Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 15(12)2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38140686

RESUMO

Influenza D virus (IDV) can infect various livestock animals, such as cattle, swine, and small ruminants, and was shown to have zoonotic potential. Therefore, it is important to identify viral factors involved in the broad host tropism and identify potential antiviral compounds that can inhibit IDV infection. Recombinant reporter viruses provide powerful tools for studying viral infections and antiviral drug discovery. Here we present the generation of a fluorescent reporter IDV using our previously established reverse genetic system for IDV. The mNeonGreen (mNG) fluorescent reporter gene was incorporated into the IDV non-structural gene segment as a fusion protein with the viral NS1 or NS2 proteins, or as a separate protein flanked by two autoproteolytic cleavage sites. We demonstrate that only recombinant reporter viruses expressing mNG as an additional separate protein or as an N-terminal fusion protein with NS1 could be rescued, albeit attenuated, compared to the parental reverse genetic clone. Serial passaging experiments demonstrated that the mNG gene is stably integrated for up to three passages, after which internal deletions accumulate. We conducted a proof-of-principle antiviral screening with the established fluorescent reporter viruses and identified two compounds influencing IDV infection. These results demonstrate that the newly established recombinant IDV reporter virus can be applied for antiviral drug discovery and monitoring viral replication, adding a new molecular tool for investigating IDV.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Bovinos , Animais , Suínos , Humanos , Influenza Humana/genética , Deltainfluenzavirus , Thogotovirus/genética , Orthomyxoviridae/genética , Proteínas Virais/genética , Genes Reporter , Antivirais/farmacologia
2.
Methods Mol Biol ; 2428: 325-348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35171489

RESUMO

The integrated stress response is a highly regulated signaling cascade that allows cells to react to a variety of external and internal stimuli. Activation of different stress-responsive kinases leads to the phosphorylation of their common downstream target, the eukaryotic translation initiation factor 2 alpha (eIF2α), which is a critical component of functional translation preinitiation complexes. As a consequence, stalled ribonucleoprotein complexes accumulate in the cytoplasm and condense into microscopically visible cytoplasmic stress granules (SGs). Over the past years, numerous microscopy approaches have been developed to study the spatiotemporal control of SG formation in response to a variety of stressors. Here, we apply long-term live-cell microscopy to monitor the dynamic cellular stress response triggered by infection with chronic hepatitis C virus (HCV) at single-cell level and study the behavior of infected cells that repeatedly switch between a stressed and unstressed state. We describe in detail the engineering of fluorescent SG-reporter cells expressing enhanced yellow fluorescent protein (YFP)-tagged T cell internal antigen 1 (TIA-1) using lentiviral delivery, as well as the production of mCherry-tagged HCV trans-complemented particles, which allow live tracking of SG assembly and disassembly, SG number and size in single infected cells over time.


Assuntos
Grânulos Citoplasmáticos , Hepatite C Crônica , Citoplasma/metabolismo , Grânulos Citoplasmáticos/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Hepatite C Crônica/metabolismo , Humanos , Grânulos de Estresse
3.
Viruses ; 8(8)2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27527209

RESUMO

The advent of virus reverse genetics has enabled the incorporation of genetically encoded reporter proteins into replication-competent viruses. These reporters include fluorescent proteins which have intrinsic chromophores that absorb light and re-emit it at lower wavelengths, and bioluminescent proteins which are luciferase enzymes that react with substrates to produce visible light. The incorporation of these reporters into replication-competent viruses has revolutionized our understanding of molecular virology and aspects of viral tropism and transmission. Reporter viruses have also enabled the development of high-throughput assays to screen antiviral compounds and antibodies and to perform neutralization assays. However, there remain technical challenges with the design of replication-competent reporter viruses, and each reporter has unique advantages and disadvantages for specific applications. This review describes currently available reporters, design strategies for incorporating reporters into replication-competent paramyxoviruses and orthomyxoviruses, and the variety of applications for which these tools can be utilized both in vitro and in vivo.


Assuntos
Genes Reporter , Luciferases/análise , Medições Luminescentes , Orthomyxoviridae/genética , Orthomyxoviridae/fisiologia , Coloração e Rotulagem/métodos , Animais , Humanos , Luciferases/genética , Genética Reversa/métodos
4.
Methods Mol Biol ; 1354: 21-38, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26714702

RESUMO

Direct T cell-to-T cell HIV-1 infection is a distinct mode of HIV-1 infection that requires physical contact between an HIV-1-infected "donor" cell and an uninfected, CD4-expressing "target" cell. In vitro studies indicate that HIV-1 cell-to-cell infection is much more efficient than infection by cell-free viral particles; however, the exact mechanisms of the enhanced efficiency of this infection pathway are still unclear. Several assays have been developed to study the mechanism of direct cell-to-cell HIV-1 transmission and to assess sensitivity to neutralizing antibodies and pharmacologic inhibitors. These assays are based on the coculture of donor and target cells. Here, we describe methods that utilize flow cytometry, which can discriminate donor and target cells and can assess different stages of entry and infection following cell-to-cell contact. HIV Gag-iGFP, a clone that makes fluorescent virus particles, can be used to measure cell-to-cell transfer of virus particles. HIV NL-GI, a clone that expresses GFP as an early gene, facilitates the measure of productive infection after cell-to-cell contact. Lastly, a variation of the ß-lactamase (BlaM)-Vpr fusion assay can be used to measure the viral membrane fusion process after coculture of donor and target cells in a manner that is independent of cell-cell fusion. These assays can be performed in the presence of neutralizing antibodies/inhibitors to determine the 50 % inhibitory concentration (IC50) required to block infection specifically in the target cells.


Assuntos
Citometria de Fluxo/métodos , Infecções por HIV/patologia , HIV-1/fisiologia , Linfócitos T/patologia , Linfócitos T/virologia , Internalização do Vírus , Animais , Comunicação Celular , Técnicas de Cultura de Células/métodos , Infecções por HIV/virologia , Humanos , Células Jurkat , Fusão de Membrana , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA