Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.451
Filtrar
1.
Biochem Biophys Res Commun ; 691: 149307, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38011821

RESUMO

Many proteins and peptides can aggregate into amyloid fibrils with high-ordered and cross-ß rich structure characteristics. Amyloid deposition is a common feature of neurodegenerative diseases called amyloidosis. Various natural polyphenolic compounds such as curcumin exhibited antiamyloidogenic activities, but less researches were focused on the metal complexes of these compounds. In this study, the inhibitory effects of gallium curcumin (Ga(cur)3), indium curcumin (In(cur)3), and vanadyl curcumin (VO(cur)2) on the amyloid fibrillation of hen egg white lysozyme (HEWL) have been investigated. Moreover, the details of binding interactions of these metal complexes with HEWL have been explored. The results of fluorescence quenching analyses revealed that In(cur)3 and VO(cur)2 have much higher binding affinities than Ga(cur)3 toward HEWL. The interactions of these metal complexes were accompanied by partial conformational changes in the tertiary structure of HEWL. The kinetic curves of the fibrillation process demonstrated that In(cur)3 and VO(cur)2 have higher inhibitory effects than Ga(cur)3 on the amyloid fibrillation of HEWL. The strength of binding to HEWL is completely in accordance with inhibitory activities of these metal complexes of curcumin.


Assuntos
Complexos de Coordenação , Curcumina , Gálio , Curcumina/farmacologia , Curcumina/química , Gálio/farmacologia , Índio , Vanadatos , Muramidase/metabolismo , Amiloide/metabolismo
2.
J Mol Recognit ; 37(4): e3086, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38686702

RESUMO

Organophosphorus are typically hazardous chemicals used in the pharmaceutical, agricultural, and other industries. They pose a serious risk to human life and can be fatal upon direct exposure. Hence, studying the interaction between such compounds with proteins is crucial for environmental, health, and food safety. In this study, we investigated the interaction mechanism between azinphos-methyl (AZM) and ß-lactoglobulin (BLG) at pH 7.4 using a combination of biophysical techniques. Intrinsic fluorescence investigations revealed that BLG fluorescence was quenched in the presence of increasing AZM concentrations. The quenching mechanism was identified as static, as evidenced by a decrease in the fluorescence quenching constant (1.25 × 104, 1.18 × 104, and 0.86 × 104 M-1) with an increase in temperatures. Thermodynamic calculations (ΔH > 0; ΔS > 0) affirmed the formation of a complex between AZM and BLG through hydrophobic interactions. The BLG's secondary structure was found to be increased due to AZM interaction. Ultraviolet -visible spectroscopy data showed alterations in BLG conformation in the presence of AZM. Molecular docking highlighted the significant role of hydrophobic interactions involving residues such as Val43, Ile56, Ile71, Val92, Phe105, and Met107 in the binding between BLG and AZM. A docking energy of -6.9 kcal mol-1, and binding affinity of 1.15 × 105 M-1 suggest spontaneous interaction between AZM and BLG with moderate to high affinity. These findings underscore the potential health risks associated with the entry of AZM into the food chain, emphasizing the need for further consideration of its impact on human health.


Assuntos
Azinfos-Metil , Lactoglobulinas , Simulação de Acoplamento Molecular , Praguicidas , Termodinâmica , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Bovinos , Animais , Azinfos-Metil/química , Praguicidas/química , Praguicidas/metabolismo , Espectrometria de Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Estrutura Secundária de Proteína
3.
Electrophoresis ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034741

RESUMO

Detection of florfenicol (FF) residues in animal-derived foods, as one of the most widely used antibiotics, is critically important to food safety. The fluorescent molecularly imprinted polymer (MIP) was synthesized by surface-initiated atom transfer radical polymerization technique with poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres, 4-vinylpyridine, ethylene glycol dimethacrylate, and FF as the matrix, functional monomer, crosslinker, and template molecule, respectively. Meanwhile, N-S co-doped carbon dot (CD) was synthesized with triammonium citrate and thiourea as precursors under microwave irradiation at 400 W for 2.5 min and then integrated into FF-MIP to obtain CD@FF-MIP. For comparison, non-imprinted polymer (NIP) without FF was also prepared. The adsorption capacity of CD@FF-MIP to FF reached 53.1 mg g-1, which was higher than that of FF-MIP (34.7 mg g-1), whereas the adsorption capacity of NIP was only 17.3 mg g-1. The adsorption equilibrium of three materials was reached within 50 min. Particularly, CD@FF-MIP exhibited an excellent fluorescence quenching response to FF in the concentration range of 3-50 µmol L-1. As a result, CD@FF-MIP was successfully utilized to extract FF in milk samples, which were analyzed by high-performance liquid chromatography. The standard recoveries were 95.8%-98.2%, and the relative standard deviation was 1.6%-4.2%. The method showed the advantages of simple operation, high sensitivity, excellent selectivity, and low cost, and also demonstrated a great application prospect in food detection.

4.
Insect Mol Biol ; 33(4): 405-416, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38478920

RESUMO

Odorant-binding proteins (OBPs) initiate insect olfactory perception and mediate specific binding and selection of odorants via uncertain binding mechanisms. We characterized the binding characteristics of four OBPs from the striped flea beetle Phyllotreta striolata (SFB), a major cruciferous crop pest. Tissue expression analysis revealed that the two ABPII OBPs (PstrOBP12 and PstrOBP19) were highly expressed mainly in the antenna, whereas the two minus-C OBPs (PstrOBP13 and PstrOBP16) showed a broad expression pattern. Competitive binding assays of cruciferous plant volatiles showed that PstrOBP12, PstrOBP16 and PstrOBP19 had very strong binding capacities for only two phthalate esters (Ki < 20 µM), and PstrOBP13 specifically bound to four aromatic volatiles (Ki < 11 µM). Fluorescence quenching assays displayed that two phthalate esters bound to three PstrOBPs via different quenching mechanisms. PstrOBP12/PstrOBP16-diisobutyl phthalate and PstrOBP19-bis(6-methylheptyl) phthalate followed static quenching, while PstrOBP12/PstrOBP16-bis(6-methylheptyl) phthalate and PstrOBP19-diisobutyl phthalate followed dynamic quenching. Homology modelling and molecular docking displayed that PstrOBP12-diisobutyl phthalate was driven by H-bonding and van der Waals interactions, while PstrOBP16-diisobutyl phthalate and PstrOBP19-bis(6-methylheptyl) phthalate followed hydrophobic interactions. Finally, behavioural activity analysis demonstrated that phthalate esters exhibited different behavioural activities of SFB at different doses, with low doses attracting and high doses repelling. Overall, we thus revealed the different binding properties of the three PstrOBPs to two phthalate esters, which was beneficial in shedding light on the ligand-binding mechanisms of OBPs.


Assuntos
Besouros , Ésteres , Proteínas de Insetos , Ácidos Ftálicos , Receptores Odorantes , Animais , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/química , Besouros/metabolismo , Ácidos Ftálicos/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Ésteres/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Filogenia
5.
Chemistry ; : e202400777, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924153

RESUMO

Following a new approach, we prepared a nanoink with two separate photothermally responsive absorption bands. One is the localized surface plasmon resonance (LSPR) absorption of gold nanoparticles (AuNP, d=17 nm), the second is the absorption band of two cyanine (Cy) dyes, Cy7-C6 or Cy7-C11, grafted to the AuNP surface through thiolated bridges of different lengths: the close proximity to the Au surface induces full quenching of the Cy fluorescence, resulting in thermal relaxation on irradiation. Attempts to full coat AuNP with the lipophilic Cy7-C6 and Cy7-C11 lead to precipitation from aqueous solutions. We thus prepared AuNP with partial pegylation (30, 50, or 70 %), using a long chain thiol-terminated PEG bearing a -COOH function. Addition until saturation of either Cy7-C6 or Cy7-C11 to the partially pegylated AuNP gave the AuNP@Cy/PEGX% hybrids (X=30, 50, 70) that are stable in water and in the water/alcohol mixtures used to prepare the nanoinks. Further overcoating of AuNP@Cy7-C6/PEG50 % with PAH (polyallylamine hydrochloride) avoids LSPR hybridization in the dry nanoink printouts, that present two separate bands. When irradiated with laser sources near their absorption maxima, the printouts of the AuNP@Cy7-C6/PEG50 %@PAH nanoink respond on two channels, giving different temperature increases depending on the irradiation wavelengths. This enhances the potentiality of use of these nanoinks for photothermal anticounterfait printouts, making more difficult to reproduce the correct ΔT vs λirradiation output.

6.
Anal Biochem ; 695: 115649, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39154879

RESUMO

Ascorbic acid (Vitamin C) is crucial for bodily functions, including collagen synthesis, immune system support and antioxidant defense. Despite autism spectrum disorder's multifactorial nature involving genetic, environmental and neurological factors, robust evidence exploring the association between ascorbic acid and this disorder is notably lacking. This study introduces an innovative spectrofluorometric method to quantify ascorbic acid in the plasma of healthy children and those with autism spectrum disorder. The method relies on the interaction of ascorbic acid with the fluorescent dye propidium iodide. In acidic conditions, propidium iodide undergoes protonation and selectively binds to the negatively charged ascorbic acid forming an ion-pair complex. This complex alters the molecular structure of propidium iodide inducing chemical fluorescence quenching, that can be utilized for ascorbic acid quantification. The developed method undergoes rigorous validation following ICH guidelines, demonstrating a linear relationship within a concentration range of 4-40 µg/mL, with high precision and accuracy metrics. Analysis of real plasma samples from autistic and healthy children reveals clinically and statistically elevated levels of ascorbic acid in those with autism spectrum disorder.

7.
Mol Pharm ; 21(6): 2673-2683, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38682796

RESUMO

The permeation of small molecules across biological membranes is a crucial process that lies at the heart of life. Permeation is involved not only in the maintenance of homeostasis at the cell level but also in the absorption and biodistribution of pharmacologically active substances throughout the human body. Membranes are formed by phospholipid bilayers that represent an energy barrier for permeating molecules. Crossing this energy barrier is assumed to be a singular event, and permeation has traditionally been described as a first-order kinetic process, proportional only to the concentration gradient of the permeating substance. For a given membrane composition, permeability was believed to be a unique property dependent only on the permeating molecule itself. We provide experimental evidence that this long-held view might not be entirely correct. Liposomes were used in copermeation experiments with a fluorescent probe, where simultaneous permeation of two substances occurred over a single phospholipid bilayer. Using an assay of six commonly prescribed drugs, we have found that the presence of a copermeant can either enhance or suppress the permeation rate of the probe molecule, often more than 2-fold in each direction. This can have significant consequences for the pharmacokinetics and bioavailability of commonly prescribed drugs when used in combination and provide new insight into so-far unexplained drug-drug interactions as well as changing the perspective on how new drug candidates are evaluated and tested.


Assuntos
Lipossomos , Lipossomos/química , Bicamadas Lipídicas/metabolismo , Humanos , Fosfolipídeos/química , Medicamentos sob Prescrição/farmacocinética , Medicamentos sob Prescrição/química , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/química , Membrana Celular/metabolismo , Permeabilidade
8.
Chem Rec ; 24(2): e202300232, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37695081

RESUMO

Fluorescence spectroscopy provides numerous methodological tools for structural and functional studies of biological macromolecules and their complexes. All fluorescence-based approaches require either existence of an intrinsic probe or an introduction of an extrinsic one. Moreover, studies of complex systems often require an additional introduction of a specific quencher molecule acting in combination with a fluorophore to provide structural or thermodynamic information. Here, we review the fundamentals and summarize the latest progress in applications of different classes of fluorescent probes and their specific quenchers, aimed at studies of protein folding and protein-membrane interactions. Specifically, we discuss various environment-sensitive dyes, FRET probes, probes for short-distance measurements, and several probe-quencher pairs for studies of membrane penetration of proteins and peptides. The goals of this review are: (a) to familiarize the readership with the general concept that complex biological systems often require both a probe and a quencher to decipher mechanistic details of functioning and (b) to provide example of the immediate applications of the described methods.


Assuntos
Corantes Fluorescentes , Dobramento de Proteína , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Proteínas , Lipídeos
9.
Photochem Photobiol Sci ; 23(4): 665-679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443738

RESUMO

Nanosized alginate-based particles (NAPs) were obtained in a one-pot solvent-free synthesis procedure, achieving the design of a biocompatible nanocarrier for the encapsulation of IbM6 antimicrobial peptide (IbM6). IbM6 is integrated in the nascent nanosized hydrogel self-assembly guided by electrostatic interactions and by weak interactions, typical of soft matter. The formation of the nanogel is a dynamic and complex process, which presents an interesting temporal evolution. In this work, we optimized the synthesis conditions of IbM6-NAPs based on small-angle X-ray scattering (SAXS) measurements and evaluated its time evolution over several weeks by sensing the IbM6 environment in IbM6-NAPs from photochemical experiments. Fluorescence deactivation experiments revealed that the accessibility of different quenchers to the IbM6 peptide embedded in NAPs is dependent on the aging time of the alginate network. Lifetimes measurements indicate that the deactivation paths of the excited state of the IbM6 in the nanoaggregates are reduced when compared with those exhibited by the peptide in aqueous solution, and are also dependent on the aging time of the nanosized alginate network. Finally, the entrapment of IbM6 in NAPs hinders the degradation of the peptide by trypsin, increasing its antimicrobial activity against Escherichia coli K-12 in simulated operation conditions.


Assuntos
Alginatos , Escherichia coli K12 , Polietilenoglicóis , Polietilenoimina , Nanogéis , Peptídeos Antimicrobianos , Espalhamento a Baixo Ângulo , Difração de Raios X , Peptídeos/farmacologia , Escherichia coli
10.
Nanotechnology ; 35(31)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38604135

RESUMO

The fluorescence quenching of carboxyl-rich g-C3N4nanoparticles was found to be selective to Ag+and Ce3+with a limit of detection as low as 30 pM for Ag+ions. A solid-state thermal polycondensation reaction was used to produce g-C3N4nanoparticles with distinct green fluorescence and high water solubility. Dynamic light scattering indicated an average nanoparticle size of 95 nm. The photoluminescence absorption and emission maxima were centered at 405 nm and 540 nm respectively which resulted in a large Stokes shift. Among different metal ion species, the carboxyl-rich g-C3N4nanoparticles were selective to Ag+and Ce3+ions, as indicated by strong fluorescence quenching and a change in the fluorescence lifetime. The PL sensing of heavy metal ions followed modified Stern-Volmer kinetics, and CNNPs in the presence of Ag+/Ce3+resulted in a higher value ofKapp(8.9 × 104M-1) indicating a more efficient quenching process and stronger interaction between CNNP and mixed ions. Sensing was also demonstrated using commercial filter paper functionalized with g-C3N4nanoparticles, enabling practical on-site applications.

11.
J Fluoresc ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028447

RESUMO

Nitroxyl radical compounds, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), are stable radical compounds with a variety of unique characteristics, including fluorescence quenching. In this study, we investigated the fluorescence quenching effect of nortropine N-oxyl (NNO), which is a highly active nitroxyl radical that is more active than TEMPO in oxidation catalysis. The fluorescence intensity of 7-amino-4-methylcoumarin (AMC) was quenched by NNO and TEMPO to 5% and 95% of the initial fluorescence intensity, respectively, indicating highly efficient quenching by NNO. In addition, we used this reaction to measure glutathione concentration. The quenching effect of NNO was abrogated by the chemical reaction with glutathione, resulting in restoration of AMC fluorescence. This response was observed at glutathione concentrations from 10 µM to 1 mM, and good calibration curves were obtained from 10 to 250 µM.

12.
J Fluoresc ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470535

RESUMO

The effect of temperature on the absorption and emission characteristics of 3-(benzo[d]thiazol-2-yl)-7-(diethylamino)-2H-chromen-2-one (3BT7D2H-one) laser dye in glycerol solvent has been studied by the steady-state method. Fluorescence intensity decreases with an increase in temperature and shifts towards a shorter wavelength. Parameters like fluorescence lifetime, rate constants, activation energy, and dipole moment (using the thermochromic method) are determined experimentally. Also, the temperature effect on rotational diffusion of 3BT7D2H-one laser dye is studied and also estimated theoretical and experimental hydrodynamic volumes.

13.
J Fluoresc ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416282

RESUMO

Abnormal tryptophan (Trp) metabolism can be used as an important indicator of chronic hepatitis, paranoia, Parkinson's disease and other diseases. Deficiency or excessive accumulation of Cu2+ can cause diseases such as Wilson's disease and Alzheimer's disease. Eu-based metal-organic framework (Eu-MOF) was successfully prepared for fluorescence sensing of Trp and Cu2+ in an aqueous solution (pH = 7.4). Eu-MOF showed high selectivity and sensitivity for Trp and Cu2+ with detection limits of 0.22 µM and 0.09 µM and Ksv of 6.17 × 103 M- 1 and 2.37 × 104 M- 1 respectively. Trp and Cu2+ had overlapped UV absorption spectra with that of Eu-MOF and competed for the excitation light source. Trp also attenuated the antennae effect of organic ligands on Eu-MOF, thus quenching the red fluorescence of Eu-MOF. This study provides insights into the application of MOFs in bioanalysis and diagnostics.

14.
J Fluoresc ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193954

RESUMO

This work describes the luminescent properties of the new compound ß-(hydroxyaryl)-butenolides recently discovered. The compounds were subjected to UV-Vis absorption and fluorescence analyzes when diluted in different solvents. Through the results, it was possible to observe that the ß-hydroxyarylutenolides have two absorption bands, one at 289-291 nm and the other with higher intensity at 328-354 nm. The emission band between 385-422 nm is observed under excitation at 324-327 nm. The compounds showed solvatochromism as a function of the analyzed solvent. In water, fluorescence quenching of all compounds occurs. Therefore, studies with compound containing the methylenedioxy group attached in phenyl ring were carried at different concentrations of water in DMSO. The decrease in the fluorescence intensity of this compound is linearly proportional to the increase in the amount of water in the DMSO, with a minimum detection volume of 0.028%. Quantum yields of three compounds were evaluated in different solvents, showing that the relationship between the structure of the compound and the solvent is essential for a high value. The fluorescence quantum yield was also measured by Thermal Lens Spectroscopy (TLS) using DMSO as the solvent, confirming the high value for the analyzed samples. Despite being preliminary, the studies revealed that these compounds have luminescent properties that could be applied in the development of chemical sensors for detecting water in DMSO.

15.
J Fluoresc ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958908

RESUMO

This study investigates the interaction between titanium oxide nanoparticles (TiO2 NPs) and the heterocyclic fluorophore 6-fluoro,4-hydroxy,2-methylquinoline (6-FHMQ), aiming to understand fluorescence quenching mechanisms and thermodynamic characteristics. Spectroscopic techniques including spectrofluorometry (FL) and spectrophotometry (UV-Vis) were used, with a lifetime decay (τ) of 0.18 ns for 6-FHMQ measured using time correlated single photon counting (TCSPC). The interaction between 6-FHMQ and TiO2 NPs revealed a mix of static and dynamic fluorescence quenching mechanisms, with increasing quenching constants (Ksv) and a higher bimolecular quenching rate constant (Kq). The dynamic nature was highlighted by a temperature-dependent increase in binding sites from 1 to ~ 2. Spontaneous complexation was affirmed by negative change in free energy (ΔG), with negative change in enthalpy (ΔH) and a positive change in entropy (ΔS) values indicating favorable electrostatic and ionic interactions. The impact of varying TiO2 NP concentrations on 6-FHMQ absorption was analyzed using the Benesi-Hildbrand equation, with a quantum yield of 0.61 determined. By forster resonance energy transfer (FRET) theory, the proximity between 6-FHMQ and TiO2 NPs was found to be less than 70 Å. Ground and excited state dipole moments of 6-FHMQ in different solvents were calculated to demonstrate solvent sensing ability and charge transfer properties. Ultimately, this study serves as a testament to the power of scientific innovation in the realms of drug delivery and tissue engineering.

16.
J Fluoresc ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695976

RESUMO

Carbon quantum dots (CQDs) were greenly synthesized via a single-step hydrothermal method, using the trunks of Bauhinia purpurea as the carbon source. They exhibited good dispersibility, water solubility, high sensitivity, and great stability with a spherical form and a particle size of 2.68 ± 0.32 nm. By utilizing the inner filter effect and dynamic quenching effect, the fluorescence quenching of CQDs can be induced to detect quinoline yellow. Detailed experimental results showed that the change rate of fluorescence intensity of CQDs had a good linear relationship with varying concentrations of quinoline yellow (2-128 µmol/L). It can be clearly observed that the fluorescence quenching occurred within 1 min, its correlation coefficient (R2) is 0.9912, and the detection limit (DL) is 1.7884 µmol/L, substantially lower than the maximum concentration stipulated by the national standard of 209.5 µmol/L. Furthermore, quinoline yellow had been successfully detected in real beverage samples using CQDs, with the recovery rates of 90.6%-110.4% and the relative standard deviation (RSD) ≤ 6.3% and it also showed great anti-interference and selectivity. These findings indicate that the detected quinoline yellow of CQDs possess substantial promise for a wide range of applications within the detected artificial food colors field.

17.
J Fluoresc ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037679

RESUMO

Recently, the 5-HT7 receptor has achieved greater attention in research fraternity due to the involvement of neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) in several neurological disorders. Targeting this neuroreceptor, we have synthesized six compounds named as butyl-benzoxazolone substituted piperazinium derivatives (BBOP) derivatives, abbreviated as L1-L6. These compounds have been evaluated for their binding interaction with BSA through photophysical and in-silico approaches. The UV absorption of these compounds with BSA at λmax = 280 nm, showed an optical density (O.D.) in the range of 0.5-0.9, i.e., 21%-53% (L1max = 1.4, L5min = 0.7385) at varied concentrations (17 µM-114 µM). For fluorescence studies, the Ksv value varied inversely with temperature, which confirmed the static mechanism of quenching with L1 showing maximum quenching. The parameters (ΔH, ΔS) obtained from the thermodynamic study for interaction between BSA and L1-L6 were correlated with in-silico (molecular docking) data. The in-silico docking study showed hydrophobic and the Van der Waals forces were the most significant forces. Amino acid residues ARG 217 & TRP 213 (Sudlow Site I) and LYS 116 & GLU 125 (Sudlow Site II) of BSA were primarily involved in H-bonding.Furthermore, the catalytic activity of BSA for hydrolyzingdifferent chemical entities have monitored in the presence of L1-L6 through esterase-like assay with p-NPA as a substrate, to get more insight about the interaction with catalytic residues (LYS 414, LYS 413, and TYR 411) in BSA at site II. These findings showed the potential of these 5-HT7 markers as promising ligands with appropriate drug likeliness characteristics.

18.
J Fluoresc ; 34(2): 865-877, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37395980

RESUMO

In this study, we report a new syringe aldehyde-derived hydrazinyl-imidazole based fluorescent sensor (L) for sensitive detection of different inorganic quenchers (halide ions, bicarbonate ion, sulphide ion and transition metal ions). The chromophore (L) was obtained in good yield by the 1:1 condensation reaction of 2-hydrazino-4,5-dihydroimidazole hydrobromide and 4-hydroxy-3,5-dimethoxy benzaldehyde. L exhibited strong fluorescence in the visible region (around 380 nm) and its interaction with different quenchers was studied in details via fluorescence technique. For the halide ions series, its sensitivity is higher for NaF (Climit = 4 × 10- 4 M) than for NaCl while the fluorescence quenching occurred mainly through a dynamic process. Similar considerations were observed for HCO3- and S2- quencher too, when static and dynamic quenching take place simultaneously. Regarding transition metal ions, at a fixed ion concentration (4 × 10- 6 M), best performance was achieved for Cu2+ and Fe2+ (fluorescence intensity was reduced by 79% and 84.9% respectively), while for other metal ions, the sensor performance was evaluated and found to be very less (< 40%). Thus, minimum detection limits (10- 6 - 10- 5 M range) recommended the use of such derivatives as highly sensitive sensors capable to monitor delicate changes in varied environments.

19.
J Fluoresc ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457072

RESUMO

Herein, in this report we are introducing newly synthesized chalcone derivative, "(E)-1-phenyl-3-(4-((5-(((Z)-thiophen-2-ylmethylene)amino)-1,3,4-thiadiazol-2-yl)thio)phenyl)prop-2-en-1-one" (5), as a chemosensor to detect Fe2+ metal ions in HEPES buffer solution of pH 7.5. Spectroscopic techniques were used to confirm the synthesized sensor. To determine the chemical reactivity and molecular stability of the probe, a frontier molecular orbitals investigation was carried out. A molecular electrostatic potential map was investigated to know the binding site of 5 for metal ion coordination. The theoretical absorption and fluorescence emission properties were estimated and correlated with the experimental observations. The sensor showed excellent selectivity for Fe2+ compared to all other studied metal ions. The fluorescence binding studies were carried out by adding different amounts of Fe2+ ions for a fixed concentration of probe 5. The inclusion of Fe2+ ions resulted in a decrease in fluorescence intensity with a bathochromic shift of emission wavelength of 5 due to the 5-Fe2+ complexation. The binding affinity value for the probe was found to be 576.2 M-1 with the help of the Stern-Volmer plot. The Job's plot and mass spectra supported the 2:1 (5: Fe2+) stoichiometry of complex formation. The detection limit and limit of quantification of 5 for Fe2+ were calculated to be 4.79 × 10-5 M and 14.54 × 10-5 M. Further, in addition to this, the photophysical parameters such as fluorescence lifetime of 5 and 5-Fe2+ complex measured to be 0.1439 and 0.1574 ns. The quantum yield of 5 and 5-Fe2+ was found to be 0.0398 and 0.0376. All these experimental findings revealed that probe 5 has excellent selectivity and sensitivity for Fe2+ ions.

20.
J Fluoresc ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592595

RESUMO

Sinapic acid (SA) and ferulic acid (FA) are bioactive compounds used in the food, pharmaceutical, and cosmetic industries due to their antioxidant properties. In this work, we studied the photophysical properties of SA and FA in different solvents and concentrations and their interactions with caffeine (CF), using ultraviolet-visible (UV-Vis), fluorescence spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The findings show that the quantum yield, fluorescence lifetime, radiative decay rates, and non-radiative decay rates of SA and FA are influenced by the concentrations and solvent polarity. The interaction between SA and FA with CF was also studied using UV-Vis and fluorescence spectroscopy. The results indicate that the CF quenched the fluorescence intensity of SA and FA by static quenching due to the formation of a non-fluorescent complex. The van't Hoff equation suggests that the van der Waals forces and hydrogen bonds force were responsible for the interaction between SA and CF, as indicated by a negative change in enthalpy ( Δ H o  < 0) and a negative change in entropy ( Δ S o  < 0). On the other hand, the interaction between FA and CF was primarily controlled by electrostatic force, as indicated by a negative change in enthalpy ( Δ H o < 0) and a positive change in entropy ( Δ S o > 0). The negative change in Gibbs free energy ( Δ G o ) indicates that both compounds underwent a spontaneous binding process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA