Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Bioact Mater ; 10: 378-396, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34901554

RESUMO

Bioresorbable scaffolds have emerged as a new generation of vascular implants for the treatment of atherosclerosis, and designed to provide a temporary scaffold that is subsequently absorbed by blood vessels over time. Presently, there is insufficient data on the biological and mechanical responses of blood vessels accompanied by bioresorbable scaffolds (BRS) degradation. Therefore, it is necessary to investigate the inflexion point of degradation, the response of blood vessels, and the pathophysiological process of vascular, as results of such studies will be of great value for the design of next generation of BRS. In this study, abdominal aortas of SD rats were received 3-D printed poly-l-actide vascular scaffolds (PLS) for various durations up to 12 months. The response of PLS implanted aorta went through two distinct processes: (1) the neointima with desirable barrier function was obtained in 1 month, accompanied with slow degradation, inflammation, and intimal hyperplasia; (2) significant degradation occurred from 6 months, accompanied with decreasing inflammation and intimal hyperplasia, while the extracellular matrix recovered to normal vessels which indicate the positive remodeling. These in vivo results indicate that 6 months is a key turning point. This "two-stage degradation and vascular characteristics" is proposed to elucidate the long-term effects of PLS on vascular repair and demonstrated the potential of PLS in promoting endothelium function and positive remodeling, which highlights the benefits of PLS and shed some light in the future researches, such as drug combination coatings design.

2.
Biomaterials ; 35(17): 4782-91, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24642194

RESUMO

Many studies have demonstrated that in vitro shear stress conditioning of endothelial cell-seeded small-diameter vascular grafts can improve cell retention and function. However, the laminar flow and pulsatile flow conditions which are commonly used in vascular tissue engineering and hemodynamic studies are quite different from the actual physiological pulsatile flow which is pulsatile in nature with typical pressure and flow waveforms. The actual physiological pulsatile flow leading to temporal and spatial variations of the wall shear stress may result in different phenotypes and functions of ECs. Thus, the aim of this study is to find out the best in vitro dynamic culture conditions to generate functional endothelium on sulfated silk fibroin nanofibrous scaffolds for small-diameter vascular tissue engineering. Rat aortic endothelial cells (RAECs) were seeded on sulfated silk fibroin nanofibrous scaffolds and cultured under three different patterns of flow conditioning, e.g., steady laminar flow (SLF), sinusoidal flow (SF), or physiological pulsatile flow (PPF) representative of a typical femoral distal pulse wave in vivo for up to 24 h. Cell morphology, cytoskeleton alignment, fibronectin assembly, apoptosis, and retention on the scaffolds were investigated and were compared between three different patterns of flow conditioning. The results showed that ECs responded differentially to different exposure time and different flow patterns. The actual PPF conditioning demonstrated excellent EC retention on sulfated silk fibroin scaffolds in comparison with SLF and SF, in addition to the alignment of cells in the direction of fluid flow, the formation of denser and regular F-actin microfilament bundles in the same direction, the assembly of thicker and highly crosslinked fibronectin, and the significant inhibition of cell apoptosis. Therefore, the actual PPF conditioning might contribute importantly to the generation of functional endothelium on a sulfated silk fibroin nanofibrous scaffold and thereby yield a thromboresistant luminal surface.


Assuntos
Células Endoteliais/citologia , Fibroínas/química , Nanofibras/química , Sulfatos/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Animais , Aorta/citologia , Bombyx/química , Adesão Celular , Células Cultivadas , Desenho de Equipamento , Fluxo Pulsátil , Ratos , Ratos Sprague-Dawley , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA