U S A ; 121(18): e2319833121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648480

RESUMO

Sirt2 is a nicotinamide adenine dinucleotide (NAD+)-dependent protein lysine deacylase that can remove both acetyl group and long-chain fatty acyl groups from lysine residues of many proteins. It was reported to affect inflammatory bowel disease (IBD) symptoms in a mouse model. However, conflicting roles were reported, with genetic knockout aggravating while pharmacological inhibition alleviating IBD symptoms. These seemingly conflicting reports cause confusion and deter further efforts in developing Sirt2 inhibitors as a potential treatment strategy for IBD. We investigated these conflicting reports and elucidated the role of Sirt2 in the mouse model of IBD. We essentially replicated these conflicting results and confirmed that Sirt2 inhibitors' protective effect is not through off-targets as two very different Sirt2 inhibitors (TM and AGK2) showed similar protection in the IBD mouse model. We believe that the differential effects of inhibitors and knockout are due to the fact that the Sirt2 inhibitors only inhibit some but not all the activities of Sirt2. This hypothesis is confirmed by the observation that a PROTAC degrader of Sirt2 did not protect mice in the IBD model, similar to Sirt2 knockout. Our study provides an interesting example where genetic knockout and pharmacological inhibition do not align and emphasizes the importance of developing substrate-dependent inhibitors. Importantly, we showed that the effect of Sirt2 inhibition in IBD is through regulating the gut epithelium barrier by inhibiting Arf6-mediated endocytosis of E-cadherin, a protein important for the intestinal epithelial integrity. This mechanistic understanding further supports Sirt2 as a promising therapeutic target for treating IBD.


Assuntos
Colite , Mucosa Intestinal , Sirtuína 2 , Animais , Humanos , Camundongos , Caderinas/metabolismo , Caderinas/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Modelos Animais de Doenças , Furanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinolinas , Sirtuína 2/metabolismo , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/genética
4.
Development ; 150(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36628974

RESUMO

Src kinases are important regulators of cell adhesion. Here, we have explored the function of Src42A in junction remodelling during Drosophila gastrulation. Src42A is required for tyrosine phosphorylation at bicellular (bAJ) and tricellular (tAJ) junctions in germband cells, and localizes to hotspots of mechanical tension. The role of Src42A was investigated using maternal RNAi and CRISPR-Cas9-induced germline mosaics. We find that, during cell intercalations, Src42A is required for the contraction of junctions at anterior-posterior cell interfaces. The planar polarity of E-cadherin is compromised and E-cadherin accumulates at tricellular junctions after Src42A knockdown. Furthermore, we show that Src42A acts in concert with Abl kinase, which has also been implicated in cell intercalations. Our data suggest that Src42A is involved in two related processes: in addition to establishing tension generated by the planar polarity of MyoII, it may also act as a signalling factor at tAJs to control E-cadherin residence time.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Junções Aderentes/metabolismo , Caderinas/genética , Caderinas/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Junções Intercelulares/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
5.
EMBO J ; 40(24): e108080, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34747049

RESUMO

Altered intestinal microbial composition promotes intestinal barrier dysfunction and triggers the initiation and recurrence of inflammatory bowel disease (IBD). Current treatments for IBD are focused on control of inflammation rather than on maintaining intestinal epithelial barrier function. Here, we show that the internalization of Gram-negative bacterial outer membrane vesicles (OMVs) in human intestinal epithelial cells promotes recruitment of caspase-5 and PIKfyve to early endosomal membranes via sorting nexin 10 (SNX10), resulting in LPS release from OMVs into the cytosol. Caspase-5 activated by cytosolic LPS leads to Lyn phosphorylation, which in turn promotes nuclear translocalization of Snail/Slug, downregulation of E-cadherin expression, and intestinal barrier dysfunction. SNX10 deletion or treatment with DC-SX029, a novel SNX10 inhibitor, rescues OMV-induced intestinal barrier dysfunction and ameliorates colitis in mice by blocking cytosolic LPS release, caspase-5 activation, and downstream signaling. Our results show that targeting SNX10 may be a new therapeutic approach for restoring intestinal epithelial barrier function and promising strategy for IBD treatment.


Assuntos
Membrana Externa Bacteriana/química , Caspases/metabolismo , Colite/patologia , Lipopolissacarídeos/metabolismo , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Animais , Células CACO-2 , Colite/induzido quimicamente , Colite/genética , Citosol/metabolismo , Modelos Animais de Doenças , Endossomos/metabolismo , Endossomos/transplante , Feminino , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismo
6.
J Cell Sci ; 136(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36661138

RESUMO

The fate of the two daughter cells is intimately connected to their positioning, which is in turn regulated by cell junction remodelling and orientation of the mitotic spindle. How multiple cues are integrated to dictate the ultimate positioning of daughters is not clear. Here, we identify novel mechanisms of regulation of daughter positioning in single MCF10A cells. The polarity protein, Scribble cooperates with E-cadherin for sequential roles in daughter positioning. First Scribble stabilises E-cadherin at the mitotic cortex as well as the retraction fibres, to mediate spindle orientation. Second, Scribble re-locates to the junction between the two daughters to allow a new E-cadherin-based-interface to form between them, influencing the width of the nascent daughter-daughter junction and subsequent cell positioning. Thus, E-cadherin and Scribble dynamically relocate to different intracellular sites during cell division to orient the mitotic spindle and control placement of the daughter cells after cell division. This article has an associated First Person interview with the first author of the paper.


Assuntos
Caderinas , Fuso Acromático , Humanos , Caderinas/genética , Caderinas/metabolismo , Divisão Celular/genética , Polaridade Celular/fisiologia , Junções Intercelulares/metabolismo , Fuso Acromático/metabolismo
7.
J Cell Sci ; 136(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756605

RESUMO

Proximity labeling with genetically encoded enzymes is widely used to study protein-protein interactions in cells. However, the accuracy of proximity labeling is limited by a lack of control over the enzymatic labeling process. Here, we present a light-activated proximity labeling technology for mapping protein-protein interactions at the cell membrane with high accuracy and precision. Our technology, called light-activated BioID (LAB), fuses the two halves of the split-TurboID proximity labeling enzyme to the photodimeric proteins CRY2 and CIB1. We demonstrate, in multiple cell lines, that upon illumination with blue light, CRY2 and CIB1 dimerize, reconstitute split-TurboID and initiate biotinylation. Turning off the light leads to the dissociation of CRY2 and CIB1 and halts biotinylation. We benchmark LAB against the widely used TurboID proximity labeling method by measuring the proteome of E-cadherin, an essential cell-cell adhesion protein. We show that LAB can map E-cadherin-binding partners with higher accuracy and significantly fewer false positives than TurboID.


Assuntos
Caderinas , Proteoma , Linhagem Celular , Caderinas/genética , Caderinas/metabolismo , Biotinilação
8.
J Pathol ; 262(3): 347-361, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38235615

RESUMO

Partial epithelial-mesenchymal transition (p-EMT) has recently been identified as a hybrid state consisting of cells with both epithelial and mesenchymal characteristics and is associated with the migration, metastasis, and chemoresistance of cancer cells. Here, we describe the induction of p-EMT in starved colorectal cancer (CRC) cells and identify a p-EMT gene signature that can predict prognosis. Functional characterisation of starvation-induced p-EMT in HCT116, DLD1, and HT29 cells showed changes in proliferation, morphology, and drug sensitivity, supported by in vivo studies using the chorioallantoic membrane model. An EMT-specific quantitative polymerase chain reaction (qPCR) array was used to screen for deregulated genes, leading to the establishment of an in silico gene signature that was correlated with poor disease-free survival in CRC patients along with the CRC consensus molecular subtype CMS4. Among the significantly deregulated p-EMT genes, a triple-gene signature consisting of SERPINE1, SOX10, and epidermal growth factor receptor (EGFR) was identified. Starvation-induced p-EMT was characterised by increased migratory potential and chemoresistance, as well as E-cadherin processing and internalisation. Both gene signature and E-cadherin alterations could be reversed by the proteasomal inhibitor MG132. Spatially resolving EGFR expression with high-resolution immunofluorescence imaging identified a proliferation stop in starved CRC cells caused by EGFR internalisation. In conclusion, we have gained insight into a previously undiscovered EMT mechanism that may become relevant when tumour cells are under nutrient stress, as seen in early stages of metastasis. Targeting this process of tumour cell dissemination might help to prevent EMT and overcome drug resistance. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/patologia , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Receptores ErbB , Linhagem Celular Tumoral , Caderinas/genética , Caderinas/metabolismo , Movimento Celular
9.
J Pathol ; 263(2): 226-241, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572612

RESUMO

Loss of the cell-cell adhesion protein E-cadherin underlies the development of diffuse-type gastric cancer (DGC), which is characterized by the gradual accumulation of tumor cells originating from the gastric epithelium in the surrounding stroma. How E-cadherin deficiency drives DGC formation remains elusive. Therefore, we investigated the consequences of E-cadherin loss on gastric epithelial organization utilizing a human gastric organoid model and histological analyses of early-stage DGC lesions. E-cadherin depletion from gastric organoids recapitulates DGC initiation, with progressive loss of a single-layered architecture and detachment of individual cells. We found that E-cadherin deficiency in gastric epithelia does not lead to a general loss of epithelial cohesion but disrupts the spindle orientation machinery. This leads to a loss of planar cell division orientation and, consequently, daughter cells are positioned outside of the gastric epithelial layer. Although basally delaminated cells fail to detach and instead reintegrate into the epithelium, apically mispositioned daughter cells can trigger the gradual loss of the single-layered epithelial architecture. This impaired architecture hampers reintegration of mispositioned daughter cells and enables basally delaminated cells to disseminate into the surrounding matrix. Taken together, our findings describe how E-cadherin deficiency disrupts gastric epithelial architecture through displacement of dividing cells and provide new insights in the onset of DGC. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Divisão Celular , Organoides , Neoplasias Gástricas , Células Madin Darby de Rim Canino , Animais , Cães , Estômago/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Epitélio/metabolismo , Epitélio/patologia , Proliferação de Células
10.
Exp Cell Res ; 438(1): 114029, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608805

RESUMO

Aberrant expression of airway epithelial E-cadherin is a key feature of asthma, yet the underlying mechanisms are largely unknown. Ferroptosis is a novel form of regulated cell death involved in asthma pathogenesis. This study was aimed to evaluate the role of ferroptosis and to investigate whether ferroptosis mediates E-cadherin disruption in mixed granulocyte asthma (MGA). Two murine models of MGA were established using toluene diisocyanate (TDI) or ovalbumin with Complete Freund's Adjuvant (OVA/CFA). Specific antagonists of ferroptosis, including Liproxstatin-1 (Lip-1) and Ferrostatin-1 (Fer-1) were given to the mice. The allergen-exposed mice displayed markedly shrunk mitochondria in the airway epithelia, with decreased volume and denser staining accompanied by down-regulated GPX4 as well as up-regulated FTH1 and malondialdehyde, which are markers of ferroptosis. Decreased pulmonary expression of E-cadherin was also observed, with profound loss of membrane E-cadherin in the airway epithelia, as well as increased secretion of sE-cadherin. Treatment with Lip-1 not only showed potent protective effects against the allergen-induced airway hyperresponsiveness and inflammatory responses, but also rescued airway epithelial E-cadherin expression and inhibited the release of sE-cadherin. Taken together, our data demonstrated that ferroptosis mediates airway epithelial E-cadherin dysfunction in MGA.


Assuntos
Asma , Caderinas , Modelos Animais de Doenças , Ferroptose , Granulócitos , Animais , Feminino , Camundongos , Asma/metabolismo , Asma/patologia , Asma/induzido quimicamente , Caderinas/metabolismo , Cicloexilaminas/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Granulócitos/metabolismo , Granulócitos/patologia , Camundongos Endogâmicos BALB C , Ovalbumina , Fenilenodiaminas/farmacologia , Quinoxalinas , Compostos de Espiro
11.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969853

RESUMO

Adenosine diphosphate (ADP)-ribosylation is a posttranslational modification involved in key regulatory events catalyzed by ADP-ribosyltransferases (ARTs). Substrate identification and localization of the mono-ADP-ribosyltransferase PARP12 at the trans-Golgi network (TGN) hinted at the involvement of ARTs in intracellular traffic. We find that Golgin-97, a TGN protein required for the formation and transport of a specific class of basolateral cargoes (e.g., E-cadherin and vesicular stomatitis virus G protein [VSVG]), is a PARP12 substrate. PARP12 targets an acidic cluster in the Golgin-97 coiled-coil domain essential for function. Its mutation or PARP12 depletion, delays E-cadherin and VSVG export and leads to a defect in carrier fission, hence in transport, with consequent accumulation of cargoes in a trans-Golgi/Rab11-positive intermediate compartment. In contrast, PARP12 does not control the Golgin-245-dependent traffic of cargoes such as tumor necrosis factor alpha (TNFα). Thus, the transport of different basolateral proteins to the plasma membrane is differentially regulated by Golgin-97 mono-ADP-ribosylation by PARP12. This identifies a selective regulatory mechanism acting on the transport of Golgin-97- vs. Golgin-245-dependent cargoes. Of note, PARP12 enzymatic activity, and consequently Golgin-97 mono-ADP-ribosylation, depends on the activation of protein kinase D (PKD) at the TGN during traffic. PARP12 is directly phosphorylated by PKD, and this is essential to stimulate PARP12 catalytic activity. PARP12 is therefore a component of the PKD-driven regulatory cascade that selectively controls a major branch of the basolateral transport pathway. We propose that through this mechanism, PARP12 contributes to the maintenance of E-cadherin-mediated cell polarity and cell-cell junctions.


Assuntos
ADP-Ribosilação/fisiologia , Autoantígenos/metabolismo , Caderinas/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína Quinase C/metabolismo , Antígenos CD , Catálise , Células HeLa , Humanos , Transporte Proteico , Fator de Necrose Tumoral alfa , Rede trans-Golgi/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(32): e2204473119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921442

RESUMO

E-cadherin (Ecad) is an essential cell-cell adhesion protein with tumor suppression properties. The adhesive state of Ecad can be modified by the monoclonal antibody 19A11, which has potential applications in reducing cancer metastasis. Using X-ray crystallography, we determine the structure of 19A11 Fab bound to Ecad and show that the antibody binds to the first extracellular domain of Ecad near its primary adhesive motif: the strand-swap dimer interface. Molecular dynamics simulations and single-molecule atomic force microscopy demonstrate that 19A11 interacts with Ecad in two distinct modes: one that strengthens the strand-swap dimer and one that does not alter adhesion. We show that adhesion is strengthened by the formation of a salt bridge between 19A11 and Ecad, which in turn stabilizes the swapped ß-strand and its complementary binding pocket. Our results identify mechanistic principles for engineering antibodies to enhance Ecad adhesion.


Assuntos
Anticorpos Monoclonais , Caderinas , Adesão Celular , Anticorpos Monoclonais/química , Caderinas/química , Caderinas/imunologia , Cristalografia por Raios X , Humanos , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Domínios Proteicos
13.
Genesis ; 62(1): e23543, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37649322

RESUMO

Although epithelial-mesenchymal markers play an important role in prostate cancer (PC), further research is needed to better understand their utility in diagnosis, cancer progression prevention, and treatment resistance prediction. Our study included 111 PC patients who underwent transurethral resection, as well as 16 healthy controls. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to examine the expression of E-cadherin, ß-catenin, and Vimentin. We found that E-cadherin and ß-catenin were underexpressed in primary PC tissues. E-cadherin expression was found to be inversely associated with prostate-specific antigen progression (PSA-P; serum marker of progression; p = 0.01; |r| = 0.262). Furthermore, the underexpression of two markers, E-cadherin and ß-catenin, was found to be associated with advanced tumor stage and grade (p < 0.05). On the other hand, Vimentin was overexpressed in PC patients with a fold change of 2.141, and it was associated with the diagnosis, prognosis, and prediction of treatment resistance to androgen deprivation therapy (p = 0.002), abiraterone-acid (p = 0.001), and taxanes (p = 0.029). Moreover, the current study highlighted that poor survival could be significantly found in patients who progressed after primary surgery, did not use drugs, and expressed these genes aberrantly. In Cox regression multivariate analysis (p < 0.05), a positive correlation between the Vimentin marker and coronary heart disease in PC patients was identified (p = 0.034). In summary, the present study highlights the diagnostic (p < 0.001), prognostic (p < 0.001), and therapeutic potential of Vimentin in primary PC (p < 0.05), as well as its implications for cardiovascular disease. Furthermore, we confirm the potential prognostic value of E-cadherin and ß-catenin.


Assuntos
Neoplasias da Próstata , beta Catenina , Masculino , Humanos , beta Catenina/genética , Vimentina/genética , Vimentina/análise , Vimentina/metabolismo , Antagonistas de Androgênios , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Caderinas/genética , Transição Epitelial-Mesenquimal
14.
Traffic ; 23(7): 374-390, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35575181

RESUMO

E-cadherin has a fundamental role in epithelial tissues by providing cell-cell adhesion. Polarised E-cadherin exocytosis to the lateral plasma membrane is central for cell polarity and epithelial homeostasis. Loss of E-cadherin secretion compromises tissue integrity and is a prerequisite for metastasis. Despite this pivotal role of E-cadherin secretion, the transport mechanism is still unknown. Here we identify Myosin V as the motor for E-cadherin secretion. Our data reveal that Myosin V and F-actin are required for the formation of a continuous apicolateral E-cadherin belt, the zonula adherens. We show by live imaging how Myosin V transports E-cadherin vesicles to the plasma membrane, and distinguish two distinct transport tracks: an apical actin network leading to the zonula adherens and parallel actin bundles leading to the basal-most region of the lateral membrane. E-cadherin secretion starts in endosomes, where Rab11 and Sec15 recruit Myosin V for transport to the zonula adherens. We also shed light on the endosomal sorting of E-cadherin by showing how Rab7 and Snx16 cooperate in moving E-cadherin into the Rab11 compartment. Thus, our data help to understand how polarised E-cadherin secretion maintains epithelial architecture and prevents metastasis.


Assuntos
Caderinas/metabolismo , Miosina Tipo V/metabolismo , Actinas/metabolismo , Junções Aderentes/metabolismo , Animais , Adesão Celular , Endossomos/metabolismo , Exocitose , Humanos , Metástase Neoplásica/prevenção & controle
15.
Am J Respir Cell Mol Biol ; 70(3): 165-177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37976469

RESUMO

Chronic obstructive pulmonary disease (COPD) remains a major public health challenge that contributes greatly to mortality and morbidity worldwide. Although it has long been recognized that the epithelium is altered in COPD, there has been little focus on targeting it to modify the disease course. Therefore, mechanisms that disrupt epithelial cell function in patients with COPD are poorly understood. In this study, we sought to determine whether epigenetic reprogramming of the cell-cell adhesion molecule E-cadherin, encoded by the CDH1 gene, disrupts epithelial integrity. By reducing these epigenetic marks, we can restore epithelial integrity and rescue alveolar airspace destruction. We used differentiated normal and COPD-derived primary human airway epithelial cells, genetically manipulated mouse tracheal epithelial cells, and mouse and human precision-cut lung slices to assess the effects of epigenetic reprogramming. We show that the loss of CDH1 in COPD is due to increased DNA methylation site at the CDH1 enhancer D through the downregulation of the ten-eleven translocase methylcytosine dioxygenase (TET) enzyme TET1. Increased DNA methylation at the enhancer D region decreases the enrichment of RNA polymerase II binding. Remarkably, treatment of human precision-cut slices derived from patients with COPD with the DNA demethylation agent 5-aza-2'-deoxycytidine decreased cell damage and reduced air space enlargement in the diseased tissue. Here, we present a novel mechanism that targets epigenetic modifications to reverse the tissue remodeling in human COPD lungs and serves as a proof of concept for developing a disease-modifying target.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Doença Pulmonar Obstrutiva Crônica/genética , Diferenciação Celular , Metilação de DNA , Progressão da Doença , Epigênese Genética , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas
16.
J Biol Chem ; 299(8): 104971, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37380081

RESUMO

The expression of trophoblast cell surface antigen-2 (Trop-2) is enhanced in many tumor tissues and is correlated with increased malignancy and poor survival of patients with cancer. Previously, we demonstrated that the Ser-322 residue of Trop-2 is phosphorylated by protein kinase Cα (PKCα) and PKCδ. Here, we demonstrate that phosphomimetic Trop-2 expressing cells have markedly decreased E-cadherin mRNA and protein levels. Consistently, mRNA and protein of the E-cadherin-repressing transcription factors zinc finger E-Box binding homeobox 1 (ZEB1) were elevated, suggesting transcriptional regulation of E-cadherin expression. The binding of galectin-3 to Trop-2 enhanced the phosphorylation and subsequent cleavage of Trop-2, followed by intracellular signaling by the resultant C-terminal fragment. Binding of ß-catenin/transcription factor 4 (TCF4) along with the C-terminal fragment of Trop-2 to the ZEB1 promoter upregulated ZEB1 expression. Of note, siRNA-mediated knockdown of ß-catenin and TCF4 increased the expression of E-cadherin through ZEB1 downregulation. Knockdown of Trop-2 in MCF-7 cells and DU145 cells resulted in downregulation of ZEB1 and subsequent upregulation of E-cadherin. Furthermore, wild-type and phosphomimetic Trop-2 but not phosphorylation-blocked Trop-2 were detected in the liver and/or lung of some nude mice bearing primary tumors inoculated intraperitoneally or subcutaneously with wild-type or mutated Trop-2 expressing cells, suggesting that Trop-2 phosphorylation, plays an important role in tumor cell mobility in vivo, too. Together with our previous finding of Trop-2 dependent regulation of claudin-7, we suggest that the Trop-2-mediated cascade involves concurrent derangement of both tight and adherence junctions, which may drive metastasis of epithelial tumor cells.


Assuntos
Galectina 3 , beta Catenina , Animais , Humanos , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Transição Epitelial-Mesenquimal/genética , Galectina 3/genética , Galectina 3/metabolismo , Regulação Neoplásica da Expressão Gênica , Células MCF-7 , Camundongos Nus , RNA Mensageiro/genética , Trofoblastos/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
17.
J Biol Chem ; 299(3): 102944, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707052

RESUMO

Hemagglutinin (HA), a nontoxic component of the botulinum neurotoxin (BoNT) complex, binds to E-cadherin and inhibits E-cadherin-mediated cell-cell adhesion. HA is a 470 kDa protein complex comprising six HA1, three HA2, and three HA3 subcomponents. Thus, to prepare recombinant full-length HA in vitro, it is necessary to reconstitute the macromolecular complex from purified HA subcomponents, which involves multiple purification steps. In this study, we developed NanoHA, a minimal E-cadherin inhibitor protein derived from Clostridium botulinum HA with a simple purification strategy needed for production. NanoHA, containing HA2 and a truncated mutant of HA3 (amino acids 380-626; termed as HA3mini), is a 47 kDa single polypeptide (one-tenth the molecular weight of full-length HA, 470 kDa) engineered with three types of modifications: (i) a short linker sequence between the C terminus of HA2 and N terminus of HA3; (ii) a chimeric complex composed of HA2 derived from the serotype C BoNT complex and HA3mini from the serotype B BoNT complex; and (iii) three amino acid substitutions from hydrophobic to hydrophilic residues on the protein surface. We demonstrated that NanoHA inhibits E-cadherin-mediated cell-cell adhesion of epithelial cells (e.g., Caco-2 and Madin-Darby canine kidney cells) and disrupts their epithelial barrier. Finally, unlike full-length HA, NanoHA can be transported from the basolateral side to adherens junctions via passive diffusion. Overall, these results indicate that the rational design of NanoHA provides a minimal E-cadherin inhibitor with a wide variety of applications as a lead molecule and for further molecular engineering.


Assuntos
Toxinas Botulínicas , Caderinas , Engenharia de Proteínas , Animais , Cães , Humanos , Células CACO-2 , Caderinas/antagonistas & inibidores , Clostridium botulinum , Hemaglutininas/química , Células Madin Darby de Rim Canino , Adesão Celular/efeitos dos fármacos
18.
Biochem Biophys Res Commun ; 708: 149789, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38513475

RESUMO

The tumor suppressor p53 prevents cancer development by regulating dozens of target genes with diverse biological functions. Although numerous p53 target genes have been identified to date, the dynamics and function of the regulatory network centered on p53 have not yet been fully elucidated. We herein identified inhibitor of DNA-binding/differentiation-3 (ID3) as a direct p53 target gene. p53 bound the distal promoter of ID3 and positively regulated its transcription. ID3 expression was significantly decreased in clinical lung cancer tissues, and was closely associated with overall survival outcomes in these patients. Functionally, ID3 deficiency promoted the metastatic ability of lung cancer cells through its effects on the transcriptional regulation of CDH1. Furthermore, the ectopic expression of ID3 in p53-knockdown cells restored E-cadherin expression. Collectively, the present results demonstrate that ID3 plays a tumor-suppressive role as a downstream effector of p53 and impedes lung cancer cell metastasis by regulating E-cadherin expression.


Assuntos
Neoplasias Pulmonares , Humanos , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
Genes Cells ; 28(3): 175-187, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36562594

RESUMO

In vivo, cells collectively migrate in a variety of developmental and pathological contexts. Coordinated epithelial rotation represents a unique type of collective cell migrations, which has been modeled in vitro under spatially confined conditions. Although it is known that the coordinated rotation depends on intercellular interactions, the contribution of E-cadherin, a major cell-cell adhesion molecule, has not been directly addressed on two-dimensional (2D) confined substrates. Here, using well-controlled fibronectin-coated surfaces, we tracked and compared the migratory behaviors of MDCK cells expressing or lacking E-cadherin. We observed that wild-type MDCK II cells exhibited persistent and coordinated rotations on discoidal patterns, while E-cadherin knockout cells migrated in a less coordinated manner without large-scale rotation. Our comparison of the collective dynamics between these two cell types revealed a series of changes in migratory behavior caused by the loss of E-cadherin, including a decreased global migration speed, less regularity in quantified coordination, and increased average density of topological defects. Taken together, these data demonstrate that spontaneous initiation of collective epithelial rotations depends on E-cadherin under 2D discoidal confinements.


Assuntos
Caderinas , Células Epiteliais , Animais , Cães , Caderinas/metabolismo , Adesão Celular , Células Madin Darby de Rim Canino , Movimento Celular , Células Epiteliais/metabolismo
20.
J Virol ; 97(7): e0039423, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37338373

RESUMO

Respiratory syncytial virus (RSV) infection does not cause severe disease in most of us despite suffering from multiple RSV infections during our lives. However, infants, young children, older adults, and immunocompromised patients are unfortunately vulnerable to RSV-associated severe diseases. A recent study suggested that RSV infection causes cell expansion, resulting in bronchial wall thickening in vitro. Whether the virus-induced changes in the lung airway resemble epithelial-mesenchymal transition (EMT) is still unknown. Here, we report that RSV does not induce EMT in three different in vitro lung models: the epithelial A549 cell line, primary normal human bronchial epithelial cells, and pseudostratified airway epithelium. We found that RSV increases the cell surface area and perimeter in the infected airway epithelium, which is distinct from the effects of a potent EMT inducer, transforming growth factor ß1 (TGF-ß1), driving cell elongation-indicative of cell motility. A genome-wide transcriptome analysis revealed that both RSV and TGF-ß1 have distinct modulation patterns of the transcriptome, which suggests that RSV-induced changes are distinct from EMT. IMPORTANCE We have previously shown that RSV infects ciliated cells on the apical side of the lung airway. RSV-induced cytoskeletal inflammation contributes to an uneven increase in the height of the airway epithelium, resembling noncanonical bronchial wall thickening. RSV infection changes epithelial cell morphology by modulating actin-protein 2/3 complex-driven actin polymerization. Therefore, it is prudent to investigate whether RSV-induced cell morphological changes contribute to EMT. Our data indicate that RSV does not induce EMT in at least three different epithelial in vitro models: an epithelial cell line, primary epithelial cells, and pseudostratified bronchial airway epithelium.


Assuntos
Infecções por Vírus Respiratório Sincicial , Idoso , Criança , Pré-Escolar , Humanos , Lactente , Actinas/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sinciciais Respiratórios/metabolismo , Fator de Crescimento Transformador beta1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA