Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am Sociol ; : 1-13, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36721783

RESUMO

Charles Thorpe argues sociology lacks a "language of society as a whole." He holds that positivist sociologists de-legitimated holistic theories or broad normatively oriented "social theories," leaving the discipline without discursive means to critically assess and deliberate its overall directions and those of society. Thorpe does not address holistic theory directly or explain how it differs analytically from standard "sociological theory." My intent is to clarify these matters by extending facets of his argument to illuminate the interdependence between holistic theorizing and empirical-historical social science, which is necessary to create the type of "reflexive sociology" that Thorpe argues would make sociology more cosmopolitan and capable of addressing the turbulent sociopolitical conditions in the interregnum after neoliberalism.

2.
Phys Rep ; 896: 1-84, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33041465

RESUMO

Global warming, extreme climate events, earthquakes and their accompanying socioeconomic disasters pose significant risks to humanity. Yet due to the nonlinear feedbacks, multiple interactions and complex structures of the Earth system, the understanding and, in particular, the prediction of such disruptive events represent formidable challenges to both scientific and policy communities. During the past years, the emergence and evolution of Earth system science has attracted much attention and produced new concepts and frameworks. Especially, novel statistical physics and complex networks-based techniques have been developed and implemented to substantially advance our knowledge of the Earth system, including climate extreme events, earthquakes and geological relief features, leading to substantially improved predictive performances. We present here a comprehensive review on the recent scientific progress in the development and application of how combined statistical physics and complex systems science approaches such as critical phenomena, network theory, percolation, tipping points analysis, and entropy can be applied to complex Earth systems. Notably, these integrating tools and approaches provide new insights and perspectives for understanding the dynamics of the Earth systems. The overall aim of this review is to offer readers the knowledge on how statistical physics concepts and theories can be useful in the field of Earth system science.

3.
New Phytol ; 225(1): 143-153, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31418864

RESUMO

Most ecosystems experience frequent cloud cover resulting in light that is predominantly diffuse rather than direct. Moreover, these cloudy conditions are often accompanied by rain that results in wet leaf surfaces. Despite this, our understanding of photosynthesis is built upon measurements made on dry leaves experiencing direct light. Using a modified gas exchange setup, we measured the effects of diffuse light and leaf wetting on photosynthesis in canopy species from a tropical montane cloud forest. We demonstrate significant variation in species-level response to light quality independent of light intensity. Some species demonstrated 100% higher rates of photosynthesis in diffuse light, and others had 15% greater photosynthesis in direct light. Even at lower light intensities, diffuse light photosynthesis was equal to that under direct light conditions. Leaf wetting generally led to decreased photosynthesis, particularly when the leaf surface with stomata became wet; however, there was significant variation across species. Ultimately, we demonstrate that ecosystem photosynthesis is significantly altered in response to environmental conditions that are ubiquitous. Our results help to explain the observation that net ecosystem exchange can increase in cloudy conditions and can improve the representation of these processes in Earth systems models under projected scenarios of global climate change.


Assuntos
Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Árvores/fisiologia , Planeta Terra , Ecossistema , Florestas , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Chuva , Árvores/efeitos da radiação , Água/fisiologia , Molhabilidade
4.
Glob Chang Biol ; 22(2): 682-703, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26598217

RESUMO

Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur.


Assuntos
Mudança Climática/história , Modelos Teóricos , Clima , História do Século XX , Modelos Estatísticos , Análise de Componente Principal , Temperatura , Erupções Vulcânicas
5.
J R Soc Interface ; 21(211): 20230585, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38321922

RESUMO

The idea that the Earth system self-regulates in a habitable state was proposed in the 1970s by James Lovelock, who conjectured that life plays a self-regulatory role on a planetary-level scale. A formal approach to such hypothesis was presented afterwards under a toy model known as the Daisyworld. The model showed how such life-geosphere homeostasis was an emergent property of the system, where two species with different properties adjusted their populations to the changing external environment. So far, this ideal world exists only as a mathematical or computational construct, but it would be desirable to have a real, biological implementation of Lovelock's picture beyond our one biosphere. Inspired by the exploration of synthetic ecosystems using genetic engineering and recent cell factory designs, here we propose a possible implementation for a microbial Daisyworld. This includes: (i) an explicit proposal for an engineered design of a two-strain consortia, using pH as the external, abiotic control parameter and (ii) several theoretical and computational case studies including two, three and multiple species assemblies. The special alternative implementations and their implications in other synthetic biology scenarios, including ecosystem engineering, are outlined.


Assuntos
Planeta Terra , Ecossistema , Homeostase , Consórcios Microbianos , Biologia Sintética
6.
Glob Sustain ; 6(e8): 1-14, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37692862

RESUMO

Non-technical summary: The United Nations' sustainable development goals (SDGs) articulate societal aspirations for people and our planet. Many scientists have criticised the SDGs and some have suggested that a better understanding of the complex interactions between society and the environment should underpin the next global development agenda. We further this discussion through the theory of social-ecological resilience, which emphasises the ability of systems to absorb, adapt, and transform in the face of change. We determine the strengths of the current SDGs, which should form a basis for the next agenda, and identify key gaps that should be filled. Technical summary: The United Nations' sustainable development goals (SDGs) are past their halfway point and the next global development agenda will soon need to be developed. While laudable, the SDGs have received strong criticism from many, and scholars have proposed that adopting complex adaptive or social-ecological system approaches would increase the effectiveness of the agenda. Here we dive deeper into these discussions to explore how the theory of social-ecological resilience could serve as a strong foundation for the next global sustainable development agenda. We identify the strengths and weaknesses of the current SDGs by determining which of the 169 targets address each of 43 factors affecting social-ecological resilience that we have compiled from the literature. The SDGs with the strongest connections to social-ecological resilience are the environment-focus goals (SDGs 2, 6, 13, 14, 15), which are also the goals consistently under-prioritised in the implementation of the current agenda. In terms of the 43 factors affecting social-ecological resilience, the SDG strengths lie in their communication, inclusive decision making, financial support, regulatory incentives, economic diversity, and transparency in governance and law. On the contrary, ecological factors of resilience are seriously lacking in the SDGs, particularly with regards to scale, cross-scale interactions, and non-stationarity. Social media summary: The post-2030 agenda should build on strengths of SDGs 2, 6, 13, 14, 15, and fill gaps in scale, variability, and feedbacks.

7.
Creat Nurs ; 27(4): 269-272, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34903632

RESUMO

The Planetary Health Education Framework recognizes the interdependence of human health and the health of planetary ecosystems, and centers its guidance on the paradigm of human interconnection within nature. Through the author's scholarship and art, she addresses this "paradigm work" to heal the human-nature divide. This essay explores ideas for the role of language, art, and infrastructure in supporting Planetary Health Education using the example of Earth Systems Journey, which is both an art form and a curriculum model for experiential, art-led environmental education about human integration within nature.


Assuntos
Ecossistema , Idioma , Currículo , Planeta Terra , Feminino , Educação em Saúde , Humanos
8.
PeerJ ; 9: e11926, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434657

RESUMO

Increased drought and temperatures associated with climate change have implications for ecosystem stress with risk for enhanced carbon release in sensitive biomes. Litter decomposition is a key component of biogeochemical cycling in terrestrial ecosystems, but questions remain regarding the local response of decomposition processes to climate change. This is particularly complex in mountain ecosystems where the variable nature of the slope, aspect, soil type, and snowmelt dynamics play a role. Hence, the goal of this study was to determine the role of elevation, soil type, seasonal shifts in soil moisture, and snowmelt timing on litter decomposition processes. Experimental plots containing replicate deployments of harvested lodgepole and spruce needle litter alongside needle-free controls were established in open meadows at three elevations ranging from 2,800-3,500 m in Crested Butte, Colorado. Soil biogeochemistry variables including gas flux, porewater chemistry, and microbial ecology were monitored over three climatically variable years that shifted from high monsoon rains to drought. Results indicated that elevation and soil type influenced baseline soil biogeochemical indicators; however, needle mass loss and chemical composition were consistent across the 700 m elevation gradient. Rates of gas flux were analogously consistent across a 300 m elevation gradient. The additional variable of early snowmelt by 2-3 weeks had little impact on needle chemistry, microbial composition and gas flux; however, it did result in increased dissolved organic carbon in lodgepole porewater collections suggesting a potential for aqueous export. In contrast to elevation, needle presence and seasonal variability of soil moisture and temperature both played significant roles in soil carbon fluxes. During a pronounced period of lower moisture and higher temperatures, bacterial community diversity increased across elevation with new members supplanting more dominant taxa. Microbial ecological resilience was demonstrated with a return to pre-drought structure and abundance after snowmelt rewetting the following year. These results show similar decomposition processes across a 700 m elevation gradient and reveal the sensitivity but resilience of soil microbial ecology to low moisture conditions.

9.
Earths Future ; 8(2): e2019EF001377, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32715010

RESUMO

The planetary boundaries framework defines the "safe operating space for humanity" represented by nine global processes that can destabilize the Earth System if perturbed. The water planetary boundary attempts to provide a global limit to anthropogenic water cycle modifications, but it has been challenging to translate and apply it to the regional and local scales at which water problems and management typically occur. We develop a cross-scale approach by which the water planetary boundary could guide sustainable water management and governance at subglobal contexts defined by physical features (e.g., watershed or aquifer), political borders (e.g., city, nation, or group of nations), or commercial entities (e.g., corporation, trade group, or financial institution). The application of the water planetary boundary at these subglobal contexts occurs via two approaches: (i) calculating fair shares, in which local water cycle modifications are compared to that context's allocation of the global safe operating space, taking into account biophysical, socioeconomic, and ethical considerations; and (ii) defining a local safe operating space, in which interactions between water stores and Earth System components are used to define local boundaries required for sustaining the local water system in stable conditions, which we demonstrate with a case study of the Cienaga Grande de Santa Marta wetlands in Colombia. By harmonizing these two approaches, the water planetary boundary can ensure that water cycle modifications remain within both local and global boundaries and complement existing water management and governance approaches.

10.
Law Crit ; 31(3): 309-328, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-38624488

RESUMO

The Anthropocene is a term described by Earth Systems Science to capture the recent rupture in the history of the Earth where human action has acquired the power to alter the Earth System as a whole. While normative conclusions cannot be logically derived from this descriptive fact, this paper argues that law and philosophy ought to develop responses that are ordered around human beings. Rather than arguing for legal rights or extending rights to nature, this paper focuses on obligations. Drawing on Hans Jonas, it argues that obligations are a more appropriate tool for cultivating human plurality, restraining human action and protecting future generations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA