Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Math Appl ; 74(9): 2068-2088, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29225420

RESUMO

This paper discusses a method of stabilizing Lagrange multiplier fields used to couple thin immersed shell structures and surrounding fluids. The method retains essential conservation properties by stabilizing only the portion of the constraint orthogonal to a coarse multiplier space. This stabilization can easily be applied within iterative methods or semi-implicit time integrators that avoid directly solving a saddle point problem for the Lagrange multiplier field. Heart valve simulations demonstrate applicability of the proposed method to 3D unsteady simulations. An appendix sketches the relation between the proposed method and a high-order-accurate approach for simpler model problems.

2.
J Mech Behav Biomed Mater ; 134: 105415, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049369

RESUMO

Proximal humerus impacted fractures are of clinical concern in the elderly population. Prediction of such fractures by CT-based finite element methods encounters several major obstacles such as heterogeneous mechanical properties and fracture due to compressive strains. We herein propose to investigate a variation of the phase field method (PFM) embedded into the finite cell method (FCM) to simulate impacted humeral fractures in fresh frozen human humeri. The force-strain response, failure loads and the fracture path are compared to experimental observations for validation purposes. The PFM (by means of the regularization parameter ℓ0) is first calibrated by one experiment and thereafter used for the prediction of the mechanical response of two other human fresh frozen humeri. All humeri are fractured at the surgical neck and strains are monitored by Digital Image Correlation (DIC). Experimental strains in the elastic regime are reproduced with good agreement (R2=0.726), similarly to the validated finite element method (Dahan et al., 2022). The failure pattern and fracture evolution at the surgical neck predicted by the PFM mimic extremely well the experimental observations for all three humeri. The maximum relative error in the computed failure loads is 3.8%. To the best of our knowledge this is the first method that can predict well the experimental compressive failure pattern as well as the force-strain relationship in proximal humerus fractures.


Assuntos
Fraturas do Ombro , Tomografia Computadorizada por Raios X , Idoso , Análise de Elementos Finitos , Humanos , Úmero , Fenômenos Mecânicos , Fraturas do Ombro/cirurgia , Tomografia Computadorizada por Raios X/métodos
3.
Materials (Basel) ; 12(13)2019 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-31284616

RESUMO

Nanoporous metals represent a fascinating class of materials. They consist of a bi-continuous three-dimensional network of randomly intersecting pores and ligaments where the ligaments form the skeleton of the structure. The open-pore structure allows for applying a thin electrolytic coating on the ligaments. In this paper, we will investigate the stiffening effect of a polymer coating numerically. Since the coating adds an additional difficulty for the discretization of the microstructure by finite elements, we apply the finite cell method. This allows for deriving a mesh in a fully automatic fashion from the high resolution 3D voxel model stemming from the 3D focused ion beam-scanning electron microscope tomography data of nanoporous gold. By manipulating the voxel model in a straightforward way, we add a thin polymer layer of homogeneous thickness numerically and study its effect on the macroscopic elastic properties systematically. In order to lower the influence of the boundary conditions on the results, the window method, which is known from homogenization procedures, is applied. In the second part of the paper, we fill the gap between numerical simulations and experimental investigations and determine real material properties of an electrolytic applied polypyrrole coating by inverse computations. The simulations provide an estimate for the mechanical properties of the ligaments and the polymeric coating and are in accordance with experimental data.

4.
Int J Numer Method Biomed Eng ; 34(4): e2951, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29265715

RESUMO

This work presents a numerical discretization technique for solving 3-dimensional material interface problems involving complex geometry without conforming mesh generation. The finite cell method (FCM), which is a high-order fictitious domain approach, is used for the numerical approximation of the solution without a boundary-conforming mesh. Weak discontinuities at material interfaces are resolved by using separate FCM meshes for each material sub-domain and weakly enforcing the interface conditions between the different meshes. Additionally, a recently developed hierarchical hp-refinement scheme is used to locally refine the FCM meshes to resolve singularities and local solution features at the interfaces. Thereby, higher convergence rates are achievable for nonsmooth problems. A series of numerical experiments with 2- and 3-dimensional benchmark problems is presented, showing that the proposed hp-refinement scheme in conjunction with the weak enforcement of the interface conditions leads to a significant improvement of the convergence rates, even in the presence of singularities. Finally, the proposed technique is applied to simulate a vertebra-implant model. The application showcases the method's potential as an accurate simulation tool for biomechanical problems involving complex geometry, and it demonstrates its flexibility in dealing with different types of geometric description.


Assuntos
Análise de Elementos Finitos , Fenômenos Biomecânicos , Análise Numérica Assistida por Computador , Parafusos Pediculares , Coluna Vertebral/cirurgia , Estresse Mecânico
5.
Artigo em Inglês | MEDLINE | ID: mdl-28294574

RESUMO

The voxel finite cell method uses unfitted finite element meshes and voxel quadrature rules to seamlessly transfer computed tomography data into patient-specific bone discretizations. The method, however, still requires the explicit parametrization of boundary surfaces to impose traction and displacement boundary conditions, which constitutes a potential roadblock to automation. We explore a phase-field-based formulation for imposing traction and displacement constraints in a diffuse sense. Its essential component is a diffuse geometry model generated from metastable phase-field solutions of the Allen-Cahn problem that assumes the imaging data as initial condition. Phase-field approximations of the boundary and its gradient are then used to transfer all boundary terms in the variational formulation into volumetric terms. We show that in the context of the voxel finite cell method, diffuse boundary conditions achieve the same accuracy as boundary conditions defined over explicit sharp surfaces, if the inherent length scales, ie, the interface width of the phase field, the voxel spacing, and the mesh size, are properly related. We demonstrate the flexibility of the new method by analyzing stresses in a human femur and a vertebral body.


Assuntos
Osso e Ossos/diagnóstico por imagem , Fêmur/fisiologia , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Tomografia Computadorizada por Raios X
6.
J Biomech ; 49(4): 520-7, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26873282

RESUMO

Computational models for the personalized analysis of human femurs contain uncertainties in bone material properties and loads, which affect the simulation results. To quantify the influence we developed a probabilistic framework based on polynomial chaos (PC) that propagates stochastic input variables through any computational model. We considered a stochastic E-ρ relationship and a stochastic hip contact force, representing realistic variability of experimental data. Their influence on the prediction of principal strains (ϵ1 and ϵ3) was quantified for one human proximal femur, including sensitivity and reliability analysis. Large variabilities in the principal strain predictions were found in the cortical shell of the femoral neck, with coefficients of variation of ≈40%. Between 60 and 80% of the variance in ϵ1 and ϵ3 are attributable to the uncertainty in the E-ρ relationship, while ≈10% are caused by the load magnitude and 5-30% by the load direction. Principal strain directions were unaffected by material and loading uncertainties. The antero-superior and medial inferior sides of the neck exhibited the largest probabilities for tensile and compression failure, however all were very small (pf<0.001). In summary, uncertainty quantification with PC has been demonstrated to efficiently and accurately describe the influence of very different stochastic inputs, which increases the credibility and explanatory power of personalized analyses of human proximal femurs.


Assuntos
Fêmur , Fenômenos Mecânicos , Modelagem Computacional Específica para o Paciente , Incerteza , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Processos Estocásticos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA