Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 203(2)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33106347

RESUMO

The RNA-binding protein CsrA is a posttranscriptional regulator encoded by genomes throughout the bacterial phylogeny. In the gammaproteobacteria, the activity of CsrA is inhibited by small RNAs that competitively sequester CsrA binding. In contrast, the firmicute Bacillus subtilis encodes a protein inhibitor of CsrA called FliW, which noncompetitively inhibits CsrA activity but for which the precise mechanism of antagonism is unclear. Here, we take an unbiased genetic approach to identify residues of FliW important for CsrA inhibition and these residues fall into two distinct spatial and functional classes. Most loss-of-function alleles mutated FliW residues surrounding the critical regulatory CsrA residue N55 and abolished interaction between the two proteins. Two loss-of-function alleles, however, mutated FliW residues near the CsrA core dimerization domain and maintained interaction with CsrA. One of the FliW alleles reversed a residue charge to disrupt a salt bridge with the CsrA core, and a compensatory charge reversal in the CsrA partner residue restored both the salt bridge and antagonism. We propose a model in which the initial interaction between FliW and CsrA is necessary but not sufficient for antagonism, and for which salt bridge formation with, and deformation of, the CsrA core domain is likely required to allosterically abolish RNA-binding activity.IMPORTANCE CsrA is a small dimeric protein that binds RNA and is one of the few known examples of transcript-specific protein regulators of translation in bacteria. A protein called FliW binds to and antagonizes CsrA to govern flagellin homeostasis and flagellar assembly. Despite having a high-resolution three-dimensional structure of the FliW-CsrA complex, the mechanism of noncompetitive inhibition remains unresolved. Here, we identify FliW residues required for antagonism and we find that the residues make a linear connection in the complex from initial binding interaction with CsrA to a critical salt bridge near the core of the CsrA dimer. We propose that the salt bridge represents an allosteric contact that distorts the CsrA core to prevent RNA binding.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/farmacologia , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Alelos , Sequência de Aminoácidos , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Mutação com Perda de Função/genética , Conformação Proteica , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/química , Proteínas Repressoras/genética
2.
Proc Natl Acad Sci U S A ; 113(35): 9870-5, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27516547

RESUMO

CsrA (carbon storage regulator A) is a widely distributed bacterial RNA binding protein that regulates translation initiation and mRNA stability of target transcripts. In γ-proteobacteria, CsrA activity is competitively antagonized by one or more small RNAs (sRNAs) containing multiple CsrA binding sites, but CsrA in bacteria outside the γ-proteobacteria is antagonized by a protein called FliW. Here we show that FliW of Bacillus subtilis does not bind to the same residues of CsrA required for RNA binding. Instead, CsrA mutants resistant to FliW antagonism (crw) altered residues of CsrA on an allosteric surface of previously unattributed function. Some crw mutants abolished CsrA-FliW binding, but others did not, suggesting that FliW and RNA interaction is not mutually exclusive. We conclude that FliW inhibits CsrA by a noncompetitive mechanism that differs dramatically from the well-established sRNA inhibitors. FliW is highly conserved with CsrA in bacteria, appears to be the ancestral form of CsrA regulation, and represents a widespread noncompetitive mechanism of CsrA control.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Ligação Competitiva , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , RNA/química , RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Homologia de Sequência de Aminoácidos
3.
Proc Natl Acad Sci U S A ; 113(36): 10168-73, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27551070

RESUMO

Regulation of translation is critical for maintaining cellular protein levels, and thus protein homeostasis. The conserved RNA-binding protein CsrA (also called RsmA; for carbon storage regulator and regulator of secondary metabolism, respectively; hereafter called CsrA) represents a well-characterized example of regulation at the level of translation initiation in bacteria. Binding of a CsrA homodimer to the 5'UTR of an mRNA occludes the Shine-Dalgarno sequence, blocking ribosome access for translation. Small noncoding RNAs (sRNAs) can competitively antagonize CsrA activity by a well-understood mechanism. However, the regulation of CsrA by the protein FliW is just emerging. FliW antagonizes the CsrA-dependent repression of translation of the flagellar filament protein, flagellin. Crystal structures of the FliW monomer reveal a novel, minimal ß-barrel-like fold. Structural analysis of the CsrA/FliW heterotetramer shows that FliW interacts with a C-terminal extension of CsrA. In contrast to the competitive regulation of CsrA by sRNAs, FliW allosterically antagonizes CsrA in a noncompetitive manner by excluding the 5'UTR from the CsrA-RNA binding site. Our phylogenetic analysis shows that the FliW-mediated regulation of CsrA regulation is the ancestral state in flagellated bacteria. We thus demonstrate fundamental mechanistic differences in the regulation of CsrA by sRNA in comparison with an ancient regulatory protein.


Assuntos
Proteínas de Escherichia coli/química , Flagelos/química , Flagelina/química , Iniciação Traducional da Cadeia Peptídica , RNA Bacteriano/química , Proteínas de Ligação a RNA/química , Proteínas Repressoras/química , Regulação Alostérica , Motivos de Aminoácidos , Bacillus subtilis/classificação , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Flagelos/ultraestrutura , Flagelina/genética , Flagelina/metabolismo , Expressão Gênica , Geobacillus/classificação , Geobacillus/genética , Geobacillus/metabolismo , Modelos Moleculares , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Homologia Estrutural de Proteína
4.
Front Microbiol ; 12: 735616, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675903

RESUMO

Clostridioides difficile flagellin FliC is associated with toxin gene expression, bacterial colonization, and virulence, and is also involved in pleiotropic gene regulation during in vivo infection. However, how fliC expression is regulated in C. difficile remains unclear. In Bacillus subtilis, flagellin homeostasis and motility are coregulated by flagellar assembly factor (FliW), flagellin Hag (FliC homolog), and Carbon storage regulator A (CsrA), which is referred to as partner-switching mechanism "FliW-CsrA-Hag." In this study, we characterized FliW and CsrA functions by deleting or overexpressing fliW, csrA, and fliW-csrA in C. difficile R20291. We showed that fliW deletion, csrA overexpression in R20291, and csrA complementation in R20291ΔWA (fliW-csrA codeletion mutant) dramatically decreased FliC production, but not fliC gene transcription. Suppression of fliC translation by csrA overexpression can be relieved mostly when fliW was coexpressed, and no significant difference in FliC production was detected when only fliW was complemented in R20291ΔWA. Further, loss of fliW led to increased biofilm formation, cell adhesion, toxin production, and pathogenicity in a mouse model of C. difficile infection (CDI), while fliW-csrA codeletion decreased toxin production and mortality in vivo. Our data suggest that CsrA negatively modulates fliC expression and FliW indirectly affects fliC expression through inhibition of CsrA post-transcriptional regulation. In light of "FliW-CsrA-Hag" switch coregulation mechanism reported in B. subtilis, our data also suggest that "FliW-CsrA-fliC/FliC" can regulate many facets of C. difficile R20291 pathogenicity. These findings further aid us in understanding the virulence regulation in C. difficile.

5.
Front Microbiol ; 8: 1060, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659885

RESUMO

Flagella-driven motility enables bacteria to reach their favorable niche within the host. The human foodborne pathogen Campylobacter jejuni produces two heavily glycosylated structural flagellins (FlaA and FlaB) that form the flagellar filament. It also encodes the non-structural FlaC flagellin which is secreted through the flagellum and has been implicated in host cell invasion. The mechanisms that regulate C. jejuni flagellin biogenesis and guide the proteins to the export apparatus are different from those in most other enteropathogens and are not fully understood. This work demonstrates the importance of the putative flagellar protein FliS in C. jejuni flagella assembly. A constructed fliS knockout strain was non-motile, displayed reduced levels of FlaA/B and FlaC flagellin, and carried severely truncated flagella. Pull-down and Far Western blot assays showed direct interaction of FliS with all three C. jejuni flagellins (FlaA, FlaB, and FlaC). This is in contrast to, the sensor and regulator of intracellular flagellin levels, FliW, which bound to FlaA and FlaB but not to FlaC. The FliS protein but not FliW preferred binding to glycosylated C. jejuni flagellins rather than to their non-glycosylated recombinant counterparts. Mapping of the binding region of FliS and FliW using a set of flagellin fragments showed that the C-terminal subdomain of the flagellin was required for FliS binding, whereas the N-terminal subdomain was essential for FliW binding. The separate binding subdomains required for FliS and FliW, the different substrate specificity, and the differential preference for binding of glycosylated flagellins ensure optimal processing and assembly of the C. jejuni flagellins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA