Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Am J Physiol Cell Physiol ; 327(1): C65-C73, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38766766

RESUMO

The blood-brain barrier (BBB) plays a critical role in the development and outcome of subarachnoid hemorrhage (SAH). This study focuses on the potential mechanism by which G-protein-coupled estrogen receptor 30 (GPR30) affects the BBB after SAH. A rat SAH model was established using an intravascular perforation approach. G1 (GPR30 agonist) was administered to investigate the mechanism of BBB damage after SAH. Brain water content, Western blotting, Evans blue leakage, and immunofluorescence staining were performed. Brain microvascular endothelial cells were induced by hemin to establish SAH model in vitro. By adding LY294002 [a phosphatidylinositol 3-kinase (PI3K) blocker] and zinc protoporphyrin IX (ZnPP IX) [a heme oxygenase 1 (HO-1) antagonist], the mechanism of improving BBB integrity through the activation of GPR30 was studied. In vivo, GPR30 activation improved BBB disruption, as evidenced by decreased cerebral edema, downregulated albumin expression, and reduced extravasation of Evans blue and IgG after G1 administration in SAH rats. Moreover, SAH downregulated the levels of tight junction (TJ) proteins, whereas treatment with G1 reversed the effect of SAH. The protective effect of G1 on BBB integrity in vitro was consistent with that in vivo, as evidenced by G1 reducing the impact of hemin on transendothelial electrical resistance (TEER) value, dextran diffusivity, and TJ protein levels in brain microvascular endothelial cells. In addition, G1 activated the PI3K/ protein kinase B (Akt) and nuclear factor erythroid 2-related factor 2 (Nrf2)/HO-1 pathways both in vivo and in vitro. Furthermore, the administration of LY294002 and ZnPP IX partially reversed the protective effect of G1 on BBB integrity in hemin-stimulated cells. We demonstrated that the activation of GPR30, at least partly through the PI3K/Akt and Nrf2/HO-1 pathways, alleviated BBB damage both in vivo and in vitro. This study introduced a novel therapeutic approach for protecting the BBB after SAH.NEW & NOTEWORTHY The PI3K/Akt and Nrf2/HO-1 pathways might be potential mechanisms by which GPR30 protected the integrity of the BBB in SAH models. Therefore, treatment of SAH with GPR30 activator might be a promising therapeutic strategy.


Assuntos
Barreira Hematoencefálica , Receptores Acoplados a Proteínas G , Transdução de Sinais , Hemorragia Subaracnóidea , Animais , Masculino , Ratos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Hemina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/complicações
2.
Biochem Biophys Res Commun ; 716: 150026, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701557

RESUMO

BACKGROUND: Previous in vivo and in vitro studies have demonstrated that estrogen receptor agonist G-1 regulates glucose and lipid metabolism. This study focused on the effects of G-1 on cardiometabolic syndrome and anti-obesity under a high fat diet (HFD). METHODS: Bilateral ovariectomized female mice were fed an HFD for 6 weeks, and treated them with G-1. A cardiomyocyte insulin resistance model was used to simulate the in vivo environment. The main outcome measures were blood glucose, body weight, and serum insulin levels to assess insulin resistance, while cardiac function and degree of fibrosis were assessed by cardiac ultrasound and pathological observations. We also examined the expression of p-AMPK, p-AKT, and GLUT4 in mice hearts and in vitro models to explore the mechanism by which G-1 regulates insulin signaling. RESULTS: G-1 reduced body weight in mice on an HFD, but simultaneously increased blood glucose and promoted insulin resistance, resulting in myocardial damage. This damage included disordered cardiomyocytes, massive accumulation of glycogen, extensive fibrosis of the heart, and thickening of the front and rear walls of the left ventricle. At the molecular level, G-1 enhances gluconeogenesis and promotes glucose production by increasing the activity of pyruvate carboxylase (PC) while inhibiting GLUT4 translocation via the AMPK/TBC1D1 pathway, thereby limiting glucose uptake. CONCLUSION: Despite G-1's the potential efficacy in weight reduction, the concomitant induction of insulin resistance and cardiac impairment in conjunction with an HFD raises significant concerns. Therefore, comprehensive studies of its safety profile and effects under specific conditions are essential prior to clinical use.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Camundongos Endogâmicos C57BL , Ovariectomia , Receptores Acoplados a Proteínas G , Animais , Feminino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Insulina/sangue , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
3.
Histochem Cell Biol ; 161(1): 81-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37821557

RESUMO

Estrogen and its receptors are involved in the pathogenesis of gastrointestinal diseases such as colitis. However, the role of the membrane estrogen receptor G-protein-coupled receptor 30 (GPR30) in colitis is poorly understood. We therefore investigated the effect of estrogen in dextran sulfate sodium (DSS)-induced colitis. Male C57BL/6 mice were administered 1.5% DSS for 5 days and treated with 17ß-estradiol (E2), GPR30 agonist (G1), or GPR30 antagonist (G15) for 8 days. Inflammation grade was evaluated by disease activity index (DAI) and histomorphological score. Colon tissues were immunohistochemically analyzed and revealed high expression of membrane GPR30, histone 3 lysine 36 dimethylation, and lysine 79 trimethylation in normal mouse colon epithelial cells but significantly decreased expression in DSS-treated mice, whereas the expression was partially preserved after treatment with E2 or G1. Colon shortening and DAI were significantly lower in E2- and G1-treated mice compared to DSS-treated mice. Caudal type homeobox 2 (CDX2) expression and cell proliferation differed in normal colon epithelial cells but overlapped in those of DSS-treated mice. Administration of E2 and G1 reduced CDX2 expression and cell proliferation. Altered expression of claudin-2 and occludin were observed in the colonic epithelium of DSS-treated mice, and these changes were significantly lower in the colon of E2- and G1-treated mice. These results indicate that estrogen regulates histone modification, cell proliferation, and CDX2 expression through GPR30, which affects intestinal epithelial barrier function. We conclude that estrogen protects against intestinal epithelial damage through GPR30 by enhancing intestinal epithelial barrier function in DSS-induced colitis in mice.


Assuntos
Colite , Lisina , Animais , Masculino , Camundongos , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/patologia , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças , Estrogênios/farmacologia , Estrogênios/metabolismo , Mucosa Intestinal/metabolismo , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
4.
Arch Biochem Biophys ; 752: 109882, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38211639

RESUMO

G protein-coupled receptor 30 (GPR30), also named G protein-coupled estrogen receptor (GPER), and the ß1-adrenergic receptor (ß1AR) are G protein-coupled receptors (GPCR) that are implicated in breast cancer progression. Both receptors contain PSD-95/Discs-large/ZO-1 homology (PDZ) motifs in their C-terminal tails through which they interact in the plasma membrane with membrane-associated guanylate kinase (MAGUK) scaffold proteins, and in turn protein kinase A anchoring protein (AKAP) 5. GPR30 constitutively and PDZ-dependently inhibits ß1AR-mediated cAMP production. We hypothesized that this inhibition is a consequence of a plasma membrane complex of these receptors. Using co-immunoprecipitation, confocal immunofluorescence microscopy, and bioluminescence resonance energy transfer (BRET), we show that GPR30 and ß1AR reside in close proximity in a plasma membrane complex when transiently expressed in HEK293. Deleting the GPR30 C-terminal PDZ motif (-SSAV) does not interfere with the receptor complex, indicating that the complex is not PDZ-dependent. MCF7 breast cancer cells express GPR30, ß1AR, MAGUKs, and AKAP5 in the plasma membrane, and co-immunoprecipitation revealed that these proteins exist in close proximity also under native conditions. Furthermore, expression of GPR30 in MCF7 cells constitutively and PDZ-dependently inhibits ß1AR-mediated cAMP production. AKAP5 also inhibits ß1AR-mediated cAMP production, which is not additive with GPR30-promoted inhibition. These results argue that GPR30 and ß1AR form a PDZ-independent complex in MCF7 cells through which GPR30 constitutively and PDZ-dependently inhibits ß1AR signaling via receptor interaction with MAGUKs and AKAP5.


Assuntos
Neoplasias da Mama , Proteínas Quinases Dependentes de AMP Cíclico , Feminino , Humanos , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Guanilato Quinases , Células HEK293 , Células MCF-7 , Receptores Adrenérgicos/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
Int J Mol Sci ; 25(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39273478

RESUMO

The prevalence of obesity-induced asthma increases in women after menopause. We hypothesized that the increase in obese asthma in middle-aged women results from estrogen loss. In particular, we focused on the acute action of estrogen through the G protein-coupled estrogen receptor 1 (GPER), previously known as GPR30. We investigated whether GPER activation ameliorates obesity-induced asthma with a high-fat diet (HFD) using G-1, the GPER agonist, and G-36, the GPER antagonist. Administration of G-1 (0.5 mg/kg) suppressed HFD-induced airway hypersensitivity (AHR), and increased immune cell infiltration, whereas G-36 co-treatment blocked it. Histological analysis showed that G-1 treatment inhibited HFD-induced inflammation, fibrosis, and mucus hypersecretion in a GPER-dependent manner. G-1 inhibited the HFD-induced rise in the mRNA levels of pro-inflammatory cytokines in the gonadal white adipose tissue and lungs, whereas G-36 co-treatment reversed this effect. G-1 increased anti-inflammatory M2 macrophages and inhibited the HFD-induced rise in pro-inflammatory M1 macrophages in the lungs. In addition, G-1 treatment reversed the HFD-induced increase in leptin expression and decrease in adiponectin expression in the lungs and gonadal white adipose tissue. The results suggest that activation of GPER could be a therapeutic option for obesity-induced asthma.


Assuntos
Asma , Dieta Hiperlipídica , Macrófagos , Obesidade , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Asma/metabolismo , Asma/tratamento farmacológico , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Receptores de Estrogênio/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Feminino , Quinolinas/farmacologia , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Citocinas/metabolismo
6.
Int J Mol Sci ; 25(16)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39201674

RESUMO

Luminal breast cancer has a high incidence worldwide and poses a severe health threat. Estrogen receptor alpha (ER-α) is activated by 17ß-estradiol (E2), and its overexpression promotes cancerous characteristics. Luminal breast cancer is an epithelial type; however, the cytokine IL-6, secreted by cells within the tumor microenvironment, stimulates the epithelial-to-mesenchymal transition (EMT) and promotes metastasis. Also, IL-6 decreases ER-α levels, favoring the tamoxifen (TMX) resistance development. However, genes under E2 regulation continue to be expressed even though this receptor is absent. GPR30 is an alternative E2 receptor present in both luminal and aggressive triple-negative breast cancer and is related to TMX resistance and cancer progression. The roles of GPR30 and IL-6 in metastasis have been individually established; however, their interplay remains unexplored. This study aims to elucidate the role of GPR30 in IL-6-induced metastatic properties of MCF-7 luminal breast cancer cells. Results showed that GPR30 contributes to the E2-induced MCF-7 proliferation because its inhibition with the antagonist G15 and the Pertussis toxin (PTX) reduced it. Besides, GPR30 upregulated vimentin and downregulated E-cadherin levels in MCF-7 and TMX-resistant (R-TMX) cells and is also involved in the IL-6-induced migration, invasion, and TMX resistance in MCF-7 cells. In addition, in MDA-MB-231 triple-negative cells, both basal and IL-6-induced metastatic properties were related to GPR30 activity. These results indicate that the GPR30 receptor regulates the EMT induced by IL-6 in breast cancer cells.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Interleucina-6 , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Estrogênio/metabolismo , Feminino , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Células MCF-7 , Movimento Celular/efeitos dos fármacos , Metástase Neoplásica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Tamoxifeno/farmacologia , Proliferação de Células/efeitos dos fármacos
7.
Biochem Biophys Res Commun ; 659: 80-90, 2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37054506

RESUMO

High-risk human papillomavirus (HPV) infection is the major cause of cervical cancer. However, the factors that modulate the process from infection to carcinogenesis are poorly understood. Although cervical cancer is clinically considered an estrogen-independent tumor, the role of estrogen in cervical cancer, particularly cervical adenocarcinoma, remains controversial. In this study, we showed that estrogen/GPR30 signaling induced genomic instability, which leads to carcinogenesis in high-risk HPV-infected endocervical columnar cell lines. The expression of estrogen receptors in a normal cervix was confirmed through immunohistochemical analysis which showed that G protein-coupled receptor 30 (GPR30) was predominantly expressed in endocervical glands and estrogen receptor-α (ERα) was expressed at higher levels in the squamous epithelium than in the cervical gland. E2 increased the proliferation of cervical cell lines, particularly normal endocervical columnar and adenocarcinoma cells via GPR30 rather than ERα, and increased the accumulation of DNA double-strand breaks (DSBs) in high-risk HPV-E6-expressing cells. The increase in DSBs was caused by the impairment of Rad 51 and accumulation of topoisomerase-2-DNA complexes under HPV-E6 expression. In addition, chromosomal aberrations increased in cells with E2-induced DSB accumulation. Collectively, we conclude that E2 exposure in high-risk HPV-infected cervical cells increases DSBs, leading to genomic instability and thus carcinogenesis via GPR30.


Assuntos
Adenocarcinoma , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/patologia , Colo do Útero/patologia , Receptor alfa de Estrogênio/metabolismo , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Estrogênios/farmacologia , Carcinogênese/genética , Adenocarcinoma/genética
8.
Arch Biochem Biophys ; 743: 109662, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37276925

RESUMO

Epithelial ovarian cancer (EOC) is the most common of cancer death among malignant tumors in women, its occurrence and development are strongly linked to estrogen. Having identified the phosphatase and tensin homologue (PTEN) is a potent tumor suppressor regulating cell proliferation, migration, and survival. Meanwhile, there is a correlation between PTEN protein expression and estrogen receptor expression in EOC. However, no study has amplified on the molecular regulatory mechanism and function between estrogen and PTEN in the development of EOC. In this research, we found that PTEN shows a low expression level in EOC tissues and estrogen decreased PTEN expression via the estrogen receptor 1 (ESR1) in EOC cells. Knockdown of PTEN enhanced the proliferation and migration level of EOC cells driven by estrogen. Moreover, PTEN was also phosphorylated by G protein-coupled receptor 30 (GPR30)-Protein kinase C (PKC) signaling pathway upon estrogen stimulation. Inhibiting the phosphorylation of PTEN weakened the proliferation and migration of estrogen induced-EOC cells estrogen and decreased the phosphorylation of Protein kinase B (AKT) and Mammalian target of rapamycin (mTOR). These results indicated that estrogen decreased PTEN expression level via the ESR1 genomic pathway and phosphorylated PTEN via the GPR30-PKC non-genomic pathway to activate the PI3K/AKT/mTOR signaling pathway, thereby determining the fate of EOC cells.


Assuntos
Neoplasias Ovarianas , Proteínas Proto-Oncogênicas c-akt , Humanos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Fosforilação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Neoplasias Ovarianas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Estrogênios , Proliferação de Células/genética
9.
Neurochem Res ; 48(6): 1811-1821, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36717511

RESUMO

Ischemic stroke (IS) is the most common type of stroke and the second leading cause of death overall. Neural stem cells play protective roles in IS, but the underlying mechanism remains to be determined. Neural stem cells (NSC) were obtained from the fetal brain tissue of C57BL/6J mice. NSC-derived exosomes (NSC-Exos) were identified in the conditioned medium. Internalization of NSC-Exos was analyzed by fluorescence microscopy. In vitro microglia ischemic stroke injury model was induced using oxygen glucose deprivation/re-oxygenation (OGD/R) method. Cell viability and inflammation were analyzed by MTT, qPCR, ELISA and Western blotting assay. Interaction between ZEB1 and the promoter of GPR30 was verified by luciferase assay and chromatin immunoprecipitation. NSC-Exos prevented OGD/R-mediated inhibition of cell survival and the production of inflammatory cytokines in microglia cells. NSC-Exos increased ZEB1 expression in OGD/R-treated microglia. Down-regulation of ZEB1 expression in NSC-Exos abolished NSC-Exos' protective effects on OGD/R-treated microglia. ZEB1 bound to the promoter region of GPR30 and promoted its expression. Inhibiting GPR30 reversed NSC-Exos effects on cell viability and inflammation injury in OGD/R-treated microglia. Our study demonstrated that NSC exerted cytoprotective roles through release of exosomal ZEB1,which transcriptionally upregulated GPR30 expression, resulting in a reduction in TLR4/NF-κB pathway-induced inflammation. These findings shed light on NSC-Exos' cytoprotective mechanism and highlighted its potential application in the treatment of IS.


Assuntos
AVC Isquêmico , MicroRNAs , Células-Tronco Neurais , Camundongos , Animais , NF-kappa B/metabolismo , Microglia/metabolismo , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , AVC Isquêmico/metabolismo , Inflamação/metabolismo , MicroRNAs/metabolismo , Glucose/metabolismo
10.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674423

RESUMO

The incidence of heart failure mainly resulting from cardiac hypertrophy and fibrosis increases sharply in post-menopausal women compared with men at the same age, which indicates a cardioprotective role of estrogen. Previous studies in our group have shown that the novel estrogen receptor G Protein Coupled Receptor 30 (GPR30) could attenuate myocardial fibrosis caused by ischemic heart disease. However, the role of GPR30 in myocardial hypertrophy in ovariectomized mice has not been investigated yet. In this study, female mice with bilateral ovariectomy or sham surgery underwent transverse aortic constriction (TAC) surgery. After 8 weeks, mice in the OVX + TAC group exhibited more severe myocardial hypertrophy and fibrosis than mice in the TAC group. G1, the specific agonist of GPR30, could attenuate myocardial hypertrophy and fibrosis of mice in the OVX + TAC group. Furthermore, the expression of LC3II was significantly higher in the OVX + TAC group than in the OVX + TAC + G1 group, which indicates that autophagy might play an important role in this process. An in vitro study showed that G1 alleviated AngiotensionII (AngII)-induced hypertrophy and reduced the autophagy level of H9c2 cells, as revealed by LC3II expression and tandem mRFP-GFP-LC3 fluorescence analysis. Additionally, Western blot results showed that the AKT/mTOR pathway was inhibited in the AngII group, whereas it was restored in the AngII + G1 group. To further verify the mechanism, PI3K inhibitor LY294002 or autophagy activator rapamycin was added in the AngII + G1 group, and the antihypertrophy effect of G1 on H9c2 cells was blocked by LY294002 or rapamycin. In summary, our results demonstrate that G1 can attenuate cardiac hypertrophy and fibrosis and improve the cardiac function of mice in the OVX + TAC group through AKT/mTOR mediated inhibition of autophagy. Thus, this study demonstrates a potential option for the drug treatment of pressure overload-induced cardiac hypertrophy in postmenopausal women.


Assuntos
Estenose da Valva Aórtica , Proteínas Proto-Oncogênicas c-akt , Camundongos , Feminino , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estenose da Valva Aórtica/patologia , Autofagia , Fibrose , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miocárdio/metabolismo
11.
Saudi Pharm J ; 31(11): 101818, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37868646

RESUMO

The potential health benefits of phytochemicals in preventing and treating diseases have gained increasing attention. Here, we proved that the methylated isoflavone prunetin possesses a reno-therapeutic effect against renal ischemia/reperfusion (I/R) insult by activating G protein-coupled receptor 30 (GPR30). After choosing the therapeutic dose of prunetin against renal I/R injury in the pilot study, male Sprague Dawley rats were allocated into 5 groups; viz., sham-operated (SO), SO injected with 1 mg/kg prunetin intraperitoneally for three successive days, untreated I/R, I/R treated with prunetin, and I/R treated with G-15, the selective GPR30 blocker, followed by prunetin. Treatment with prunetin reversed the I/R renal injury effect and majorly restored normal renal function and architecture. Mechanistically, prunetin restored the I/R-induced depletion of renal GPR30, an impact that was canceled by the pre-administration of G-15. Additionally, post-administration of prunetin normalized the boosted inflammatory markers indoxyl sulfate, TLR4, and TRIF and abrogated renal cell demise by suppressing necroptotic signaling, verified by the inactivation of p-RIPK1, p-RIPK3, and p-MLKL while normalizing the inhibited caspase-8. Besides, prunetin reversed the I/R-mediated mitochondrial fission by inhibiting the protein expression of PGMA5 and p-DRP-1. All these favorable impacts of prunetin were nullified by G-15. To sum up, prunetin exhibited a significant reno-therapeutic effect evidenced by the enhancement of renal morphology and function, the suppression of the inflammatory cascade indoxyl sulfate/TLR4/TRIF, which turns off the activated/phosphorylated necroptotic trajectory RIPK1/RIPK3/MLKL, while enhancing caspase-8. Additionally, prunetin opposed the mitochondrial fission pathway RIPK3/PGMA5/DRP-1, effects that are mediated via the activation of GPR30.

12.
Mol Biol Rep ; 49(7): 6341-6355, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35513634

RESUMO

BACKGROUND: G-protein-coupled ER (GPR30) plays an important role in cardioprotection. Recent studies have shown that the GPR30-specific agonist G-1 reduces the degree of myocardial fibrosis in rats with myocardial infarction, reduces the morbidity associated with atrial fibrillation, and inhibits the proliferation of cardiac fibroblasts in animal experiments. Nevertheless, the underlying mechanism of myocardial fibrosis and atrial fibrillation remains unclear. In this study, we explored the mechanism underlying the effect of GPR30 on atrial fibrosis and atrial fibrillation in OVX mice. METHODS: We established an animal model of atrial fibrillation induced by Ang II (derived from OVX C57BL/6 female mice) and observed the role of G-1 in cardiac function by echocardiography, hemodynamics, morphology and fibrosis-related and apoptosis-related protein expression by Masson's trichrome, immunofluorescence, western blotting and TUNEL staining. RESULTS: Echocardiography and body surface ECG showed that G-1 combined with Ang II significantly reduced atrial fibrosis and atrial fibrillation compared to Ang II alone. The G-1 treatment group exhibited changes in the mRNA and protein expression of apoptosis-related genes. Moreover, G-1 treatment also altered the levels of inflammation-related proteins and mRNAs. In primary cultured cardiac fibroblasts (CFSs), proliferation was significantly increased in response to Ang II, and G-1 inhibited cell proliferation and apoptosis. CONCLUSION: GPR30 is a potential therapeutic target for alleviating atrial fibrosis in OVX mice by upregulating Smad7 expression to inhibit the TGF-ß/Smad pathway.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina II/metabolismo , Animais , Fibrilação Atrial/patologia , Cardiomiopatias/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
13.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563581

RESUMO

In addition to the classical oestrogen receptors, ERα and ERß, a G protein-coupled oestrogen receptor (GPER) has been identified that primarily mediates the rapid, non-genomic signalling of oestrogens. Data on GPER expression at the protein level are contradictory; therefore, the present study was conducted to re-evaluate GPER expression by immunohistochemistry to obtain broad GPER expression profiles in human non-neoplastic and neoplastic tissues, especially those not investigated in this respect so far. We developed and thoroughly characterised a novel rabbit monoclonal anti-human GPER antibody, 20H15L21, using Western blot analyses and immunocytochemistry. The antibody was then applied to a large series of formalin-fixed, paraffin-embedded human tissue samples. In normal tissue, GPER was identified in distinct cell populations of the cortex and the anterior pituitary; islets and pancreatic ducts; fundic glands of the stomach; the epithelium of the duodenum and gallbladder; hepatocytes; proximal tubules of the kidney; the adrenal medulla; and syncytiotrophoblasts and decidua cells of the placenta. GPER was also expressed in hepatocellular, pancreatic, renal, and endometrial cancers, pancreatic neuroendocrine tumours, and pheochromocytomas. The novel antibody 20H15L21 will serve as a valuable tool for basic research and the identification of GPER-expressing tumours during histopathological examinations.


Assuntos
Anticorpos Monoclonais , Receptores de Estrogênio , Animais , Estrogênios , Feminino , Proteínas de Ligação ao GTP/metabolismo , Humanos , Gravidez , Coelhos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
14.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142876

RESUMO

In the presence of established atherosclerosis, estrogens are potentially harmful. MMP-2 and MMP-9, their inhibitors (TIMP-2 and TIMP-1), RANK, RANKL, OPG, MCP-1, lysyl oxidase (LOX), PDGF-ß, and ADAMTS-4 play critical roles in plaque instability/rupture. We aimed to investigate (i) the effect of estradiol on the expression of the abovementioned molecules in endothelial cells, (ii) which type(s) of estrogen receptors mediate these effects, and (iii) the role of p21 in the estrogen-mediated regulation of the aforementioned factors. Human aortic endothelial cells (HAECs) were cultured with estradiol in the presence or absence of TNF-α. The expression of the aforementioned molecules was assessed by qRT-PCR and ELISA. Zymography was also performed. The experiments were repeated in either ERα- or ERß-transfected HAECs and after silencing p21. HAECs expressed only the GPR-30 estrogen receptor. Estradiol, at low concentrations, decreased MMP-2 activity by 15-fold, increased LOX expression by 2-fold via GPR-30, and reduced MCP-1 expression by 3.5-fold via ERß. The overexpression of ERα increased MCP-1 mRNA expression by 2.5-fold. In a low-grade inflammation state, lower concentrations of estradiol induced the mRNA expression of MCP-1 (3.4-fold) and MMP-9 (7.5-fold) and increased the activity of MMP-2 (1.7-fold) via GPR-30. Moreover, p21 silencing resulted in equivocal effects on the expression of the abovementioned molecules. Estradiol induced different effects regarding atherogenic plaque instability through different ERs. The balance of the expression of the various ER subtypes may play an important role in the paradoxical characterization of estrogens as both beneficial and harmful.


Assuntos
Aterosclerose , Placa Aterosclerótica , Células Endoteliais/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Estrogênios/farmacologia , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Placa Aterosclerótica/genética , Proteína-Lisina 6-Oxidase/metabolismo , RNA Mensageiro/metabolismo , Receptores de Estrogênio/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Transcriptoma , Fator de Necrose Tumoral alfa/genética
15.
Acta Pharmacol Sin ; 42(12): 2173-2180, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34267344

RESUMO

Female-specific subpopulation of myelinated Ah-type baroreceptor neurons (BRNs) in nodose ganglia is the neuroanatomical base of sexual-dimorphic autonomic control of blood pressure regulation, and KCa1.1 is a key player in modulating the neuroexcitation in nodose ganglia. In this study we investigated the exact mechanisms underlying KCa1.1-mediated neuroexcitation of myelinated Ah-type BRNs in the presence or absence of estrogen. BRNs were isolated from adult ovary intact (OVI) or ovariectomized (OVX) female rats, and identified electrophysiologically and fluorescently. Action potential (AP) and potassium currents were recorded using whole-cell recording. Consistently, myelinated Ah-type BRNs displayed a characteristic discharge pattern and significantly reduced excitability after OVX with narrowed AP duration and faster repolarization largely due to an upregulated iberiotoxin (IbTX)-sensitive component; the changes in AP waveform and repetitive discharge of Ah-types from OVX female rats were reversed by G1 (a selective agonist for estrogen membrane receptor GPR30, 100 nM) and/or IbTX (100 nM). In addition, the effect of G1 on repetitive discharge could be completely blocked by G15 (a selective antagonist for estrogen membrane receptor GPR30, 3 µM). These data suggest that estrogen deficiency by removing ovaries upregulates KCa1.1 channel protein in Ah-type BRNs, and subsequently increases AP repolarization and blunts neuroexcitation through estrogen membrane receptor signaling. Intriguingly, this upregulated KCa1.1 predicted electrophysiologically was confirmed by increased mean fluorescent intensity that was abolished by estrogen treatment. These electrophysiological findings combined with immunostaining and pharmacological manipulations reveal the crucial role of KCa1.1 in modulation of neuroexcitation especially in female-specific subpopulation of myelinated Ah-type BRNs and extend our current understanding of sexual dimorphism of neurocontrol of BP regulation.


Assuntos
Estrogênios/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Neurônios/metabolismo , Gânglio Nodoso/metabolismo , Pressorreceptores/metabolismo , Animais , Estrogênios/deficiência , Feminino , Neurônios/efeitos dos fármacos , Ovariectomia , Ovário/citologia , Ovário/cirurgia , Pressorreceptores/efeitos dos fármacos , Quinolinas/farmacologia , Ratos Sprague-Dawley
16.
Contemp Oncol (Pozn) ; 25(3): 204-212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34729041

RESUMO

INTRODUCTION: The G protein-coupled oestrogen receptor 1 (GPER-1) is a potential prognostic marker in breast cancer. However, its role in male breast cancer (MBC) is still unknown. This study evaluates the expression of GPER-1 in MBC samples and correlates these data with clinical and pathological parameters including patients' survival. MATERIAL AND METHODS: For this retrospective analysis of a prospectively maintained cohort of patients with MBC, we examined 161 specimens for GPER-1 expression using immunohistochemistry. An immunoreactive score (IRS) was calculated based on staining intensity and the percentage of positive tumour cells. Then, we correlated GPER-1 IRS with clinical and pathological parameters, and overall and relapse-free survival. RESULTS: About 40% of MBC samples were positive for GPER-1 expression (IRS ≥ 4). There was no significant correlation with clinicopathological parameters, such as hormone receptor status or grading. However, a statistical trend was observed for tumour size (≥ 2 cm, p = 0.093). Kaplan-Meier survival analysis revealed no significant correlation with relapse-free survival. However, there was a significant correlation with overall survival, but when we adjusted the log-rank p-value to compensate for the cut-off point optimization method, it rose above 0.1. Additionally, GPER-1-positive patients were older at diagnosis. When adjusted for age by multivariable Cox regression analysis, the significance of GPER-1 status for survival was further reduced. CONCLUSIONS: We found no significant prognostic value of GPER-1 in this MBC cohort as anticipated from studies on female BC. Future studies with higher sample size are needed to further verify a potential sex-specific role of GPER-1.

17.
J Cell Mol Med ; 24(6): 3625-3633, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32052561

RESUMO

Cisplatin is the major chemotherapeutic drug in gastric cancer, particularly in treating advanced gastric cancer. Tumour cells often develop resistance to chemotherapeutic drugs, which seriously affects the efficacy of chemotherapy. GPR30 is a novel oestrogen receptor that is involved in the invasion, metastasis and drug resistance of many tumours. Targeting GPR30 has been shown to increase the drug sensitivity of breast cancer cells. However, few studies have investigated the role of GPR30 in gastric cancer. Epithelial-mesenchymal transition (EMT) has been shown to be associated with the development of chemotherapeutic drug resistance. In this study, we demonstrated that GPR30 is involved in cisplatin resistance by promoting EMT in gastric cancer. GPR30 knockdown resulted in increased sensitivity of different gastric cancer (GC) cells to cisplatin and alterations in the epithelial/mesenchymal markers. Furthermore, G15 significantly enhanced the cisplatin sensitivity of GC cells while G1 inhibited this phenomenon. In addition, EMT occurred when AGS and BGC-823 were treated with cisplatin. Down-regulation of GPR30 with G15 inhibited this transformation, while G1 promoted it. Taken together, these results revealed the role of GPR30 in the formation of cisplatin resistance, suggesting that targeting GPR30 signalling may be a potential strategy for improving the efficacy of chemotherapy in gastric cancer.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos
18.
J Cell Physiol ; 235(11): 8486-8494, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32324271

RESUMO

Estrogen hormones are important for cartilage homeostasis, but nothing is known regarding the expression and role of the membrane G protein-coupled estrogen receptor (GPER), G protein-coupled receptor 30 (GPR30), in adult articular chondrocytes. Using immunohistochemistry of cartilage sections, quantitative real-time polymerase chain reaction and Western blot of chondrocyte extracts, we found that these cells express GPR30. Nonetheless, the pattern of bands detected by two distinct antibodies does not overlap, suggesting that the proteins detected represent partially degraded forms of the receptor. Treatment with GPR30 agonists did not induce Akt or ERK1/2 phosphorylation, two known GPR30-activated signaling pathways, suggesting that GPR30 is not functional in human chondrocytes. Therefore, the protective anti-osteoarthritic role of estrogen hormones in cartilage homeostasis is likely independent of GPR30. This study was performed using human cartilage collected from the distal femoral condyles of multiorgan donors at the Bone and Tissue Bank of the University and Hospital Center of Coimbra.


Assuntos
Cartilagem/metabolismo , Condrócitos/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Humanos , Proteína Quinase 3 Ativada por Mitógeno , Transdução de Sinais/efeitos dos fármacos
19.
J Cell Physiol ; 235(11): 7791-7802, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31930508

RESUMO

Myocardial ischemia-reperfusion (I/R) injury, a major contributor to morbidity and mortality, represents a combination of intrinsic cellular response to ischemia and the extrinsic acute inflammatory response. In the present study, microarray analysis of GSE67308 and GSE50885 identified differentially expressed GPR30 and upstream regulatory miR-2861 and miR-5115 in myocardial I/R. Furthermore, GPR30 was confirmed as a common target gene of miR-2861 and miR-5115, and miR-2861 and miR-5115 inhibited GPR30 expression. Poor expression of GPR30 was identified in the myocardial I/R injury mouse model. Overexpressed GPR30 led to alleviated the pathological conditions, diminished myocardial infarct size and apoptosis of myocardial tissue in mice. Moreover, miR-2861 and miR-5115 were found to be highly expressed in the myocardial I/R injury mouse model and to subsequently accelerate the disease progression. Notably, PR30 curtailed the development of myocardial I/R injury through activation of the mTOR signaling pathway. The key findings suggested that miR-2861 and miR-5115 blocked the activation of the GPR30/mTOR signaling pathway by targeting GPR30, thereby accelerating myocardial I/R injury in mice.


Assuntos
Regulação da Expressão Gênica/fisiologia , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia
20.
Glia ; 68(1): 27-43, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31429156

RESUMO

Ischemic stroke leads to neuronal damage induced by excitotoxicity, inflammation, and oxidative stress. Astrocytes play diverse roles in stroke and ischemia-induced inflammation, and autophagy is critical for maintaining astrocytic functions. Our previous studies showed that the activation of G protein-coupled receptor 30 (GPR30), an estrogen membrane receptor, protected neurons from excitotoxicity. However, the role of astrocytic GPR30 in maintaining autophagy and neuroprotection remained unclear. In this study, we found that the neuroprotection induced by G1 (GPR30 agonist) in wild-type mice after a middle cerebral artery occlusion was completely blocked in GPR30 conventional knockout (KO) mice but partially attenuated in astrocytic or neuronal GPR30 KO mice. In cultured primary astrocytes, glutamate exposure induced astrocyte proliferation and decreased astrocyte autophagy by activating mammalian target of rapamycin (mTOR) and c-Jun N-terminal kinase (JNK) and inhibiting p38 mitogen-activated protein kinase (MAPK) pathway. G1 treatment restored autophagy to its basal level by regulating the p38 pathway but not the mTOR and JNK signaling pathways. Our findings revealed a key role of GPR30 in neuroprotection via the regulation of astrocyte autophagy and support astrocytic GPR30 as a potential drug target against ischemic brain damage.


Assuntos
Astrócitos/metabolismo , Autofagia/fisiologia , Fármacos Neuroprotetores/farmacologia , Quinolinas/farmacologia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevenção & controle , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fármacos Neuroprotetores/uso terapêutico , Quinolinas/uso terapêutico , Receptores Acoplados a Proteínas G/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA