Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Reprod Biomed Online ; 48(3): 103713, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244347

RESUMO

This commentary examines the impact of light conditions in the assisted reproductive technology (ART) laboratory, specifically considering gametes and embryo culture. While these processes traditionally occur in the absence of light within the female reproductive tract, laboratory conditions often involve exposure to varying wavelengths, intensities and light sources. Although literature reports describe potential detrimental effects of certain wavelengths of light on biological material, these findings are often based on experiments that might not reflect actual laboratory conditions. Current ART laboratory practices aim to minimize light exposure; however, some procedures necessitate light exposure, typically involving microscopy. Results from the authors' cross-sectional survey on light-intensity practices in ART laboratories revealed the frequent use of inadequate lighting, leading to errors and impacting staff well-being. A failure mode and effects analysis was used to identify potential failure modes and their impacts due to poor lighting. Overall, this manuscript stresses the importance of maintaining proper ambient lighting in the ART laboratory, balancing the potentially detrimental effects of light on gametes and embryos against the need for proper lighting for accurate procedures and staff well-being. Adequate lighting not only ensures the safety of reproductive cells, but also improves process management and the operators' psychological conditions.


Assuntos
Laboratórios , Técnicas de Reprodução Assistida , Humanos , Feminino , Estudos Transversais , Técnicas de Reprodução Assistida/efeitos adversos , Células Germinativas , Microscopia
2.
Risk Anal ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851858

RESUMO

Product safety professionals must assess the risks to consumers associated with the foreseeable uses and misuses of products. In this study, we investigate the utility of generative artificial intelligence (AI), specifically large language models (LLMs) such as ChatGPT, across a number of tasks involved in the product risk assessment process. For a set of six consumer products, prompts were developed related to failure mode identification, the construction and population of a failure mode and effects analysis (FMEA) table, risk mitigation identification, and guidance to product designers, users, and regulators. These prompts were input into ChatGPT and the outputs were recorded. A survey was administered to product safety professionals to ascertain the quality of the outputs. We found that ChatGPT generally performed better at divergent thinking tasks such as brainstorming potential failure modes and risk mitigations. However, there were errors and inconsistencies in some of the results, and the guidance provided was perceived as overly generic, occasionally outlandish, and not reflective of the depth of knowledge held by a subject matter expert. When tested against a sample of other LLMs, similar patterns in strengths and weaknesses were demonstrated. Despite these challenges, a role for LLMs may still exist in product risk assessment to assist in ideation, while experts may shift their focus to critical review of AI-generated content.

3.
Risk Anal ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977405

RESUMO

Due to the importance of the commercial aviation system and, also, the existence of countless accidents and unfortunate occurrences in this industry, there has been a need for a structured approach to deal with them in recent years. Therefore, this study presents a comprehensive and sequential model for analyzing commercial aviation accidents based on historical data and reports. The model first uses the failure mode and effects analysis (FMEA) technique to determine and score existing risks; then, the risks are prioritized using two multi-attribute decision making (MADM) methods and two novel and innovative techniques, including ranking based on intuitionistic fuzzy risk priority number and ranking based on the vague sets. These techniques are based in an intuitionistic fuzzy environment to handle uncertainties and the FMEA features. A fuzzy cognitive map is utilized to evaluate existing interactions among the risk factors, and additionally, various scenarios are implemented to analyze the role of each risk, group of risks, and behavior of the system in different conditions. Finally, the model is performed for a real case study to clarify its applicability and the two novel risk prioritization techniques. Although this model can be used for other similar complex transportation systems with adequate data, it is mainly employed to illustrate the most critical risks and for analyzing existing relationships among the concepts of the system.

4.
J Liposome Res ; 34(1): 1-17, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37144416

RESUMO

This study aimed to design and develop novel surface-engineered Depofoam formulations to extend the drug delivery to the prescribed time. The objectives are to prevent the formulation from burst release, rapid clearance by tissue macrophages, and instability and to analyze the impact of process and material variables in the characteristics of formulations. This work employed a quality-by-design coupled failure modes and effects analysis (FMEA)-risk assessment strategy. The factors for the experimental designs were chosen based on the FMEA results. The formulations were prepared by the double emulsification method followed by surface modification and characterized in terms of critical quality attributes (CQAs). The experimental data for all these CQAs were validated and optimized using the Box-Behnken design. A comparative drug release experiment was studied by the modified dissolution method. Furthermore, the stability of the formulation was also assessed. In addition, the impact of critical material attributes and critical process parameters on CQAs was evaluated using FMEA risk assessment. The optimized formulation method yielded high encapsulation efficiency (86.24 ± 0.69%) and loading capacity (24.13 ± 0.54%) with an excellent zeta potential value (-35.6 ± 4.55mV). The comparative in vitro drug release studies showed that more than 90% of the drug's release time from the surface-engineered Depofoam was sustained for up to 168 h without burst release and ensured colloidal stability. These research findings revealed that Depofoam prepared with optimized formulation and operating conditions yielded stable formulation, protected the drug from burst release, provided a prolonged release, and sufficiently controlled the drug release rate.


Assuntos
Análise do Modo e do Efeito de Falhas na Assistência à Saúde , Lipossomos , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Tamanho da Partícula
5.
J Appl Clin Med Phys ; : e14391, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988053

RESUMO

In failure modes and effects analysis (FMEA), the components of the risk priority number (RPN) for a failure mode (FM) are often chosen by consensus. We describe an empirical method for estimating the occurrence (O) and detectability (D) components of a RPN. The method requires for a given FM that its associated quality control measure be performed twice as is the case when a FM is checked for in an initial physics check and again during a weekly physics check. If instances of the FM caught by these checks are recorded, O and D can be computed. Incorporation of the remaining RPN component, Severity, is discussed. This method can be used as part of quality management design ahead of an anticipated FMEA or afterwards to validate consensus values.

6.
J Appl Clin Med Phys ; : e14393, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742819

RESUMO

PURPOSE: This study presents a novel and comprehensive framework for evaluating magnetic resonance guided radiotherapy (MRgRT) workflow by integrating the Failure Modes and Effects Analysis (FMEA) approach with Time-Driven Activity-Based Costing (TDABC). We assess the workflow for safety, quality, and economic implications, providing a holistic understanding of the MRgRT implementation. The aim is to offer valuable insights to healthcare practitioners and administrators, facilitating informed decision-making regarding the 0.35T MRIdian MR-Linac system's clinical workflow. METHODS: For FMEA, a multidisciplinary team followed the TG-100 methodology to assess the MRgRT workflow's potential failure modes. Following the mitigation of primary failure modes and workflow optimization, a treatment process was established for TDABC analysis. The TDABC was applied to both MRgRT and computed tomography guided RT (CTgRT) for typical five-fraction stereotactic body RT (SBRT) treatments, assessing total workflow and costs associated between the two treatment workflows. RESULTS: A total of 279 failure modes were identified, with 31 categorized as high-risk, 55 as medium-risk, and the rest as low-risk. The top 20% risk priority numbers (RPN) were determined for each radiation oncology care team member. Total MRgRT and CTgRT costs were assessed. Implementing technological advancements, such as real-time multi leaf collimator (MLC) tracking with volumetric modulated arc therapy (VMAT), auto-segmentation, and increasing the Linac dose rate, led to significant cost savings for MRgRT. CONCLUSION: In this study, we integrated FMEA with TDABC to comprehensively evaluate the workflow and the associated costs of MRgRT compared to conventional CTgRT for five-fraction SBRT treatments. FMEA analysis identified critical failure modes, offering insights to enhance patient safety. TDABC analysis revealed that while MRgRT provides unique advantages, it may involve higher costs. Our findings underscore the importance of exploring cost-effective strategies and key technological advancements to ensure the widespread adoption and financial sustainability of MRgRT in clinical practice.

7.
J Appl Clin Med Phys ; 25(4): e14261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194600

RESUMO

PURPOSE: To identify high-priority risks in a clinical trial investigating the use of radiation to alleviate COVID-19 pneumonia using a multi-phase failure modes and effects analysis (FMEA). METHODS: A comprehensive FMEA survey of 133 possible causes of failure was developed for the clinical trial workflow (Phase I). The occurrence, severity, and detection risk of each possible cause of failure was scored by three medical physicists. High-risk potential failure modes were identified using the risk priority number (RPN) and severity scores, which were re-scored by 13 participants in radiation oncology (Phase II). Phase II survey scores were evaluated to identify steps requiring possible intervention and examine risk perception patterns. The Phase II participants provided consensus scores as a group. RESULTS: Thirty high-priority failure modes were selected for the Phase II survey. Strong internal consistency was shown in both surveys using Cronbach's alpha (αc ≥ 0.85). The 10 failures with the largest median RPN values concerned SARS-CoV-2 transmission (N = 6), wrong treatment (N = 3), and patient injury (N = 1). The median RPN was larger for COVID-related failures than other failure types, primarily due to the perceived difficulty of failure detection. Group re-scoring retained 8/10 of the highest-priority risk steps that were identified in the Phase II process, and discussion revealed interpretation differences of process steps and risk evaluation. Participants who were directly involved with the trial working group had stronger agreement on severity scores than those who were not. CONCLUSIONS: The high ranking of failures concerning SARS-CoV-2 transmission suggest that these steps may require additional quality management intervention when treating critically ill COVID-19+ patients. The results also suggest that a multi-phase FMEA survey led by a facilitator may be a useful tool for assessing risks in radiation oncology procedures, supporting future efforts to adapt FMEA to clinical procedures.


Assuntos
COVID-19 , Análise do Modo e do Efeito de Falhas na Assistência à Saúde , Humanos , Ensaios Clínicos como Assunto , COVID-19/epidemiologia , Pulmão , Planejamento da Radioterapia Assistida por Computador/métodos , Medição de Risco , SARS-CoV-2
8.
Sensors (Basel) ; 24(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38894302

RESUMO

In this article, the authors focus on the introduction of a hybrid method for risk-based fault detection (FD) using dynamic principal component analysis (DPCA) and failure method and effect analysis (FMEA) based Bayesian networks (BNs). The FD problem has garnered great interest in industrial application, yet methods for integrating process risk into the detection procedure are still scarce. It is, however, critical to assess the risk each possible process fault holds to differentiate between non-safety-critical and safety-critical abnormalities and thus minimize alarm rates. The proposed method utilizes a BN established through FMEA analysis of the supervised process and the results of dynamical principal component analysis to estimate a modified risk priority number (RPN) of different process states. The RPN is used parallel to the FD procedure, incorporating the results of both to differentiate between process abnormalities and highlight critical issues. The method is showcased using an industrial benchmark problem as well as the model of a reactor utilized in the emerging liquid organic hydrogen carrier (LOHC) technology.

9.
Strahlenther Onkol ; 199(4): 350-359, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931889

RESUMO

PURPOSE: Risk management (RM) is a key component of patient safety in radiation oncology (RO). We investigated current approaches on RM in German RO within the framework of the Patient Safety in German Radiation Oncology (PaSaGeRO) project. Aim was not only to evaluate a status quo of RM purposes but furthermore to discover challenges for sustainable RM that should be addressed in future research and recommendations. METHODS: An online survey was conducted from June to August 2021, consisting of 18 items on prospective and reactive RM, protagonists of RM, and self-assessment concerning RM. The survey was designed using LimeSurvey and invitations were sent by e­mail. Answers were requested once per institution. RESULTS: In all, 48 completed questionnaires from university hospitals, general and non-academic hospitals, and private practices were received and considered for evaluation. Prospective and reactive RM was commonly conducted within interprofessional teams; 88% of all institutions performed prospective risk analyses. Most institutions (71%) reported incidents or near-events using multiple reporting systems. Results were presented to the team in 71% for prospective analyses and 85% for analyses of incidents. Risk conferences take place in 46% of institutions. 42% nominated a manager/committee for RM. Knowledge concerning RM was mostly rated "satisfying" (44%). However, 65% of all institutions require more information about RM by professional societies. CONCLUSION: Our results revealed heterogeneous patterns of RM in RO departments, although most departments adhered to common recommendations. Identified mismatches between recommendations and implementation of RM provide baseline data for future research and support definition of teaching content.


Assuntos
Segurança do Paciente , Radioterapia (Especialidade) , Humanos , Radioterapia (Especialidade)/métodos , Estudos Prospectivos , Inquéritos e Questionários , Gestão de Riscos
10.
Clin Chem Lab Med ; 61(4): 608-626, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36716120

RESUMO

The EU In-Vitro Diagnostic Device Regulation (IVDR) aims for transparent risk-and purpose-based validation of diagnostic devices, traceability of results to uniquely identified devices, and post-market surveillance. The IVDR regulates design, manufacture and putting into use of devices, but not medical services using these devices. In the absence of suitable commercial devices, the laboratory can resort to laboratory-developed tests (LDT) for in-house use. Documentary obligations (IVDR Art 5.5), the performance and safety specifications of ANNEX I, and development and manufacture under an ISO 15189-equivalent quality system apply. LDTs serve specific clinical needs, often for low volume niche applications, or correspond to the translational phase of new tests and treatments, often extremely relevant for patient care. As some commercial tests may disappear with the IVDR roll-out, many will require urgent LDT replacement. The workload will also depend on which modifications to commercial tests turns them into an LDT, and on how national legislators and competent authorities (CA) will handle new competences and responsibilities. We discuss appropriate interpretation of ISO 15189 to cover IVDR requirements. Selected cases illustrate LDT implementation covering medical needs with commensurate management of risk emanating from intended use and/or design of devices. Unintended collateral damage of the IVDR comprises loss of non-profitable niche applications, increases of costs and wasted resources, and migration of innovative research to more cost-efficient environments. Taking into account local specifics, the legislative framework should reduce the burden on and associated opportunity costs for the health care system, by making diligent use of existing frameworks.


Assuntos
Serviços de Laboratório Clínico , Kit de Reagentes para Diagnóstico , Humanos , Kit de Reagentes para Diagnóstico/normas , União Europeia , Serviços de Laboratório Clínico/legislação & jurisprudência
11.
Biologicals ; 84: 101713, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793309

RESUMO

In the current transition to intensified upstream processing, the risks of adopting traditional single-use systems for high-titer, long-duration perfusion cultures, have thus far not been considered. This case study uses the Failure Modes and Effects Analysis (FMEA) method to evaluate the risks associated with implementing upstream single-use technology. The simulated model process was used to compare the risk level of single-use technology for a traditional fed-batch cell culture with that for perfusion culture, under the same annual protein production conditions. To provide a reasonable source of potential risk for FMEA, all single-use upstream operations for both fed-batch and perfusion processes were investigated using an analytical method developed to quantify the impact of process parameters and operating conditions on single-use system specifications and to ensure objectivity. Many of the risks and their levels, were similar in long-duration perfusion cultures and fed-batch cultures. However, differences were observed for high-risk components such as daily sampling and installation. The result of this analysis indicates that the reasons for risk are different for fed-batch cultures and perfusion cultures such as larger bioreactors in fed-batch and longer runs in perfusion, respectively. This risk assessment method could identify additional control measures and be part of a holistic contamination control strategy and help visualize their effectiveness.


Assuntos
Produtos Biológicos , Animais , Cricetinae , Reatores Biológicos , Técnicas de Cultura Celular por Lotes/métodos , Anticorpos Monoclonais , Perfusão , Cricetulus
12.
J Oncol Pharm Pract ; 29(8): 1884-1892, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36718981

RESUMO

INTRODUCTION: Personnel involved in the preparation of cytotoxics are exposed to them and the resulting risks. To protect themselves, many means of protection are currently implemented. Nevertheless, the exposure of these manipulators remains a possibility to be considered. MATERIALS AND METHODS: The study was conducted during the period (October-November 2022) in the pharmacy of the National Institute of Oncology (INO), a hospital structure specializing in cancer care. The Failure Mode, Effects and Criticality Analysis method was used to assess the risks of exposure of personnel in a central cytotoxic preparation unit and then calculate the criticality index (CI = severity × frequency × detectability). The risks were classified into toxic, traumatic, chemical, and environmental risks. We have cited 12 failure modes of which nine are minor and three are major. The three major modes cited are essentially related to the particulate environment, direct contact and daily passive inhalation of handling. CONCLUSION: Our study shows that in our institution, the analysis of the risk of exposure of personnel to cytotoxics remains important, hence the interest of automaton in charge of preparations and which will gradually take charge of all the preparations. The existing procedures and the pharmacotechnical equipment used also contribute to protection and risk reduction.


Assuntos
Antineoplásicos , Assistência Farmacêutica , Humanos , Medição de Risco , Antineoplásicos/efeitos adversos , Erros de Medicação/prevenção & controle , Hospitais
13.
J Oncol Pharm Pract ; 29(1): 88-95, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34751068

RESUMO

INTRODUCTION: Prior to implementing a new computerized prescription order entry (CPOE) application, the potential risks associated with this system were assessed and compared to those of paper-based prescriptions. The goal of this study is to identify the vulnerabilities of the CPOE process in order to adapt its design and prevent these potential risks. METHODS AND MATERIALS: Failure mode and effects analysis (FMEA) was used as a prospective risk-management technique to evaluate the chemotherapy medication process in a university hospital oncology clinic. A multidisciplinary team assessed the process and compared the critical steps of a newly developed CPOE application versus paper-based prescriptions. The potential severity, occurrence and detectability were assessed prior to the implementation of the CPOE application in the clinical setting. RESULTS: The FMEA led to the identification of 24 process steps that could theoretically be vulnerable, therefore called failure modes. These failure modes were grouped into four categories of potential risk factors: prescription writing, patient scheduling, treatment dispensing and patient follow-up. Criticality scores were calculated and compared for both strategies. Three failure modes were prioritized and led to modification of the CPOE design. Overall, the CPOE pathway showed a potential risk reduction of 51% compared to paper-based prescriptions. CONCLUSION: FMEA was found to be a useful approach to identify potential risks in the chemotherapy medication process using either CPOE or paper-based prescriptions. The e-prescription mode was estimated to result in less risk than the traditional paper mode.


Assuntos
Análise do Modo e do Efeito de Falhas na Assistência à Saúde , Sistemas de Registro de Ordens Médicas , Humanos , Erros de Medicação/prevenção & controle , Estudos Prospectivos , Prescrições , Hospitais Universitários
14.
J Appl Clin Med Phys ; 24(3): e13850, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36411990

RESUMO

BACKGROUND AND PURPOSE: Newer technologies allow for daily treatment adaptation, providing the ability to account for setup variations and organ motion but comes at the cost of increasing the treatment workflow complexity. One such technology is the adapt-to-position (ATP) workflow on the Unity MR-Linac. Prospective risk assessment of a new workflow allows clinics to catch errors before they occur, especially for processes that include novel and unfamiliar steps. METHODS: As part of a quality management program, failure modes and effects analysis was performed on the ATP treatment workflow following the recommendations of AAPM's Task Group 100. A multidisciplinary team was formed to identify and evaluate failure modes for all the steps taken during a daily treatment workflow. Failure modes of high severity and overall score were isolated and addressed. RESULTS: Mitigations were determined for high-ranking failure modes and implemented into the clinic. High-ranking failure modes existed in all steps of the workflow. Failure modes were then rescored to evaluate the effectiveness of the mitigations. CONCLUSION: Failure modes and effects analysis on the Unity MR-Linac highlighted areas in the ATP workflow that could be prone to failures and allowed our clinic to change the process to be more robust.


Assuntos
Trifosfato de Adenosina , Humanos , Fluxo de Trabalho , Estudos Prospectivos , Medição de Risco
15.
Sensors (Basel) ; 23(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36850676

RESUMO

Low-power wide area network (LPWAN) technologies such as IQRF are becoming increasingly popular for a variety of Internet of Things (IoT) applications, including smart cities, industrial control, and home automation. However, LPWANs are vulnerable to cyber attacks that can disrupt the normal operation of the network or compromise sensitive information. Therefore, analyzing cybersecurity risks before deploying an LPWAN is essential, as it helps identify potential vulnerabilities and threats as well as allowing for proactive measures to be taken to secure the network and protect against potential attacks. In this paper, a security risk analysis of IQRF technology is conducted utilizing the failure mode effects analysis (FMEA) method. The results of this study indicate that the highest risk corresponds to four failure modes, namely compromised end nodes, a compromised coordinator, a compromised gateway and a compromised communication between nodes. Moreover, through this methodology, a qualitative risk evaluation is performed to identify potential security threats in the IQRF network and propose countermeasures to mitigate the risk of cyber attacks on IQRF networks.

16.
Sensors (Basel) ; 23(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430581

RESUMO

Although the smart home industry is rapidly emerging, it faces the risk of privacy security that cannot be neglected. As this industry now has a complex combination system involving multiple subjects, it is difficult for the traditional risk assessment method to meet these new security requirements. In this study, a privacy risk assessment method based on the combination of system theoretic process analysis-failure mode and effect analysis (STPA-FMEA) is proposed for a smart home system, considering the interaction and control of 'user-environment-smart home product'. A total of 35 privacy risk scenarios of 'component-threat-failure-model-incident' combinations are identified. The risk priority numbers (RPN) was used to quantitatively assess the level of risk for each risk scenario and the role of user and environmental factors in influencing the risk. According to the results, the privacy management ability of users and the security state of the environment have significant effects on the quantified values of the privacy risks of smart home systems. The STPA-FMEA method can identify the privacy risk scenarios of a smart home system and the insecurity constraints in the hierarchical control structure of the system in a relatively comprehensive manner. Additionally, the proposed risk control measures based on the STPA-FMEA analysis can effectively reduce the privacy risk of the smart home system. The risk assessment method proposed in this study can be widely applied to the field of risk research of complex systems, and this study can contribute to the improvement of privacy security of smart home systems.

17.
Sensors (Basel) ; 23(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112382

RESUMO

In today's global environment, supplier selection is one of the critical strategic decisions made by supply chain management. The supplier selection process involves the evaluation of suppliers based on several criteria, including their core capabilities, price offerings, lead times, geographical proximity, data collection sensor networks, and associated risks. The ubiquitous presence of internet of things (IoT) sensors at different levels of supply chains can result in risks that cascade to the upstream end of the supply chain, making it imperative to implement a systematic supplier selection methodology. This research proposes a combinatorial approach for risk assessment in supplier selection using the failure mode effect analysis (FMEA) with hybrid analytic hierarchy process (AHP) and the preference ranking organization method for enrichment evaluation (PROMETHEE). The FMEA is used to identify the failure modes based on a set of supplier criteria. The AHP is implemented to determine the global weights for each criterion, and PROMETHEE is used to prioritize the optimal supplier based on the lowest supply chain risk. The integration of multicriteria decision making (MCDM) methods overcomes the shortcomings of the traditional FMEA and enhances the precision of prioritizing the risk priority numbers (RPN). A case study is presented to validate the combinatorial model. The outcomes indicate that suppliers were evaluated more effectively based on company chosen criteria to select a low-risk supplier over the traditional FMEA approach. This research establishes a foundation for the application of multicriteria decision-making methodology for unbiased prioritization of critical supplier selection criteria and evaluation of different supply chain suppliers.

18.
Socioecon Plann Sci ; 87: 101551, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37255588

RESUMO

The COVID-19 pandemic has disrupted the humanitarian supply chain management (HSCM) necessary for delivering emergency items during the disaster. The combined effects of climate change and the pandemic uncover the vulnerabilities of humanitarian supply chain operations and highlight the importance of risk management. This study aimed to identify priority risk factors and proposed mitigating risk strategies of a local government that is at the forefront of relief operations. It used Grey Relational Analysis (GRA) method to validate the Failure Mode and Effect Analysis (FMEA) approach in identifying priority issues relating to the supply chain risks. This paper reveals that the results of FMEA and GRA are almost similar.

19.
Artigo em Russo | MEDLINE | ID: mdl-38142339

RESUMO

The organization and implementation of quality management system in medical organization based on internal quality control and safety of medical activities, permits to implement continuous improvement of organization functioning, to eliminate errors or undesirable occurrences as well as to prevent causes of premature mortality and to contribute into increasing of indicator of life expectancy.The implementation of risk-oriented approach in management of medical organization within the framework of internal quality control and safety of medical activities is actual and necessary condition in accordance with adopted regulatory legal acts. Currently, in the healthcare system there are no developed and approved methods of developing infrastructure of risk management in medical organization. The purpose of the study: to apply the FMEA analysis and Pareto diagram technologies to quantify and rank risks of health harm in development of organizational and managerial decision-making. The sociological method was applied to identify violations in provision of medical care, including their frequency and possible risks. The FMEA analysis was implemented to each undesirable occurrence (risk), considering frequency of its occurrence. The priority number of risk (PMR) is calculated and risk register is compiled. The Pareto diagram construction technology made it possible to assess significance and to build risk matrix.


Assuntos
Atenção à Saúde , Gestão de Riscos , Humanos , Assistência ao Paciente
20.
Cytotherapy ; 24(3): 356-364, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34865960

RESUMO

BACKGROUND AIMS: Bone marrow (BM) is commonly used in the pediatric and adult setting as a source of hematopoietic stem cells (HSCs). The standards of the Joint Accreditation Committee of the International Society for Cell & Gene Therapy & European Society for Blood and Marrow Transplantation (JACIE) include specific requirements regarding BM collection, processing and distribution. To run this process, each transplant team develops a series of JACIE-compliant procedures, customizing them with regard to local settings and paths. Moreover, JACIE standards require that transplant teams validate and periodically revise their procedures to keep the entire process under control. In this article, the authors describe the methodology adopted in our center to fulfill the aforementioned JACIE requirements. METHODS: The authors developed a validation plan based on the failure mode and effect analysis (FMEA) methodology. According to the FMEA approach, the authors carefully revised activities and procedures connected to BM collection, processing and distribution at our institution. The entire process was initially divided into five main phases (assessment of donor eligibility, perioperative autologous blood donation, preparation of BM collection kit, BM harvesting and BM processing and distribution), comprising 17 subphases and 22 activities. RESULTS: For each activity, one or more failure modes were identified, for a total of 28 failure modes, and a risk priority number (RPN) was then assigned to each failure mode. Although many procedures were validated, others were subjected to substantial changes according to the RPN rating. Moreover, specific indicators were identified for subsequent monitoring to contain the risk of failure of steps emerging as critical at FMEA. CONCLUSIONS: This is the first study describing use of the FMEA methodology within an HSC transplant program. Shaping the risk analysis based on local experience may be a trustworthy tool for identifying critical issues, directing strict monitoring of critical steps or even amending connected procedures. Overall, the FMEA approach enabled the authors to improve our process, checking its consistency over time.


Assuntos
Análise do Modo e do Efeito de Falhas na Assistência à Saúde , Medula Óssea , Criança , Humanos , Medição de Risco , Doadores de Tecidos , Coleta de Tecidos e Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA