Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Genet Epidemiol ; 48(4): 151-163, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38379245

RESUMO

Phenotypic heterogeneity at genomic loci encoding drug targets can be exploited by multivariable Mendelian randomization to provide insight into the pathways by which pharmacological interventions may affect disease risk. However, statistical inference in such investigations may be poor if overdispersion heterogeneity in measured genetic associations is unaccounted for. In this work, we first develop conditional F statistics for dimension-reduced genetic associations that enable more accurate measurement of phenotypic heterogeneity. We then develop a novel extension for two-sample multivariable Mendelian randomization that accounts for overdispersion heterogeneity in dimension-reduced genetic associations. Our empirical focus is to use genetic variants in the GLP1R gene region to understand the mechanism by which GLP1R agonism affects coronary artery disease (CAD) risk. Colocalization analyses indicate that distinct variants in the GLP1R gene region are associated with body mass index and type 2 diabetes (T2D). Multivariable Mendelian randomization analyses that were corrected for overdispersion heterogeneity suggest that bodyweight lowering rather than T2D liability lowering effects of GLP1R agonism are more likely contributing to reduced CAD risk. Tissue-specific analyses prioritized brain tissue as the most likely to be relevant for CAD risk, of the tissues considered. We hope the multivariable Mendelian randomization approach illustrated here is widely applicable to better understand mechanisms linking drug targets to diseases outcomes, and hence to guide drug development efforts.


Assuntos
Índice de Massa Corporal , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Análise da Randomização Mendeliana , Fenótipo , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
2.
J Asian Nat Prod Res ; : 1-13, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037429

RESUMO

In our study, a method based on affinity ultrafiltration screening coupled with UPLC-ESI-Orbitrap-MS technology was established to select Glucagon-like peptide-1 receptor (GLP-1R) agonists from natural products, and as an example, the GLP-1R agonists from Panax ginseng was selected using our established method. As a result, total five GLP-1R agonists were selected from Panax ginseng for the first time. Our results indicated that activating GLP-1R to promote insulin secretion probably was another important hypoglycemia mechanism for ginsenosides in Panax ginseng, which had great influence on the study of the anti-diabetes effect of ginsenosides.

3.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612620

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent data highlight similarities between neurodegenerative diseases, including PD and type 2 diabetes mellitus (T2DM), suggesting a crucial interplay between the gut-brain axis. Glucagon-like peptide-1 receptor (GLP-1R) agonists, known for their use in T2DM treatment, are currently extensively studied as novel PD modifying agents. For this narrative review article, we searched PubMed and Scopus databases for peer-reviewed research, review articles and clinical trials regarding GLP-1R agonists and PD published in the English language with no time restrictions. We also screened the references of the selected articles for possible additional articles in order to include most of the key recent evidence. Many data on animal models and preclinical studies show that GLP1-R agonists can restore dopamine levels, inhibit dopaminergic loss, attenuate neuronal degeneration and alleviate motor and non-motor features of PD. Evidence from clinical studies is also very promising, enhancing the possibility of adding GLP1-R agonists to the current armamentarium of drugs available for PD treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Doença de Parkinson , Animais , Doença de Parkinson/tratamento farmacológico , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon , Diabetes Mellitus Tipo 2/tratamento farmacológico , Eixo Encéfalo-Intestino , Bases de Dados Factuais , Dopamina
4.
Diabetologia ; 66(7): 1306-1321, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36995380

RESUMO

AIMS/HYPOTHESIS: Wolfram syndrome is a rare autosomal recessive disorder caused by pathogenic variants in the WFS1 gene. It is characterised by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss and neurodegeneration. Considering the unmet treatment need for this orphan disease, this study aimed to evaluate the therapeutic potential of glucagon-like peptide 1 receptor (GLP-1R) agonists under wolframin (WFS1) deficiency with a particular focus on human beta cells and neurons. METHODS: The effect of the GLP-1R agonists dulaglutide and exenatide was examined in Wfs1 knockout mice and in an array of human preclinical models of Wolfram syndrome, including WFS1-deficient human beta cells, human induced pluripotent stem cell (iPSC)-derived beta-like cells and neurons from control individuals and individuals affected by Wolfram syndrome, and humanised mice. RESULTS: Our study shows that the long-lasting GLP-1R agonist dulaglutide reverses impaired glucose tolerance in WFS1-deficient mice, and that exenatide and dulaglutide improve beta cell function and prevent apoptosis in different human WFS1-deficient models including iPSC-derived beta cells from people with Wolfram syndrome. Exenatide improved mitochondrial function, reduced oxidative stress and prevented apoptosis in Wolfram syndrome iPSC-derived neural precursors and cerebellar neurons. CONCLUSIONS/INTERPRETATION: Our study provides novel evidence for the beneficial effect of GLP-1R agonists on WFS1-deficient human pancreatic beta cells and neurons, suggesting that these drugs may be considered as a treatment for individuals with Wolfram syndrome.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Atrofia Óptica , Síndrome de Wolfram , Humanos , Animais , Camundongos , Síndrome de Wolfram/tratamento farmacológico , Síndrome de Wolfram/genética , Exenatida/uso terapêutico , Atrofia Óptica/patologia , Células Secretoras de Insulina/patologia , Camundongos Knockout
5.
J Endocrinol Invest ; 46(11): 2213-2236, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37378828

RESUMO

BACKGROUND: Adaptive thermogenesis represents the main mechanism through which the body generates heat in response to external stimuli, a phenomenon that includes shivering and non-shivering thermogenesis. The non-shivering thermogenesis is mainly exploited by adipose tissue characterized by a brown aspect, which specializes in energy dissipation. A decreased amount of brown adipose tissue has been observed in ageing and chronic illnesses such as obesity, a worldwide health problem characterized by dysfunctional adipose tissue expansion and associated cardiometabolic complications. In the last decades, the discovery of a trans-differentiation mechanism ("browning") within white adipose tissue depots, leading to the generation of brown-like cells, allowed to explore new natural and synthetic compounds able to favour this process and thus enhance thermogenesis with the aim of counteracting obesity. Based on recent findings, brown adipose tissue-activating agents could represent another option in addition to appetite inhibitors and inhibitors of nutrient absorption for obesity treatment. PURPOSE: This review investigates the main molecules involved in the physiological (e.g. incretin hormones) and pharmacological (e.g. ß3-adrenergic receptors agonists, thyroid receptor agonists, farnesoid X receptor agonists, glucagon-like peptide-1, and glucagon receptor agonists) modulation of adaptive thermogenesis and the signalling mechanisms involved.

6.
Ann Hepatol ; 28(4): 100751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36002119

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is currently the most common cause of chronic liver disease worldwide affecting a third of adults and 12% of children in Western countries. In around 50-60%% of cases, NAFLD and type 2 diabetes mellitus (T2DM) coexist and act synergistically to increase the risk of adverse hepatic and extra-hepatic outcomes. T2DM is a strong risk factor for rapid progression of NAFLD to nonalcoholic steatohepatitis (NASH), cirrhosis or hepatocellular carcinoma (HCC), which have become frequent indications of liver transplantation. The pathophysiology of NAFLD is complex and its relationship with T2DM is bidirectional, where lipotoxicity and insulin resistance (IR), act as the strongest pillars. To date, no pharmacological treatment has been approved for NAFLD. However, there is an intense research with numerous drugs focused on reversing inflammation and liver fibrosis through modulation of molecular targets without good results. It has been known for some time that weight reduction >10% is associated to histological improvement of NAFLD. Recently, glycemic control has been shown to induce similar results. Diet and physical exercise for weight reduction have limitations, so alternative methods (pharmacologic, endoscopic or surgical) may be required. Currently, new antidiabetic drugs inducing weight loss, have been recently approved for the treatment of obesity. Nevertheless, their therapeutic effects on NAFLD have not been extensively studied. We will review here, recently published data on the effects of weight loss and glycemic control on the histological and metabolic parameters of NAFLD and recent published data on therapeutic studies of NAFLD with new antidiabetic drugs.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Criança , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hipoglicemiantes/efeitos adversos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Carcinoma Hepatocelular/complicações , Controle Glicêmico , Neoplasias Hepáticas/complicações , Cirrose Hepática/complicações , Redução de Peso
7.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686344

RESUMO

Type II diabetes mellitus (T2DM) accounts for approximately 90% of all diabetes mellitus cases in the world. Glucagon-like peptide-1 receptor (GLP-1R) agonists have established an increased capability to target directly or indirectly six core defects associated with T2DM, while the underlying molecular mechanisms of these pharmacological effects are not fully known. This exploratory study was conducted to analyze the effect of treatment with GLP-1R agonists on the urinary peptidome of T2DM patients. Urine samples of thirty-two T2DM patients from the PROVALID study ("A Prospective Cohort Study in Patients with T2DM for Validation of Biomarkers") collected pre- and post-treatment with GLP-1R agonist drugs were analyzed by CE-MS. In total, 70 urinary peptides were significantly affected by GLP-1R agonist treatment, generated from 26 different proteins. The downregulation of MMP proteases, based on the concordant downregulation of urinary collagen peptides, was highlighted. Treatment also resulted in the downregulation of peptides from SERPINA1, APOC3, CD99, CPSF6, CRNN, SERPINA6, HBA2, MB, VGF, PIGR, and TTR, many of which were previously found to be associated with increased insulin resistance and inflammation. The findings indicate potential molecular mechanisms of GLP-1R agonists in the context of the management of T2DM and the prevention or delaying of the progression of its associated diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estudos Prospectivos , Apolipoproteína C-III , Redes e Vias Metabólicas
8.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430774

RESUMO

Obesity with its associated complications represents a social, economic and health problem of utmost importance worldwide. Specifically, obese patients carry a significantly higher risk of developing cardiovascular disease compared to nonobese individuals. Multiple molecular mechanisms contribute to the impaired biological activity of the distinct adipose tissue depots in obesity, including secretion of proinflammatory mediators and reactive oxygen species, ultimately leading to an unfavorable impact on the cardiovascular system. This review summarizes data relating to the contribution of the main adipose tissue depots, including both remote (i.e., intra-abdominal, hepatic, skeletal, pancreatic, renal, and mesenteric adipose fat), and cardiac (i.e., the epicardial fat) adipose locations, on the cardiovascular system. Finally, we discuss both pharmacological and non-pharmacological strategies aimed at reducing cardiovascular risk through acting on adipose tissues, with particular attention to the epicardial fat.


Assuntos
Tecido Adiposo , Doenças Cardiovasculares , Humanos , Obesidade/complicações , Doenças Cardiovasculares/complicações , Pericárdio , Fígado
9.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961860

RESUMO

Type 2 diabetes mellitus (T2D) is a chronic metabolic disease resulting from insulin resistance and progressively reduced insulin secretion, which leads to impaired glucose utilization, dyslipidemia and hyperinsulinemia and progressive pancreatic beta cell dysfunction. The incidence of type 2 diabetes mellitus is increasing worldwide and nowadays T2D already became a global epidemic. The well-known interindividual variability of T2D drug actions such as biguanides, sulfonylureas/meglitinides, DPP-4 inhibitors/GLP1R agonists and SGLT-2 inhibitors may be caused, among other things, by genetic factors. Pharmacogenetic findings may aid in identifying new drug targets and obtaining in-depth knowledge of the causes of disease and its physiological processes, thereby, providing an opportunity to elaborate an algorithm for tailor or precision treatment. The aim of this article is to summarize recent progress and discoveries for T2D pharmacogenetics and to discuss the factors which limit the furthering accumulation of genetic variability knowledge in patient response to therapy that will allow improvement the personalized treatment of T2D.


Assuntos
Benzamidas/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Metformina/uso terapêutico , Farmacogenética , Compostos de Sulfonilureia/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Humanos , Hipoglicemiantes/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
10.
J Cutan Med Surg ; 28(1): 91-92, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38156613
11.
Circulation ; 136(9): 849-870, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28847797

RESUMO

Potentiation of glucagon-like peptide-1 (GLP-1) action through selective GLP-1 receptor (GLP-1R) agonism or by prevention of enzymatic degradation by inhibition of dipeptidyl peptidase-4 (DPP-4) promotes glycemic reduction for the treatment of type 2 diabetes mellitus by glucose-dependent control of insulin and glucagon secretion. GLP-1R agonists also decelerate gastric emptying, reduce body weight by reduction of food intake and lower circulating lipoproteins, inflammation, and systolic blood pressure. Preclinical studies demonstrate that both GLP-1R agonists and DPP-4 inhibitors exhibit cardioprotective actions in animal models of myocardial ischemia and ventricular dysfunction through incompletely characterized mechanisms. The results of cardiovascular outcome trials in human subjects with type 2 diabetes mellitus and increased cardiovascular risk have demonstrated a cardiovascular benefit (significant reduction in time to first major adverse cardiovascular event) with the GLP-1R agonists liraglutide (LEADER trial [Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Ourcome Results], -13%) and semaglutide (SUSTAIN-6 trial [Trial to Evaluate Cardiovascular and Other Long-term Outcomes with Semaglutide], -24%). In contrast, cardiovascular outcome trials examining the safety of the shorter-acting GLP-1R agonist lixisenatide (ELIXA trial [Evaluation of Lixisenatide in Acute Coronary Syndrom]) and the DPP-4 inhibitors saxagliptin (SAVOR-TIMI 53 trial [Saxagliptin Assessment of Vascular Outcomes Recorded in Patients With Diabetes Mellitus-Thrombolysis in Myocardial Infarction 53]), alogliptin (EXAMINE trial [Examination of Cardiovascular Outcomes With Alogliptin Versus Standard of Care in Patients With Type 2 Diabetes Mellitus and Acute Coronary Syndrome]), and sitagliptin (TECOS [Trial Evaluating Cardiovascular Outcomes With Sitagliptin]) found that these agents neither increased nor decreased cardiovascular events. Here we review the cardiovascular actions of GLP-1R agonists and DPP-4 inhibitors, with a focus on the translation of mechanisms derived from preclinical studies to complementary findings in clinical studies. We highlight areas of uncertainty requiring more careful scrutiny in ongoing basic science and clinical studies. As newer more potent GLP-1R agonists and coagonists are being developed for the treatment of type 2 diabetes mellitus, obesity, and nonalcoholic steatohepatitis, the delineation of the potential mechanisms that underlie the cardiovascular benefit and safety of these agents have immediate relevance for the prevention and treatment of cardiovascular disease.


Assuntos
Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipoglicemiantes/uso terapêutico , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Humanos , Isquemia Miocárdica/prevenção & controle , Fatores de Risco , Disfunção Ventricular/tratamento farmacológico
12.
Toxicol Appl Pharmacol ; 320: 51-59, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213092

RESUMO

Increased incidence of C-cell carcinogenicity has been observed for glucagon-like-protein-1 receptor (GLP-1r) agonists in rodents. It is suggested that the duration of exposure is an indicator of carcinogenic potential in rodents of the different products on the market. Furthermore, the role of GLP-1-related mechanisms in the induction of C-cell carcinogenicity has gained increased attention by regulatory agencies. This study proposes an integrative pharmacokinetic/pharmacodynamic (PKPD) framework to identify explanatory factors and characterize differences in carcinogenic potential of the GLP-1r agonist products. PK models for four products (exenatide QW (once weekly), exenatide BID (twice daily), liraglutide and lixisenatide) were developed using nonlinear mixed effects modelling. Predicted exposure was subsequently linked to GLP-1r stimulation using in vitro GLP-1r potency data. A logistic regression model was then applied to exenatide QW and liraglutide data to assess the relationship between GLP-1r stimulation and thyroid C-cell hyperplasia incidence as pre-neoplastic predictor of a carcinogenic response. The model showed a significant association between predicted GLP-1r stimulation and C-cell hyperplasia after 2years of treatment. The predictive performance of the model was evaluated using lixisenatide, for which hyperplasia data were accurately described during the validation step. The use of a model-based approach provided insight into the relationship between C-cell hyperplasia and GLP-1r stimulation for all four products, which is not possible with traditional data analysis methods. It can be concluded that both pharmacokinetics (exposure) and pharmacodynamics (potency for GLP-1r) factors determine C-cell hyperplasia incidence in rodents. Our work highlights the pharmacological basis for GLP-1r agonist-induced C-cell carcinogenicity. The concept is promising for application to other drug classes.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Liraglutida/toxicidade , Peptídeos/toxicidade , Neoplasias da Glândula Tireoide/induzido quimicamente , Peçonhas/toxicidade , Animais , Bases de Dados Factuais/tendências , Esquema de Medicação , Exenatida , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/toxicidade , Liraglutida/administração & dosagem , Dinâmica não Linear , Peptídeos/administração & dosagem , Valor Preditivo dos Testes , Roedores , Neoplasias da Glândula Tireoide/patologia , Peçonhas/administração & dosagem
13.
Alzheimers Dement ; 10(1 Suppl): S26-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24529521

RESUMO

Compelling preclinical and clinical evidence supports a pathophysiological connection between Alzheimer's disease (AD) and diabetes. Altered metabolism, inflammation, and insulin resistance are key pathological features of both diseases. For many years, it was generally considered that the brain was insensitive to insulin, but it is now accepted that this hormone has central neuromodulatory functions, including roles in learning and memory, that are impaired in AD. However, until recently, the molecular mechanisms accounting for brain insulin resistance in AD have remained elusive. Here, we review recent evidence that sheds light on how brain insulin dysfunction is initiated at a molecular level and why abnormal insulin signaling culminates in synaptic failure and memory decline. We also discuss the cellular basis underlying the beneficial effects of stimulation of brain insulin signaling on cognition. Discoveries summarized here provide pathophysiological background for identification of novel molecular targets and for development of alternative therapeutic approaches in AD.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Encéfalo/fisiopatologia , Resistência à Insulina , Doenças Metabólicas/etiologia , Animais , Humanos
14.
Cell Metab ; 36(6): 1302-1319.e12, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838642

RESUMO

Glucagon-like peptide-1 receptor (GLP-1R) is a key regulator of glucose metabolism known to be expressed by pancreatic ß cells. We herein investigated the role of GLP-1R on T lymphocytes during immune response. Our data showed that a subset of T lymphocytes expresses GLP-1R, which is upregulated during alloimmune response, similarly to PD-1. When mice received islet or cardiac allotransplantation, an expansion of GLP-1Rpos T cells occurred in the spleen and was found to infiltrate the graft. Additional single-cell RNA sequencing (scRNA-seq) analysis conducted on GLP-1Rpos and GLP-1Rneg CD3+ T cells unveiled the existence of molecular and functional dissimilarities between both subpopulations, as the GLP-1Rpos are mainly composed of exhausted CD8 T cells. GLP-1R acts as a T cell-negative costimulatory molecule, and GLP-1R signaling prolongs allograft survival, mitigates alloimmune response, and reduces T lymphocyte graft infiltration. Notably, GLP-1R antagonism triggered anti-tumor immunity when tested in a preclinical mouse model of colorectal cancer.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Transplante das Ilhotas Pancreáticas , Camundongos Endogâmicos C57BL , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Masculino , Transplante de Coração , Camundongos Endogâmicos BALB C , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Sobrevivência de Enxerto/imunologia
15.
Front Pharmacol ; 15: 1457363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318780

RESUMO

Purpose: Patients undergoing axillary lymph node dissection (ALND) for breast cancer face a high risk of lymphedema, further increased by high body mass index (BMI) and insulin resistance. GLP-1 receptor agonists (GLP-1RAs) have the potential to reduce these risk factors, but their role in lymphedema has never been investigated. The purpose of this study was to determine if GLP-RAs can reduce the risk of lymphedema in patients undergoing ALND. Methods: All patients who underwent ALND at a tertiary cancer center between 2010 and 2023 were reviewed. Patients with less than 2 years of follow-up from the time of ALND were excluded. Race, BMI, radiation, chemotherapy history, pre-existing diagnosis of diabetes, lymphedema development after ALND, and the use of GLP-1RAs were analyzed. Multivariate logistic regression analysis was performed to assess if there was a significant reduction in the risk of developing lymphedema after ALND. A sub-group analysis of non-diabetic patients was also performed. Results: 3,830 patients who underwent ALND were included, 76 of which were treated with. GLP-1 RAs. The incidence of lymphedema in the GLP-1 RA cohort was 6.6% (5 patients). Compared to 28.5% (1,071 patients) in the non-GLP-1 RA cohort. On multivariate regression analysis, patients who were treated with GLP-1 RA were 86% less likely to develop lymphedema compared to the non-GLP-1 RA cohort (OR 0.14, 95% CI 0.04-0.32, p < 0.0001). A BMI of 25 kg/m 2 or greater was a statistically significant risk factor for developing lymphedema with an odds ratio of 1.34 (95% CI 1.16-1.56, p < 0.0001). Diabetes was associated with lymphedema development that closely approached statistical significance (OR 1.32, 95% CI 0.97-1.78, p = 0.06). A subgroup analysis solely on non-diabetic patients showed similar results. The odds of developing lymphedema were 84% lower for patients without diabetes treated with GLP1-RAs compared to those who did not receive GLP-1 RAs (OR 0.16, 95% CI 0.05-0.40, p < 0.0001). Conclusion: GLP1-RAs appear to significantly reduce the risk of lymphedema in patientsundergoing ALND. The mechanism of action may be multifactorial and not limited to weight reduction and insulin resistance. Future prospective analysis is warranted to clarify the role of GLP-1RAs in reducing lymphedema risk.

16.
J Clin Med ; 13(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39201039

RESUMO

Background/Objectives: The effect of glucagon-like peptide-1 receptor (GLP-1R) agonists on calcium homeostasis is poorly understood. This study aimed to investigate the association between GLP-1R agonist use and the risk of hypocalcemia and/or hypercalcemia, as well as other clinical outcomes. Methods: A retrospective cohort study used de-identified patient data from the TriNetX Global Collaborative Network, including 15,655 adult patients prescribed GLP-1R agonists and 15,655 propensity-matched controls. Outcomes included hypocalcemia, hypercalcemia, emergency visits, hospitalizations, cardiovascular events, and all-cause mortality. Results: GLP-1R agonist use was associated with a reduced risk of hypocalcemia (2.7% vs. 5.5%, RR 0.49, 95% CI: 0.44-0.55) but an increased risk of hypercalcemia (2.3% vs. 1.1%, RR 2.02, 95% CI: 1.69-2.42). The effect on hypocalcemia was most pronounced during the first six months of treatment. Among individual agents, tirzepatide showed the most pronounced effect, reducing hypocalcemia risk by 63% while increasing hypercalcemia risk by 85%. Semaglutide demonstrated similar effects, while dulaglutide and liraglutide showed modest effects. Furthermore, GLP-1R agonist use was associated with reduced risks of emergency visits (RR 0.57, 95% CI: 0.54-0.60), hospitalizations (RR 0.40, 95% CI: 0.36-0.44), cardiovascular events, and all-cause mortality (HR 0.27, 95% CI: 0.21-0.36). Conclusions: GLP-1R agonists exhibit a complex influence on calcium homeostasis, reducing hypocalcemia risk while increasing hypercalcemia risk. Beyond calcium regulation, these medications significantly reduce healthcare utilization, improve cardiovascular outcomes, and decrease mortality. Further research is needed to elucidate the mechanisms behind the differential effects of individual GLP-1R agonists, particularly tirzepatide, to optimize personalized treatment approaches and long-term safety.

17.
EMBO Mol Med ; 16(6): 1284-1309, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38783166

RESUMO

Hypoxic-ischaemic encephalopathy (HIE) arises from diminished blood flow and oxygen to the neonatal brain during labor, leading to infant mortality or severe brain damage, with a global incidence of 1.5 per 1000 live births. Glucagon-like Peptide 1 Receptor (GLP1-R) agonists, used in type 2 diabetes treatment, exhibit neuroprotective effects in various brain injury models, including HIE. In this study, we observed enhanced neurological outcomes in post-natal day 10 mice with surgically induced hypoxic-ischaemic (HI) brain injury after immediate systemic administration of exendin-4 or semaglutide. Short- and long-term assessments revealed improved neuropathology, survival rates, and locomotor function. We explored the mechanisms by which GLP1-R agonists trigger neuroprotection and reduce inflammation following oxygen-glucose deprivation and HI in neonatal mice, highlighting the upregulation of the PI3/AKT signalling pathway and increased cAMP levels. These findings shed light on the neuroprotective and anti-inflammatory effects of GLP1-R agonists in HIE, potentially extending to other neurological conditions, supporting their potential clinical use in treating infants with HIE.


Assuntos
Animais Recém-Nascidos , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Exenatida/farmacologia , Exenatida/uso terapêutico , Hipoglicemiantes/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Peptídeos/farmacologia , Peptídeos/uso terapêutico
18.
Cureus ; 16(7): e65707, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39211720

RESUMO

The discovery of inhibitors for sodium-glucose cotransporter 2 (SGLT2) and glucagon-like peptide-1 receptor agonists (GLP-1 RA) has significantly improved type 2 diabetes management. Large-scale clinical studies have shown that both SGLT2 inhibitors and GLP-1 RA enhance cardiovascular health. Benefits include reduced cardiovascular disease risk, lower mortality, fewer heart failure hospitalizations (SGLT2 inhibitors), and stroke prevention (GLP-1 RA). Additionally, these drugs slow chronic kidney disease progression. This comprehensive treatment targets vascular events. Despite differences, both drug classes are crucial. GLP-1 RA mainly reduce stroke risk, while SGLT2 inhibitors alleviate heart failure. Our findings, based on a literature review, will address the renal and cardiac effects of SGLT2 inhibitors and GLP-1 RA in both diabetics and non-diabetics, highlighting their combined benefits for heart conditions.

19.
Children (Basel) ; 11(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38397265

RESUMO

Obesity is a significant health problem with a continuously increasing prevalence among children and adolescents that has become a modern pandemic during the last decades. Nowadays, the genetic contribution to obesity is well-established. For this narrative review article, we searched PubMed and Scopus databases for peer-reviewed research, review articles, and meta-analyses regarding the genetics of obesity and current pharmacological treatment, published in the English language with no time restrictions. We also screened the references of the selected articles for possible additional articles in order to include most of the key recent evidence. Our research was conducted between December 2022 and December 2023. We used the terms "obesity", "genetics", "monogenic", "syndromic", "drugs", "autosomal dominant", "autosomal recessive", "leptin-melanocortin pathway", and "children" in different combinations. Recognizing the genetic background in obesity can enhance the effectiveness of treatment. During the last years, intense research in the field of obesity treatment has increased the number of available drugs. This review analyzes the main categories of syndromic and monogenic obesity discussing current data on genetic-based pharmacological treatment of genetic obesity and highlighting the necessity that cases of genetic obesity should follow specific, pharmacological treatment based on their genetic background.

20.
Int Immunopharmacol ; 132: 111894, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38569426

RESUMO

AIMS: To investigate the immunology shared mechanisms underlying chronic obstructive pulmonary disease (COPD) and type 2 diabetes mellitus (T2DM) and examine the impact of anti-diabetic drugs on acute exacerbation of COPD (AECOPD). METHODS: We analyzed GSE76925, GSE76894, GSE37768, and GSE25724 to identify differentially expressed genes. Hub-genes were identified through protein-protein interaction network analysis and evaluated by the receiver operating characteristic curve. CXCL12 emerged as a robust biomarker, and its correlation with lung function and CD8+ T cells were further quantified and validated. The activated signaling pathways were inferred through Gene set enrichment analysis (GSEA). The retrospective clinical analysis was executed to identify the influence of dipeptidyl peptidase-4 inhibitors (DPP-4i) on CXCL12 and evaluate the drug's efficacy in AECOPD. RESULTS: The significant up-regulation of CXCL12 expression in patients with two diseases were revealed. CXCL12 exhibited a negative correlation with pulmonary function (r = -0.551, p < 0.05). Consistent with analysis in GSE76925 and GSE76894, the positive correlation between the proportion of CD8+ T cells was demonstrated(r=0.469, p<0.05). GSEA identified "cytokines interaction" as an activated signaling pathway, and the clinical study revealed the correlation between CXCL12 and IL-6 (r=0.668, p<0.05). In patients with COPD and T2DM, DDP-4i treatment exhibited significantly higher serum CXCL12, compared to GLP-1RA. Analysis of 187 COPD patients with T2DM indicated that the DPP-4i group had a higher frequency of AECOPD compared to the GLP-1RA group (OR 1.287, 95%CI [1.018-2.136]). CONCLUSIONS: CXCL12 may represent a therapeutic target for COPD and T2DM. GLP-1RA treatment may be associated with lower CXCL12 levels and a lower risk of AECOPD compared to DPP-4i treatment. CLINICAL TRIAL REGISTRATION: China Clinical Trial Registration Center(ChiCTR2200055611).


Assuntos
Quimiocina CXCL12 , Biologia Computacional , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Masculino , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Progressão da Doença , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA