Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38931553

RESUMO

The division of focal plane (DoFP) polarization detector has great potential for the development of aerospace polarimeters, but the existing commercial DoFP polarization detector cannot satisfy all the missions due to the diversity of satellite payloads. Here, we propose a method of directly writing a micro-polarizer array (MPA) on the detector surface based on focused ion beams (FIB) and fabricating a push-broom scanning DoFP polarization detector. The feasibility and low crosstalk of the solution were proved through testing, and the reasons for the low extinction ratio caused by oxidation were explained through characterization and numerical calculations. This scheme is not only applicable to DoFP polarization detectors but also provides ideas for the integration of other metasurface structures and detectors.

2.
Small ; 15(31): e1901820, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31166661

RESUMO

Nanomaterials have gained plenty of research interest because of their excellent performance, which is derived from their small size and special structure. In practical applications, to acquire nanomaterials with high performance, many methods have been used to modulate the structure and components of materials. To date, ion beam techniques have extensively been applied for modulating the performance of various nanomaterials. Energetic ion beams can modulate the surface morphology and chemical components of nanomaterials. In addition, ion beam techniques have also been used to fabricate nanomaterials, including 2D materials, nanoparticles, and nanowires. Compared with conventional methods, ion beam techniques, including ion implantation, ion irradiation, and focused ion beam, are all pure physical processes; these processes do not introduce any impurities into the target materials. In addition, ion beam techniques exhibit high controllability and repeatability. Here, recent progress in ion beam techniques for nanomaterial surface modification is systematically summarized and existing challenges and potential solutions are presented.

3.
Polymers (Basel) ; 15(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37571142

RESUMO

The development of Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) systems has provided significant advances in the processing and characterization of polymers. A fundamental understanding of ion-sample interactions is still missing despite FIB-SEM being routinely applied in microstructural analyses of polymers. This study applies Secondary Electron Hyperspectral Imaging to reveal oxygen and xenon plasma FIB interactions on the surface of a polymer (in this instance, polypropylene). Secondary Electron Hyperspectral Imaging (SEHI) is a technique housed within the SEM chamber that exhibits multiscale surface sensitivity with a high spatial resolution and the ability to identify carbon bonding present using low beam energies without requiring an Ultra High Vacuum (UHV). SEHI is made possible through the use of through-the-lens detectors (TLDs) to provide a low-pass SE collection of low primary electron beam energies and currents. SE images acquired over the same region of interest from different energy ranges are plotted to produce an SE spectrum. The data provided in this study provide evidence of SEHI's ability to be a valuable tool in the characterization of polymer surfaces post-PFIB etching, allowing for insights into both tailoring polymer processing FIB parameters and SEHI's ability to be used to monitor serial FIB polymer surfaces in situ.

4.
Adv Mater ; 35(13): e2206945, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36680462

RESUMO

For decades, group-III-nitride-based light-emitting diodes (LEDs) have been regarded as a light emitting source for future displays by virtue of their novel properties such as high efficiency, brightness, and stability. Nevertheless, realization of high pixel density displays is still challenging due to limitations of pixelation methods. Here, a maskless and etching-free micro-LED (µLED) pixelation method is developed via tailored He focused ion beam (FIB) irradiation technique, and electrically driven sub-micrometer-scale µLED pixel arrays are demonstrated. It is confirmed that optical quenching and electrical isolation effects are simultaneously induced at a certain ion dose (≈1014 ions cm-2 ) without surface damage. Furthermore, highly efficient µLED pixel arrays at sub-micrometer scale (square pixel, 0.5 µm side length) are fabricated. Their pixelation and brightness are verified by various optical measurements such as cathodo-, photo-, and electroluminescence. It is expected that the FIB-induced optical quenching and electrical isolation method can pioneer a new defect engineering technology not only for µLED fabrication, but also for sub-micrometer-scale optoelectronic devices.

5.
ACS Appl Mater Interfaces ; 14(24): 28211-28220, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35671475

RESUMO

Metallic nanopatterns are ubiquitous in applications that exploit the electrical conduction at the nanoscale, including interconnects, electrical nanocontacts, and small gaps between metallic pads. These metallic nanopatterns can be designed to show additional physical properties (optical transparency, plasmonic effects, ferromagnetism, superconductivity, heat evacuation, etc.). For these reasons, an intense search for novel lithography methods using uncomplicated processes represents a key on-going issue in the achievement of metallic nanopatterns with high resolution and high throughput. In this contribution, we introduce a simple methodology for the efficient decomposition of Pd3(OAc)6 spin-coated thin films by means of a focused Ga+ beam, which results in metallic-enriched Pd nanostructures. Remarkably, the usage of a charge dose as low as 30 µC/cm2 is sufficient to fabricate structures with a metallic Pd content above 50% (at.) exhibiting low electrical resistivity (70 µΩ·cm). Binary-collision-approximation simulations provide theoretical support to this experimental finding. Such notable behavior is used to provide three proof-of-concept applications: (i) creation of electrical contacts to nanowires, (ii) fabrication of small (40 nm) gaps between large metallic contact pads, and (iii) fabrication of large-area metallic meshes. The impact across several fields of the direct decomposition of spin-coated organometallic films by focused ion beams is discussed.

6.
Beilstein J Nanotechnol ; 13: 986-1003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225852

RESUMO

Focused ion beams (FIB) are a common tool in nanotechnology for surface analysis, sample preparation for electron microscopy and atom probe tomography, surface patterning, nanolithography, nanomachining, and nanoprinting. For many of these applications, a precise control of ion-beam-induced processes is essential. The effect of contaminations on these processes has not been thoroughly explored but can often be substantial, especially for ultralow impact energies in the sub-keV range. In this paper we investigate by molecular dynamics (MD) simulations how one of the most commonly found residual contaminations in vacuum chambers (i.e., water adsorbed on a silicon surface) influences sputtering by 100 eV argon ions. The incidence angle was changed from normal incidence to close to grazing incidence. For the simulation conditions used in this work, the adsorption of water favours the formation of defects in silicon by mixing hydrogen and oxygen atoms into the substrate. The sputtering yield of silicon is not significantly changed by the contamination, but the fraction of hydrogen and oxygen atoms that is sputtered largely depends on the incidence angle. This fraction is the largest for incidence angles between 70 and 80° defined with respect to the sample surface. Overall, it changes from 25% to 65%.

7.
J Appl Crystallogr ; 53(Pt 3): 614-622, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32684876

RESUMO

High-quality single-crystal X-ray diffraction measurements are a prerequisite for obtaining precise and reliable structure data and electron densities. The single crystal should therefore fulfill several conditions, of which a regular defined shape is of particularly high importance for compounds consisting of heavy elements with high X-ray absorption coefficients. The absorption of X-rays passing through a 50 µm-thick LiNbO3 crystal can reduce the transmission of Mo Kα radiation by several tens of percent, which makes an absorption correction of the reflection intensities necessary. In order to reduce ambiguities concerning the shape of a crystal, used for the necessary absorption correction, a method for preparation of regularly shaped single crystals out of large samples is presented and evaluated. This method utilizes a focused ion beam to cut crystals with defined size and shape reproducibly and carefully without splintering. For evaluation, a single-crystal X-ray diffraction study using a laboratory diffractometer is presented, comparing differently prepared LiNbO3 crystals originating from the same macroscopic crystal plate. Results of the data reduction, structure refinement and electron density reconstruction indicate qualitatively similar values for all prepared crystals. Thus, the different preparation techniques have a smaller impact than expected. However, the atomic coordinates, electron densities and atomic charges are supposed to be more reliable since the focused-ion-beam-prepared crystal exhibits the smallest extinction influences. This preparation technique is especially recommended for susceptible samples, for cases where a minimal invasive preparation procedure is needed, and for the preparation of crystals from specific areas, complex material architectures and materials that cannot be prepared with common methods (breaking or grinding).

8.
Materials (Basel) ; 13(12)2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32545854

RESUMO

The deformation behavior and microstructural evolution of fine-grained 2050 alloys at elevated temperatures and slow strain rates were investigated. The results showed that significant dynamic anisotropic grain growth occurred at the primary stage of deformation. Insignificant dislocation activity, particle-free zones, and the complete progress of grain neighbor switching based on diffusion creep were observed during superplastic deformation. Quantitative calculation showed that diffusion creep was the dominant mechanism in the superplastic deformation process, and that grain boundary sliding was involved as a coordination mechanism. Surface studies indicated that the diffusional transport of materials was accomplished mostly through the grain boundary, and that the effect of the bulk diffusion was not significant.

9.
ACS Nano ; 13(7): 8012-8022, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31283179

RESUMO

Electrochemical processes that govern the performance of lithium ion batteries involve numerous parallel reactions and interfacial phenomena that complicate the microscopic understanding of these systems. To study the behavior of ion transport and reaction in these applications, we report the use of a focused ion beam of Li+ to locally insert controlled quantities of lithium with high spatial resolution into electrochemically relevant materials in vacuo. To benchmark the technique, we present results on direct-write lithiation of 35 nm thick crystalline silicon membranes using a 2 keV beam of Li+ at doses up to 1018 cm-2 (104 nm-2). We confirm quantitative sub-µm control of lithium insertion and characterize the concomitant morphological, structural, and functional changes of the system using a combination of electron and scanning probe microscopy. We observe saturation of interstitial lithium in the silicon membrane at ≈10% dopant number density and spillover of excess lithium onto the membrane's surface. The implanted Li+ is demonstrated to remain electrochemically active. This technique will enable controlled studies and improve understanding of Li+ ion interaction with local defect structures and interfaces in electrode and solid-electrolyte materials.

10.
Ultramicroscopy ; 190: 12-20, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29660686

RESUMO

The energy distribution of a high brightness rubidium ion beam, which is intended to be used as the source for a focused ion beam instrument, is measured with a retarding field analyzer. The ions are created from a laser-cooled and compressed atomic beam by two-step photoionization in which the ionization laser power is enhanced in a build-up cavity. Particle tracing simulations are performed to ensure the analyzer is able to resolve the distribution. The lowest achieved full width 50% energy spread is (0.205 ±â€¯0.006) eV, which is measured at a beam current of 9 pA. The energy spread originates from the variation in the ionization position of the ions which are created inside an extraction electric field. This extraction field is essential to limit disorder-induced heating which can decrease the ion beam brightness. The ionization position distribution is limited by a tightly focused excitation laser beam. Energy distributions are measured for various ionization and excitation laser intensities and compared with calculations based on numerical solutions of the optical Bloch equations including ionization. A good agreement is found between measurements and calculations.

11.
Ultramicroscopy ; 164: 70-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26876642

RESUMO

We demonstrate a prototype of a Focused Ion Beam machine based on the ionization of a laser-cooled cesium beam and adapted for imaging and modifying different surfaces in the few-tens nanometer range. Efficient atomic ionization is obtained by laser promoting ground-state atoms into a target excited Rydberg state, then field-ionizing them in an electric field gradient. The method allows obtaining ion currents up to 130pA. Comparison with the standard direct photo-ionization of the atomic beam shows, in our conditions, a 40-times larger ion yield. Preliminary imaging results at ion energies in the 1-5keV range are obtained with a resolution around 40nm, in the present version of the prototype. Our ion beam is expected to be extremely monochromatic, with an energy spread of the order of the eV, offering great prospects for lithography, imaging and surface analysis.

12.
J Phys Chem Lett ; 5(2): 298-303, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-26270703

RESUMO

Understanding the role of interfaces is important for improving the performance of all-solid-state lithium ion batteries. To study these interfaces, we present a novel approach for fabrication of electrochemically active nanobatteries using focused ion beams and their characterization by analytical electron microscopy. Morphological changes by scanning transmission electron microscopy imaging and correlated elemental concentration changes by electron energy loss spectroscopy mapping are presented. We provide first evidence of lithium accumulation at the anode/current collector (Si/Cu) and cathode/electrolyte (LixCoO2/LiPON) interfaces, which can be accounted for the irreversible capacity losses. Interdiffusion of elements at the Si/LiPON interface was also witnessed with a distinct contrast layer. These results highlight that the interfaces may limit the lithium transport significantly in solid-state batteries. Fabrication of electrochemically active nanobatteries also enables in situ electron microscopy observation of electrochemical phenomena in a variety of solid-state battery chemistries.

13.
Small ; 8(22): 3396-9, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-22887607

RESUMO

Cross-sections of cylindrically shaped nanowires are fabricated using a focused ion beam technique. They are oriented such that the electron beam direction is parallel to a low-index zone axis for high- resolution imaging. In this configuration the direction of gold nanowire growth can be determined using electron diffraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA