Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(24): e2301312120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279269

RESUMO

Glycan alterations are associated with aging, neuropsychiatric, and neurodegenerative diseases, although the contributions of specific glycan structures to emotion and cognitive functions remain largely unknown. Here, we used a combination of chemistry and neurobiology to show that 4-O-sulfated chondroitin sulfate (CS) polysaccharides are critical regulators of perineuronal nets (PNNs) and synapse development in the mouse hippocampus, thereby affecting anxiety and cognitive abilities such as social memory. Brain-specific deletion of CS 4-O-sulfation in mice increased PNN densities in the area CA2 (cornu ammonis 2), leading to imbalanced excitatory-to-inhibitory synaptic ratios, reduced CREB activation, elevated anxiety, and social memory dysfunction. The impairments in PNN densities, CREB activity, and social memory were recapitulated by selective ablation of CS 4-O-sulfation in the CA2 region during adulthood. Notably, enzymatic pruning of the excess PNNs reduced anxiety levels and restored social memory, while chemical manipulation of CS 4-O-sulfation levels reversibly modulated PNN densities surrounding hippocampal neurons and the balance of excitatory and inhibitory synapses. These findings reveal key roles for CS 4-O-sulfation in adult brain plasticity, social memory, and anxiety regulation, and they suggest that targeting CS 4-O-sulfation may represent a strategy to address neuropsychiatric and neurodegenerative diseases associated with social cognitive dysfunction.


Assuntos
Matriz Extracelular , Doenças Neurodegenerativas , Camundongos , Animais , Matriz Extracelular/química , Neurônios/fisiologia , Hipocampo , Sulfatos de Condroitina/química
2.
Exp Eye Res ; 239: 109780, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176513

RESUMO

Corneal collagen cross-linking (CXL) is widely used to treat keratoconus and ecstatic corneal disorders. The present studies were carried out to investigate the distribution of glycosaminoglycans (GAGs) and collagen fibril (CF) at different depths of the normal and CXL treated corneal stroma of four week old rats 7 days after standard CXL application. Ten Wistar rats' corneas were used for the study. The epithelium of the cornea from the left eye of each rat was removed and treated with standard CXL application using riboflavin and Ultraviolet-A (UVA) (3 mW/cm2 for 30 min). The cornea from the right eye was used as the control cornea. The cornea was removed from the eye and processed for transmission electron microscopy. A bottom mounted Quemesa camera was used to capture digital images and these images were analysed using iTEM software. In the control cornea, the GAGs area size was not significantly different in the anterior, middle, and posterior stroma. In the CXL treated rats the GAGs area size gradually increased from the anterior to the posterior stroma whereas the spacing between the GAGs gradually decreased. There were very large GAGs present in the posterior stroma of the CXL treated rats. When comparing the control and CXL cornea, the GAGs area in the CXL cornea was significantly higher and inter-GAGs-spacing was smaller than in the control cornea. In the control cornea, the collagen fibrils diameter was higher in the anterior stroma and lowest in the posterior stroma. In the CXL treated cornea, the CF diameter and the interfibrillar spacing gradually decreased from the anterior to the posterior stroma. On comparison between the control and the CXL treated cornea, the interfibrillar spacing was significantly smaller in the CXL treated cornea than the control cornea in the anterior, middle, and posterior stroma but there was no difference in the diameter. The CXL treatment significantly increased the GAGs area and decreased the inter-GAGs-spacing, and inter-CF-spacing. This could be due to the gradual decline in the availability of riboflavin, UVA, and oxygen in the middle and posterior stroma. Further studies are required to investigate the role of keratan sulphate and chondroitin sulphate by using monoclonal antibodies with immunogold technique.


Assuntos
Substância Própria , Ceratocone , Animais , Ratos , Glicosaminoglicanos , Colágeno , Reagentes de Ligações Cruzadas , Ratos Wistar , Córnea , Riboflavina/uso terapêutico , Raios Ultravioleta , Fármacos Fotossensibilizantes/uso terapêutico
3.
Mol Divers ; 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458922

RESUMO

Mucopolysaccharidoses VI (Maroteaux Lamy syndrome) is a metabolic disorder due to the loss of enzyme activity of N-acetyl galactosamine-4-sulphatase arising from mutations in the ARSB gene. The mutated ARSB is the origin for the accumulation of GAGs within the lysosome leading to severe growth deformities, causing lysosomal storage disease. The main focus of this study is to identify the deleterious variants by applying bioinformatics tools to predict the conservation, pathogenicity, stability, and effect of the ARSB variants. We examined 170 missense variants, of which G137V and G144R were the resultant variants predicted detrimental to the progression of the disease. The native along with G137V and G144R structures were fixed as the receptors and subjected to Molecular docking with the small molecule Odiparcil to analyze the binding efficiency and the varied interactions of the receptors towards the drug. The interaction resulted in similar docking scores of - 7.3 kcal/mol indicating effective binding and consistent interactions of the drug with residues CYS117, GLN118, THR182, and GLN517 for native, along with G137V and G144R structures. Molecular Dynamics were conducted to validate the stability and flexibility of the native and variant structures on ligand binding. The overall study indicates that the drug has similar therapeutic towards the native and variant based on the higher binding affinity and also the complexes show stability with an average of 0.2 nm RMS value. This can aid in the future development therapeutics for the Maroteaux Lamy syndrome.

4.
Glycobiology ; 32(1): 50-59, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-34969075

RESUMO

Opioid use for treatment of persistent pain has increased dramatically over the past two decades, but it has not resulted in improved pain management outcomes. To understand the molecular mechanisms of opioids, molecular signatures that arise from opioid exposure are often sought after, using various analytical methods. In this study, we performed proteomics, and multiglycomics via sequential analysis of polysialic acids, glycosaminoglycans, N-glycans and O-glycans, using the same cerebral spinal fluid (CSF) sample from patients that had long-term (>2 years), intrathecal morphine or baclofen administered via an indwelling pump. Proteomics and N-glycomics signatures between the two treatment groups were highly conserved, while significant differences were observed in polysialic acid, heparan sulfate glycosaminoglycan and O-glycan profiles between the two treatment groups. This represents the first study to investigate the potential relationships between diverse CSF conjugated glycans and long-term intrathecal drug exposure. The unique changes, observed by a sequential analytical workflow, reflect previously undescribed molecular effects of opioid administration and pain management.


Assuntos
Baclofeno , Morfina , Analgésicos Opioides/uso terapêutico , Glicoconjugados , Humanos , Injeções Espinhais , Morfina/uso terapêutico
5.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563207

RESUMO

Stroke-induced cognitive impairments remain of significant concern, with very few treatment options available. The involvement of glycosaminoglycans in neuroregenerative processes is becoming better understood and recent advancements in technology have allowed for cost-effective synthesis of novel glycomimetics. The current study evaluated the therapeutic potential of two novel glycomimetics, compound A and G, when administered systemically five-days post-photothrombotic stroke to the PFC. As glycosaminoglycans are thought to facilitate growth factor function, we also investigated the combination of our glycomimetics with intracerebral, recombinant human brain-derived neurotrophic factor (rhBDNF). C56BL/6J mice received sham or stroke surgery and experimental treatment (day-5), before undergoing the object location recognition task (OLRT). Four-weeks post-surgery, animals received prelimbic injections of the retrograde tracer cholera toxin B (CTB), before tissue was collected for quantification of thalamo-PFC connectivity and reactive astrogliosis. Compound A or G treatment alone modulated a degree of reactive astrogliosis yet did not influence spatial memory performance. Contrastingly, compound G+rhBDNF treatment significantly improved spatial memory, dampened reactive astrogliosis and limited stroke-induced loss of connectivity between the PFC and midline thalamus. As rhBDNF treatment had negligible effects, these findings support compound A acted synergistically to enhance rhBDNF to restrict secondary degeneration and facilitate functional recovery after PFC stroke.


Assuntos
Memória Espacial , Acidente Vascular Cerebral , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Gliose/complicações , Glicosaminoglicanos , Camundongos , Acidente Vascular Cerebral/complicações
6.
Neurochem Res ; 46(3): 595-610, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33398638

RESUMO

Astrocytes are major producers of the extracellular matrix (ECM), which is involved in the plasticity of the developing brain. In utero alcohol exposure alters neuronal plasticity. Glycosaminoglycans (GAGs) are a family of polysaccharides present in the extracellular space; chondroitin sulfate (CS)- and heparan sulfate (HS)-GAGs are covalently bound to core proteins to form proteoglycans (PGs). Hyaluronic acid (HA)-GAGs are not bound to core proteins. In this study we investigated the contribution of astrocytes to CS-, HS-, and HA-GAG production by comparing the makeup of these GAGs in cortical astrocyte cultures and the neonatal rat cortex. We also explored alterations induced by ethanol in GAG and core protein levels in astrocytes. Finally, we investigated the relative expression in astrocytes of CS-PGs of the lectican family of proteins, major components of the brain ECM, in vivo using translating ribosome affinity purification (TRAP) (in Aldh1l1-EGFP-Rpl10a mice. Cortical astrocytes produce low levels of HA and show low expression of genes involved in HA biosynthesis compared to the whole developing cortex. Astrocytes have high levels of chondroitin-0-sulfate (C0S)-GAGs (possibly because of a higher sulfatase enzyme expression) and HS-GAGs. Ethanol upregulates C4S-GAGs as well as brain-specific lecticans neurocan and brevican, which are highly enriched in astrocytes of the developing cortex in vivo. These results begin to elucidate the role of astrocytes in the biosynthesis of CS- HS- and HA-GAGs, and suggest that ethanol-induced alterations of neuronal development may be in part mediated by increased astrocyte GAG levels and neurocan and brevican expression.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Dissacarídeos/metabolismo , Etanol/farmacologia , Glicosaminoglicanos/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/química , Astrócitos/efeitos dos fármacos , Brevicam/metabolismo , Córtex Cerebral/química , Córtex Cerebral/efeitos dos fármacos , Sulfatos de Condroitina/análise , Sulfatos de Condroitina/metabolismo , Dissacarídeos/análise , Feminino , Glicosaminoglicanos/análise , Heparitina Sulfato/análise , Heparitina Sulfato/metabolismo , Ácido Hialurônico/análise , Ácido Hialurônico/metabolismo , Neurocam/metabolismo , Gravidez , Ratos Sprague-Dawley
7.
J Fish Biol ; 99(6): 1778-1785, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34254307

RESUMO

Little is known about early development of the near-threatened bonefish (Albula vulpes), a member of superorder Elopomorpha. Members of Elopomorpha are partially defined by their synapomorphic leptocephalus larval stage, for which the nutritional requirements are not well understood. Characterizing the nutritional profile, including major nutrients (such as lipids) used for energetic processes, can help to gain a better understanding of the nutritional requirements for leptocephalus larvae. A total of 24 settlement stage A. vulpes leptocephalus larvae were collected at Long Caye Island, Belize. Samples were used to determine various biochemical characteristics including lipid class, fatty acid and glycosaminoglycan compositions. Each of these biochemical components plays a role in early developmental processes such as cellular membrane formation and is crucial for healthy development. Biochemical characteristics of settlement stage A. vulpes leptocephalus are presented in this study for the first time. The dominant lipid classes and fatty acids detected in these samples were consistent with prior studies using closely related species like the Japanese eel, indicating possible similarities in diets at this stage. In the future, similar analyses can be applied to other species that share the leptocephalus life stage to determine if nutritional requirements at this stage of development are unique to this species. The findings in this study will also help to facilitate the establishment of adequate aquaculture systems for captive bonefish, ultimately leading to improved management strategies for wild bonefish habitats.


Assuntos
Enguias , Peixes , Animais , Ácidos Graxos , Larva , Lipídeos
8.
Int J Mol Sci ; 21(7)2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260444

RESUMO

The recent advancements in the knowledge of lysosomal biology and function have translated into an improved understanding of the pathophysiology of mucopolysaccharidoses (MPSs). The concept that MPS manifestations are direct consequences of lysosomal engorgement with undegraded glycosaminoglycans (GAGs) has been challenged by new information on the multiple biological roles of GAGs and by a new vision of the lysosome as a signaling hub involved in many critical cellular functions. MPS pathophysiology is now seen as the result of a complex cascade of secondary events that lead to dysfunction of several cellular processes and pathways, such as abnormal composition of membranes and its impact on vesicle fusion and trafficking; secondary storage of substrates; impairment of autophagy; impaired mitochondrial function and oxidative stress; dysregulation of signaling pathways. The characterization of this cascade of secondary cellular events is critical to better understand the pathophysiology of MPS clinical manifestations. In addition, some of these pathways may represent novel therapeutic targets and allow for the development of new therapies for these disorders.


Assuntos
Glicosaminoglicanos/metabolismo , Mucopolissacaridoses/patologia , Autofagia , Humanos , Lisossomos/metabolismo , Mucopolissacaridoses/metabolismo , Estresse Oxidativo , Transporte Proteico
9.
Int J Mol Sci ; 21(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707880

RESUMO

Mucopolysaccharidosis type II is a lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS) and characterized by the accumulation of the primary storage substrate, glycosaminoglycans (GAGs). Understanding central nervous system (CNS) pathophysiology in neuronopathic MPS II (nMPS II) has been hindered by the lack of CNS biomarkers. Characterization of fluid biomarkers has been largely focused on evaluating GAGs in cerebrospinal fluid (CSF) and the periphery; however, GAG levels alone do not accurately reflect the broad cellular dysfunction in the brains of MPS II patients. We utilized a preclinical mouse model of MPS II, treated with a brain penetrant form of IDS (ETV:IDS) to establish the relationship between markers of primary storage and downstream pathway biomarkers in the brain and CSF. We extended the characterization of pathway and neurodegeneration biomarkers to nMPS II patient samples. In addition to the accumulation of CSF GAGs, nMPS II patients show elevated levels of lysosomal lipids, neurofilament light chain, and other biomarkers of neuronal damage and degeneration. Furthermore, we find that these biomarkers of downstream pathology are tightly correlated with heparan sulfate. Exploration of the responsiveness of not only CSF GAGs but also pathway and disease-relevant biomarkers during drug development will be crucial for monitoring disease progression, and the development of effective therapies for nMPS II.


Assuntos
Encéfalo/metabolismo , Glicosaminoglicanos/metabolismo , Iduronato Sulfatase/metabolismo , Metabolismo dos Lipídeos , Lisossomos/metabolismo , Mucopolissacaridose II/sangue , Mucopolissacaridose II/líquido cefalorraquidiano , Adolescente , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Criança , Pré-Escolar , Dermatan Sulfato/sangue , Dermatan Sulfato/líquido cefalorraquidiano , Dermatan Sulfato/metabolismo , Terapia de Reposição de Enzimas , Feminino , Gangliosídeos/metabolismo , Glicosaminoglicanos/líquido cefalorraquidiano , Transplante de Células-Tronco Hematopoéticas , Heparitina Sulfato/sangue , Heparitina Sulfato/líquido cefalorraquidiano , Heparitina Sulfato/metabolismo , Humanos , Iduronato Sulfatase/genética , Iduronato Sulfatase/farmacologia , Lactente , Inflamação/metabolismo , Lisossomos/patologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Mucopolissacaridose II/metabolismo , Mucopolissacaridose II/terapia , Proteínas de Neurofilamentos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
J Cell Physiol ; 234(11): 20174-20192, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30963564

RESUMO

Wound healing is a dynamic process comprising multiple events, such as inflammation, re-epithelialization, and tissue remodeling. Re-epithelialization phase is characterized by the engagement of several cell populations, mainly of keratinocytes that sequentially go through cycles of migration, proliferation, and differentiation to restore skin functions. Troubles can arise during the re-epithelialization phase of skin wound healing particularly in keratinocyte migration, resulting in chronic non-healing lesions, which represent a serious clinical problem. Over the last decades, the efforts aimed to find new pharmacological approaches for wound care were made, yet almost all current therapeutic strategies used remain inadequate or even ineffective. As such, it is crucial to identify new drugs that can enable a proper regeneration of the epithelium in wounded skin. Here, we have investigated the effects of the fibrinolytic drug mesoglycan, a glycosaminoglycans mixture derived from porcine intestinal mucosa on HaCaT human keratinocytes that were used as in vitro experimental model of skin re-epithelialization. We found that mesoglycan induces keratinocyte migration and early differentiation by triggering the syndecan-4/PKCα pathway and that these effects were at least in part, because of the formation of the annexin A1/S100A11 complex. Our data suggest that mesoglycan may be useful as a new pro-healing drug for skin wound care.


Assuntos
Anexina A1/metabolismo , Glicosaminoglicanos/metabolismo , Queratinócitos/metabolismo , Proteínas S100/metabolismo , Sindecana-4/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Humanos , Reepitelização/fisiologia , Pele/metabolismo , Cicatrização/fisiologia
11.
Mol Biol Rep ; 46(4): 3921-3928, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31049833

RESUMO

10-Dehydrogingerdione (10-DHGD) was previously reported to possess a hypolipidemic, anti-inflammatory and anti-oxidant properties in hyperlipidemic rabbit model. In this study, we investigated a possible new role for 10-DHGD in modulating atherogenic lipid profile by targeting proprotein convertase subtilisin kexin-9 (PCSK-9). Cholesterol (0.2% w/w)-fed rabbits received either atorvastatin (20 mg/kg) or 10-DHGD (10 mg/kg) for 12 weeks along with cholesterol feeding (HCD). Lipid profile, serum PCSK-9 and macrophage migration inhibitory factor (MIF), and aorta level of tumor necrosis factor-alpha (TNF-α) and glycosaminoglycans (GAGs) were measured. HCD-fed rabbits revealed an atherogenic lipid profile along with increased serum level of PCSK-9 (p < 0.001) and increased serum MIF and aortic TNF-α and GAGs (p < 0.001). 10-DHGD administration to HCD-fed rabbits prevented this atheogenicity by modulating the release of PCSK-9, inflammation extent (serum MIF and aortic TNF-α) and GAGs. These results provide new insights on the hypolipidemic potential of 10-DHGD. The effects of 10-DHGD was superior to that of atorvastatin in most studied parameters modulating atherogenicity. 10-DHGD is found to be able to suppress the release of PCSK-9, decrease aortic expression of GAGs in cholesterol-fed rabbits and halt the inflammation extent. These effects may provide new insights on the hypolipidemic potential of 10-DHGD.


Assuntos
Glicosaminoglicanos/metabolismo , Guaiacol/análogos & derivados , Hiperlipidemias/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/fisiologia , Aterosclerose/metabolismo , Atorvastatina/farmacologia , Colesterol/metabolismo , Guaiacol/metabolismo , Guaiacol/farmacologia , Hiperlipidemias/sangue , Hiperlipidemias/metabolismo , Lipídeos/sangue , Masculino , Pró-Proteína Convertase 9/sangue , Pró-Proteína Convertase 9/metabolismo , Coelhos , Fator de Necrose Tumoral alfa/metabolismo
12.
Int J Mol Sci ; 20(2)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646511

RESUMO

Obstacles to effective therapies for mucopolysaccharidoses (MPSs) determine the need for continuous studies in order to enhance therapeutic strategies. Dimethyl sulfoxide (DMSO) is frequently utilised as a solvent in biological studies, and as a vehicle for drug therapy and the in vivo administration of water-insoluble substances. In the light of the uncertainty on the mechanisms of DMSO impact on metabolism of glycosaminoglycans (GAGs) pathologically accumulated in MPSs, in this work, we made an attempt to investigate and resolve the question of the nature of GAG level modulation by DMSO, the isoflavone genistein solvent employed previously by our group in MPS treatment. In this work, we first found the cytotoxic effect of DMSO on human fibroblasts at concentrations above 3%. Also, our results displayed the potential role of DMSO in the regulation of biological processes at the transcriptional level, then demonstrated a moderate impact of the solvent on GAG synthesis. Interestingly, alterations of lysosomal ultrastructure upon DMSO treatment were visible. As there is growing evidence in the literature that DMSO can affect cellular pathways leading to numerous changes, it is important to expand our knowledge concerning this issue.


Assuntos
Dimetil Sulfóxido/administração & dosagem , Genisteína/administração & dosagem , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Mucopolissacaridoses/tratamento farmacológico , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/antagonistas & inibidores , Humanos , Isoflavonas/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Mucopolissacaridoses/metabolismo , Mucopolissacaridoses/patologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-29437628

RESUMO

Recently we reported on the efficacy of pentosan polysulfate (PPS), a heparan sulfate mimetic, to reduce the recruitment of inflammatory infiltrates and protect the cartilage matrix from degradation in Ross River virus (RRV)-infected PPS-treated mice. Here, we describe both prophylactic and therapeutic treatment with PG545, a low-molecular-weight heparan sulfate mimetic, for arthritogenic alphaviral infection. We first assessed antiviral activity in vitro through a 50% plaque reduction assay. Increasing concentrations of PG545 inhibited plaque formation prior to viral adsorption in viral strains RRV T48, Barmah Forest virus 2193, East/Central/South African chikungunya virus (CHIKV), and Asian CHIKV, suggesting a strong antiviral mode of action. The viral particle-compound dissociation constant was then evaluated through isothermal titration calorimetry. Furthermore, prophylactic RRV-infected PG545-treated mice had reduced viral titers in target organs corresponding to lower clinical scores of limb weakness and immune infiltrate recruitment. At peak disease, PG545-treated RRV-infected mice had lower concentrations of the matrix-degrading enzyme heparanase in conjunction with a protective effect on tissue morphology, as seen in the histopathology of skeletal muscle. Enzyme-linked immunosorbent assay quantification of cartilage oligomeric matrix protein and cross-linked C-telopeptides of type II collagen as well as knee histopathology showed increased matrix protein degradation and cartilage erosion in RRV-infected phosphate-buffered saline-treated mice compared to their PG545-treated RRV-infected counterparts. Taken together, these findings suggest that PG545 has a direct antiviral effect on arthritogenic alphaviral infection and curtails RRV-induced inflammatory disease when administered as a prophylaxis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , Ross River virus/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Glucuronidase/genética , Glucuronidase/metabolismo , Camundongos , Ross River virus/enzimologia , Ross River virus/patogenicidade , Saponinas/uso terapêutico , Carga Viral/efeitos dos fármacos
14.
J Membr Biol ; 251(5-6): 641-651, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30030544

RESUMO

Glycosaminoglycans (GAGs) are essential components of the extracellular matrices (ECMs) located on the outer surface of cellular membranes. They belong to the group of polysaccharides involved in diverse biological processes acting on the surface and across natural lipid membranes. Recently, particular attention has been focused on possible role of GAGs in the amyloid deposits. The amyloid formation is related to a disorder in protein folding, causing that soluble-in normal conditions-peptides become deposited extracellularly as insoluble fibrils, impairing tissue structure and its function. One of the hypothesis holds that GAGs may inhibit amyloid formation by interacting with the lipid membrane by blocking the accumulation of protein aggregates on the membrane surface. Although the biophysical properties of GAGs are described rather well, little is known about the nature of association between these polysaccharides and components of natural cell membranes. Therefore, a study of GAGs influence on membrane lipids is of particular importance. The aim of the present work is to get insight into the effect of hydrophilic dextran sulfate (DS)-that can be considered as GAG analogue-on membrane lipids organization. This study was based on examining interactions between DS sodium salt of molecular weight equal to about 40 kDa (DS40), dissolved in water subphase, and a model membrane, mimicked as Langmuir monolayer, formed by representative natural membrane lipids: cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as well as their mixtures. Due to the fact that calcium ions in excess may accumulate in the lipid membrane, attracting high molecular weight molecules to their surface, the influence of calcium ions present in the subphase on the DS40 activity has also been examined. It has been found that negatively charged DS, forming a sublayer underneath the monolayer, barely interacts with membrane lipids; however, in the presence of calcium ions the electrostatic interactions between DS40 and lipid membrane are significantly enhanced, leading to the formation of network-like crystalline structures at the surface of model membrane, which can prevent incorporation and interaction with other extracellular molecules, e.g., proteins.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Sulfato de Dextrana/química , Glicosaminoglicanos/química , Lipídeos de Membrana/química , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Membranas Artificiais
15.
Clin Genet ; 93(6): 1148-1158, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29443383

RESUMO

Al-Gazali syndrome encompasses several clinical features including prenatal growth retardation, large joints contractures with camptodactyly, bilateral talipes equinovarus, small mouth, anterior segment anomalies of the eyes, and early lethality. Recently, a baby with features very similar to Al-Gazali syndrome was found to have compound heterozygous variants in B3GALT6. This gene encodes Beta-1,3-galactosyltransferase 6 (ß3GalT6), an essential component of the glycosaminoglycan synthesis pathway. Pathogenic variants in B3GALT6 have also been shown to cause Ehlers-Danlos syndrome spondylodysplastic type (spEDS-B3GALT6) and spondyloepimetaphyseal dysplasia with joint laxity type I (SEMD-JL1). In 2017, a new international classification of EDS included these 2 conditions together with the child reported to have features similar to Al-Gazali syndrome under spondylodysplastic EDS (spEDS). We report a disease-causing variant c.618C > G, p.(Cys206Trp) in 1 patient originally described as Al-Gazali syndrome and reported in 1999. We evaluated the involvement of the endoplasmic reticulum-associated protein degradation, in the pathogenesis of 13 B3GALT6 variants. Retention in endoplasmic reticulum was evident in 6 of them while the c.618C > G, p.(Cys206Trp) and the other 6 variants trafficked normally. Our findings confirm the involvement of B3GALT6 in the pathogenesis of Al-Gazali syndrome and suggest that Al-Gazali syndrome represents the severe end of the spectrum of the phenotypes caused by pathogenic variants in this gene.


Assuntos
Anormalidades Múltiplas/genética , Segmento Anterior do Olho/anormalidades , Osso e Ossos/anormalidades , Retículo Endoplasmático/patologia , Galactosiltransferases/genética , Mutação/genética , Sequência de Aminoácidos , Sequência de Bases , Criança , Decorina/metabolismo , Feminino , Galactosiltransferases/química , Glicosaminoglicanos/metabolismo , Células HEK293 , Células HeLa , Homozigoto , Humanos , Masculino
16.
Neurobiol Dis ; 108: 140-147, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28847567

RESUMO

We have shown previously that Nano-PSO, a nanodroplet formulation of pomegranate seed oil, delayed progression of neurodegeneration signs when administered for a designated period of time to TgMHu2ME199K mice, modeling for genetic prion disease. In the present work, we treated these mice with a self-emulsion formulation of Nano-PSO or a parallel Soybean oil formulation from their day of birth until a terminal disease stage. We found that long term Nano-PSO administration resulted in increased survival of TgMHu2ME199K lines by several months. Interestingly, initiation of treatment at day 1 had no clinical advantage over initiation at day 70, however cessation of treatment at 9months of age resulted in the rapid loss of the beneficial clinical effect. Pathological studies revealed that treatment with Nano-PSO resulted in the reduction of GAG accumulation and lipid oxidation, indicating a strong neuroprotective effect. Contrarily, the clinical effect of Nano-PSO did not correlate with reduction in the levels of disease related PrP, the main prion marker. We conclude that long term administration of Nano-PSO is safe and may be effective in the prevention/delay of onset of neurodegenerative conditions such as genetic CJD.


Assuntos
Síndrome de Creutzfeldt-Jakob/tratamento farmacológico , Óleos de Plantas/administração & dosagem , Substâncias Protetoras/administração & dosagem , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Progressão da Doença , Glicosaminoglicanos/metabolismo , Camundongos Transgênicos , Oxirredução/efeitos dos fármacos , Proteínas da Gravidez/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Índice de Gravidade de Doença , Análise de Sobrevida
17.
Arch Gynecol Obstet ; 294(5): 959-965, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27161490

RESUMO

PURPOSE: To evaluate at 11-13 weeks' gestation biochemical markers that may predict complications of pregnancy such as pre-eclampsia, proteinuria, and hypertension. METHODS: Analyses were performed on first-morning urine and plasma samples from first trimester pregnant women with increased risk of developing pre-eclampsia such as positive personal or family history of cardiovascular disease and diabetes mellitus. A total of 62 women were enrolled, 24 of them presented complications such as pre-eclampsia, proteinuria, and hypertension during pregnancy. The remaining 38 women had a physiological course of pregnancy and formed the reference group. Urine glycosaminoglycans/proteoglycans (GAGs/PGs) distribution was determined by electrophoresis on cellulose acetate strips. Urinary N-acetyl-ß-glucosaminidase was estimated kinetically. Plasma levels of placental protein 13 (PP13) were measured by enzyme-linked immunosorbent assay. RESULTS: No significant differences in total GAG excretion and N-acetyl-ß-glucosaminidase (NAG) concentration were observed between the two groups of pregnant women, whereas we detected increased relative content of total urinary trypsin inhibitor (UTI plus low-sulfated chondroitin sulfate) (p = 0.001) and reduced excretion of heparan sulfate (p = 0.007) and chondroitin sulfate (p = 0.011) in women presenting with pregnancy complications respect to controls. Plasma levels of PP13 were significantly reduced in the group of women who went on to develop complications compared with controls (p = 0.022). CONCLUSIONS: The reduced plasma levels of PP13 and the alteration of the relative content of urinary GAGs and PGs observed in our study could be a promising tool for the prediction of pre-eclampsia in an early stage of pregnancy.


Assuntos
Galectinas/urina , Glicosaminoglicanos/urina , Pré-Eclâmpsia/urina , Proteínas da Gravidez/urina , Proteoglicanas/urina , Adulto , Biomarcadores , Feminino , Humanos , Gravidez
18.
Int J Mol Sci ; 17(5)2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27196898

RESUMO

Mucopolysaccharidoses (MPS's) represent a subgroup of lysosomal storage diseases related to a deficiency of enzymes that catalyze glycosaminoglycans degradation. Mucopolysaccharidosis type I (MPS I) is a rare autosomal recessive disorder caused by a deficiency of α-l-iduronidase encoded by the IDUA gene. Partially degraded heparan sulfate and dermatan sulfate accumulate progressively and lead to multiorgan dysfunction and damage. The aim of this study is to describe the clinical, biochemical, and molecular characteristics of 13 Algerian patients from 11 distinct families. MPS I diagnosis was confirmed by molecular study of the patients' IDUA gene. Clinical features at the diagnosis and during the follow-up are reported. Eighty-four percent of the studied patients presented with a mild clinical phenotype. Molecular study of the IDUA gene allowed the characterization of four pathological variations at the homozygous or compound heterozygote status: IDUA NM_00203.4:c.1598C>G-p.(Pro533Arg) in 21/26 alleles, IDUA NM_00203.4:c.532G>A-p.(Glu178Lys) in 2/26 alleles, IDUA NM_00203.4:c.501C>G-p.(Tyr167*) in 2/26 alleles, and IDUA NM_00203. 4: c.1743C>G-p.(Tyr581*) in 1/26 alleles. This molecular study unveils the predominance of p.(Pro533Arg) variation in our MPS I patients. In this series, the occurrence of some clinical features linked to the Scheie syndrome is consistent with the literature, such as systematic valvulopathies, corneal opacity, and umbilical hernia; however, storage signs, facial dysmorphic features, and hepatomegaly were more frequent in our series. Screening measures for these debilitating diseases in highly consanguineous at-risk populations must be considered a priority health problem.


Assuntos
Iduronidase/genética , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Polimorfismo de Nucleotídeo Único , Adolescente , Argélia , Arginina/genética , Criança , Pré-Escolar , Consanguinidade , Feminino , Humanos , Lactente , Masculino , Prolina/genética , Adulto Jovem
19.
Biochim Biophys Acta ; 1830(10): 4524-36, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23707661

RESUMO

BACKGROUND: Myeloperoxidase (MPO) is an abundant hemoprotein expressed by neutrophil granulocytes that is recognized to play an important role in the development of vascular diseases. Upon degranulation from circulating neutrophil granulocytes, MPO binds to the surface of endothelial cells in an electrostatic-dependent manner and undergoes transcytotic migration to the underlying extracellular matrix (ECM). However, the mechanisms governing the binding of MPO to subendothelial ECM proteins, and whether this binding modulates its enzymatic functions are not well understood. METHODS: We investigated MPO binding to ECM derived from aortic endothelial cells, aortic smooth muscle cells, and fibroblasts, and to purified ECM proteins, and the modulation of these associations by glycosaminoglycans. The oxidizing and chlorinating potential of MPO upon binding to ECM proteins was tested. RESULTS: MPO binds to the ECM proteins collagen IV and fibronectin, and this association is enhanced by the pre-incubation of these proteins with glycosaminoglycans. Correspondingly, an excess of glycosaminoglycans in solution during incubation inhibits the binding of MPO to collagen IV and fibronectin. These observations were confirmed with cell-derived ECM. The oxidizing and chlorinating potential of MPO was preserved upon binding to collagen IV and fibronectin; even the potentiation of MPO activity in the presence of collagen IV and fibronectin was observed. CONCLUSIONS: Collectively, the data reveal that MPO binds to ECM proteins on the basis of electrostatic interactions, and MPO chlorinating and oxidizing activity is potentiated upon association with these proteins. GENERAL SIGNIFICANCE: Our findings provide new insights into the molecular mechanisms underlying the interaction of MPO with ECM proteins.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Peroxidase/metabolismo , Células Cultivadas , Colágeno Tipo IV/metabolismo , Dimerização , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Proteínas da Matriz Extracelular/química , Fibronectinas/metabolismo , Humanos , Nitratos/metabolismo , Estresse Oxidativo , Ligação Proteica , Tirosina/metabolismo
20.
Anal Biochem ; 465: 63-9, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25086363

RESUMO

Diverse monosaccharide analysis methods have been established for a long time, but few methods are available for a complete monosaccharide analysis of glycosaminoglycans (GAGs) and certain acidolysis-resistant components derived from GAGs. In this report, a reversed-phase high-performance liquid chromatography (RP-HPLC) method with pre-column 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization was established for a complete monosaccharide analysis of GAGs. Good separation of glucosamine/mannosamine (GlcN/ManN) and glucuronic acid/iduronic acid (GlcA/IdoA) was achieved. This method can also be applied to analyze the acidolysis-resistant disaccharides derived from GAGs, and the sequences of these disaccharides were confirmed by electrospray ionization-collision-induced dissociation-tandem mass spectrometry (ESI-CID-MS/MS). These unique disaccharides could be used as markers to distinguish heparin/heparan sulfate (HP/HS), chondroitin sulfate/dermatan sulfate (CS/DS), and hyaluronic acid (HA).


Assuntos
Glicosaminoglicanos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Configuração de Carboidratos , Bovinos , Cromatografia Líquida de Alta Pressão/métodos , Glicosaminoglicanos/química , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA