Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 652
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(2): 499-514.e23, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576454

RESUMO

Genomics has provided a detailed structural description of the cancer genome. Identifying oncogenic drivers that work primarily through dosage changes is a current challenge. Unrestrained proliferation is a critical hallmark of cancer. We constructed modular, barcoded libraries of human open reading frames (ORFs) and performed screens for proliferation regulators in multiple cell types. Approximately 10% of genes regulate proliferation, with most performing in an unexpectedly highly tissue-specific manner. Proliferation drivers in a given cell type showed specific enrichment in somatic copy number changes (SCNAs) from cognate tumors and helped predict aneuploidy patterns in those tumors, implying that tissue-type-specific genetic network architectures underlie SCNA and driver selection in different cancers. In vivo screening confirmed these results. We report a substantial contribution to the catalog of SCNA-associated cancer drivers, identifying 147 amplified and 107 deleted genes as potential drivers, and derive insights about the genetic network architecture of aneuploidy in tumors.


Assuntos
Aneuploidia , Neoplasias/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Mapeamento Cromossômico , Cromossomos/genética , Fator de Transcrição E2F1/antagonistas & inibidores , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Feminino , Biblioteca Gênica , Genômica , Humanos , Queratinas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Oncogenes , Fases de Leitura Aberta/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo
2.
Immunity ; 55(12): 2386-2404.e8, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36446385

RESUMO

The association between cancer and autoimmune disease is unexplained, exemplified by T cell large granular lymphocytic leukemia (T-LGL) where gain-of-function (GOF) somatic STAT3 mutations correlate with co-existing autoimmunity. To investigate whether these mutations are the cause or consequence of CD8+ T cell clonal expansions and autoimmunity, we analyzed patients and mice with germline STAT3 GOF mutations. STAT3 GOF mutations drove the accumulation of effector CD8+ T cell clones highly expressing NKG2D, the receptor for stress-induced MHC-class-I-related molecules. This subset also expressed genes for granzymes, perforin, interferon-γ, and Ccl5/Rantes and required NKG2D and the IL-15/IL-2 receptor IL2RB for maximal accumulation. Leukocyte-restricted STAT3 GOF was sufficient and CD8+ T cells were essential for lethal pathology in mice. These results demonstrate that STAT3 GOF mutations cause effector CD8+ T cell oligoclonal accumulation and that these rogue cells contribute to autoimmune pathology, supporting the hypothesis that somatic mutations in leukemia/lymphoma driver genes contribute to autoimmune disease.


Assuntos
Doenças Autoimunes , Leucemia Linfocítica Granular Grande , Animais , Camundongos , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Linfócitos T CD8-Positivos , Mutação com Ganho de Função , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/patologia , Mutação , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
3.
Cell ; 167(1): 187-202.e17, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27662089

RESUMO

Inflammasome complexes function as key innate immune effectors that trigger inflammation in response to pathogen- and danger-associated signals. Here, we report that germline mutations in the inflammasome sensor NLRP1 cause two overlapping skin disorders: multiple self-healing palmoplantar carcinoma (MSPC) and familial keratosis lichenoides chronica (FKLC). We find that NLRP1 is the most prominent inflammasome sensor in human skin, and all pathogenic NLRP1 mutations are gain-of-function alleles that predispose to inflammasome activation. Mechanistically, NLRP1 mutations lead to increased self-oligomerization by disrupting the PYD and LRR domains, which are essential in maintaining NLRP1 as an inactive monomer. Primary keratinocytes from patients experience spontaneous inflammasome activation and paracrine IL-1 signaling, which is sufficient to cause skin inflammation and epidermal hyperplasia. Our findings establish a group of non-fever inflammasome disorders, uncover an unexpected auto-inhibitory function for the pyrin domain, and provide the first genetic evidence linking NLRP1 to skin inflammatory syndromes and skin cancer predisposition.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Carcinoma/genética , Predisposição Genética para Doença , Inflamassomos/metabolismo , Ceratose/genética , Neoplasias Cutâneas/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/química , Carcinoma/patologia , Cromossomos Humanos Par 17/genética , Epiderme/patologia , Mutação em Linhagem Germinativa , Humanos , Hiperplasia/genética , Hiperplasia/patologia , Inflamassomos/genética , Interleucina-1/metabolismo , Ceratose/patologia , Proteínas NLR , Comunicação Parácrina , Linhagem , Domínios Proteicos , Pirina/química , Transdução de Sinais , Neoplasias Cutâneas/patologia , Síndrome
4.
Mol Cell ; 83(5): 731-745.e4, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36693379

RESUMO

The speckle-type POZ protein (SPOP) functions in the Cullin3-RING ubiquitin ligase (CRL3) as a receptor for the recognition of substrates involved in cell growth, survival, and signaling. SPOP mutations have been attributed to the development of many types of cancers, including prostate and endometrial cancers. Prostate cancer mutations localize in the substrate-binding site of the substrate recognition (MATH) domain and reduce or prevent binding. However, most endometrial cancer mutations are dispersed in seemingly inconspicuous solvent-exposed regions of SPOP, offering no clear basis for their cancer-causing and peculiar gain-of-function properties. Herein, we present the first structure of SPOP in its oligomeric form, uncovering several new interfaces important for SPOP self-assembly and normal function. Given that many previously unaccounted-for cancer mutations are localized in these newly identified interfaces, we uncover molecular mechanisms underlying dysregulation of SPOP function, with effects ranging from gross structural changes to enhanced self-association, and heightened stability and activity.


Assuntos
Neoplasias da Próstata , Fatores de Transcrição , Masculino , Humanos , Ubiquitinação , Fatores de Transcrição/metabolismo , Proteínas Repressoras/genética , Neoplasias da Próstata/genética , Mutação
5.
Immunol Rev ; 322(1): 81-97, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084635

RESUMO

Germline human heterozygous STAT1 gain-of-function (GOF) variants were first discovered a common cause of chronic mucocutaneous candidiasis (CMC) in 2011. Since then, numerous STAT1 GOF variants have been identified. A variety of clinical phenotypes, including fungal, viral, and bacterial infections, endocrine disorders, autoimmunity, malignancy, and aneurysms, have recently been revealed for STAT1 GOF variants, which has led to the expansion of the clinical spectrum associated with STAT1 GOF. Among this broad range of complications, it has been determined that invasive infections, aneurysms, and malignancies are poor prognostic factors for STAT1 GOF. The effectiveness of JAK inhibitors as a therapeutic option has been established, although further investigation of their long-term utility and side effects is needed. In contrast to the advancements in treatment options, the precise molecular mechanism underlying STAT1 GOF remains undetermined. Two primary hypotheses for this mechanism involve impaired STAT1 dephosphorylation and increased STAT1 protein levels, both of which are still controversial. A precise understanding of the molecular mechanism is essential for not only advancing diagnostics but also developing therapeutic interventions. Here, we provide a comprehensive review of STAT1 GOF with the aim of establishing a stronger connection between bedside observations and laboratory research.


Assuntos
Aneurisma , Candidíase Mucocutânea Crônica , Humanos , Candidíase Mucocutânea Crônica/diagnóstico , Candidíase Mucocutânea Crônica/genética , Candidíase Mucocutânea Crônica/terapia , Mutação com Ganho de Função , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Pesquisa
6.
Trends Immunol ; 45(2): 138-153, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38238227

RESUMO

Signal transducer and activator of transcription (STAT)-6 is a transcription factor central to pro-allergic immune responses, although the function of human STAT6 at the whole-organism level has long remained unknown. Germline heterozygous gain-of-function (GOF) rare variants in STAT6 have been recently recognized to cause a broad and severe clinical phenotype of early-onset, multi-system allergic disease. Here, we provide an overview of the clinical presentation of STAT6-GOF disease, discussing how dysregulation of the STAT6 pathway causes severe allergic disease, and identifying possible targeted treatment approaches. Finally, we explore the mechanistic overlap between STAT6-GOF disease and other monogenic atopic disorders, and how this group of inborn errors of immunity (IEIs) powerfully inform our fundamental understanding of common human allergic disease.


Assuntos
Hipersensibilidade , Linfoma , Humanos , Mutação com Ganho de Função , Hipersensibilidade/genética , Regulação da Expressão Gênica , Células Germinativas , Fator de Transcrição STAT6/genética
7.
Am J Hum Genet ; 110(8): 1377-1393, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37451268

RESUMO

Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.


Assuntos
Deficiência Intelectual , Fosfatidilinositóis , Animais , Síndrome , Actinas , Peixe-Zebra/genética , Deficiência Intelectual/genética , Monoéster Fosfórico Hidrolases/genética , Fosfatos de Fosfatidilinositol
8.
Am J Hum Genet ; 110(1): 92-104, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36563679

RESUMO

Variant interpretation remains a major challenge in medical genetics. We developed Meta-Domain HotSpot (MDHS) to identify mutational hotspots across homologous protein domains. We applied MDHS to a dataset of 45,221 de novo mutations (DNMs) from 31,058 individuals with neurodevelopmental disorders (NDDs) and identified three significantly enriched missense DNM hotspots in the ion transport protein domain family (PF00520). The 37 unique missense DNMs that drive enrichment affect 25 genes, 19 of which were previously associated with NDDs. 3D protein structure modeling supports the hypothesis of function-altering effects of these mutations. Hotspot genes have a unique expression pattern in tissue, and we used this pattern alongside in silico predictors and population constraint information to identify candidate NDD-associated genes. We also propose a lenient version of our method, which identifies 32 hotspot positions across 16 different protein domains. These positions are enriched for likely pathogenic variation in clinical databases and DNMs in other genetic disorders.


Assuntos
Transtornos do Neurodesenvolvimento , Humanos , Domínios Proteicos/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética
9.
Am J Hum Genet ; 110(11): 1919-1937, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37827158

RESUMO

Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.


Assuntos
Anormalidades Congênitas , Deficiências do Desenvolvimento , Histona-Lisina N-Metiltransferase , Humanos , Mutação com Ganho de Função , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Lisina , Metilação , Metiltransferases/genética , Neoplasias/genética , Drosophila/genética , Proteínas de Drosophila/genética , Deficiências do Desenvolvimento/genética , Anormalidades Congênitas/genética
10.
Dev Biol ; 513: 50-62, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38492873

RESUMO

The voltage gated (Kv) slow-inactivating delayed rectifier channel regulates the development of hollow organs of the zebrafish. The functional channel consists of the tetramer of electrically active Kcnb1 (Kv2.1) subunits and Kcng4b (Kv6.4) modulatory or electrically silent subunits. The two mutations in zebrafish kcng4b gene - kcng4b-C1 and kcng4b-C2 (Gasanov et al., 2021) - have been studied during ear development using electrophysiology, developmental biology and in silico structural modelling. kcng4b-C1 mutation causes a C-terminal truncation characterized by mild Kcng4b loss-of-function (LOF) manifested by failure of kinocilia to extend and formation of ectopic otoliths. In contrast, the kcng4b-C2-/- mutation causes the C-terminal domain to elongate and the ectopic seventh transmembrane (TM) domain to form, converting the intracellular C-terminus to an extracellular one. Kcng4b-C2 acts as a Kcng4b gain-of-function (GOF) allele. Otoliths fail to develop and kinocilia are reduced in kcng4b-C2-/-. These results show that different mutations of the silent subunit Kcng4 can affect the activity of the Kv channel and cause a wide range of developmental defects.


Assuntos
Orelha , Canais de Ânion Dependentes de Voltagem , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Orelha/embriologia , Mutação/genética , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
11.
Annu Rev Genomics Hum Genet ; 23: 475-498, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35395171

RESUMO

Most known disease-causing mutations occur in protein-coding regions of DNA. While some of these involve a loss of protein function (e.g., through premature stop codons or missense changes that destabilize protein folding), many act via alternative molecular mechanisms and have dominant-negative or gain-of-function effects. In nearly all cases, these non-loss-of-function mutations can be understood by considering interactions of the wild-type and mutant protein with other molecules, such as proteins, nucleic acids, or small ligands and substrates. Here, we review the diverse molecular mechanisms by which pathogenic mutations can have non-loss-of-function effects, including by disrupting interactions, increasing binding affinity, changing binding specificity, causing assembly-mediated dominant-negative and dominant-positive effects, creating novel interactions, and promoting aggregation and phase separation. We believe that increased awareness of these diverse molecular disease mechanisms will lead to improved diagnosis (and ultimately treatment) of human genetic disorders.


Assuntos
Dobramento de Proteína , Humanos , Mutação
12.
Am J Hum Genet ; 109(3): 457-470, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120630

RESUMO

We used a machine learning approach to analyze the within-gene distribution of missense variants observed in hereditary conditions and cancer. When applied to 840 genes from the ClinVar database, this approach detected a significant non-random distribution of pathogenic and benign variants in 387 (46%) and 172 (20%) genes, respectively, revealing that variant clustering is widespread across the human exome. This clustering likely occurs as a consequence of mechanisms shaping pathogenicity at the protein level, as illustrated by the overlap of some clusters with known functional domains. We then took advantage of these findings to develop a pathogenicity predictor, MutScore, that integrates qualitative features of DNA substitutions with the new additional information derived from this positional clustering. Using a random forest approach, MutScore was able to identify pathogenic missense mutations with very high accuracy, outperforming existing predictive tools, especially for variants associated with autosomal-dominant disease and cancer. Thus, the within-gene clustering of pathogenic and benign DNA changes is an important and previously underappreciated feature of the human exome, which can be harnessed to improve the prediction of pathogenicity and disambiguation of DNA variants of uncertain significance.


Assuntos
Genoma Humano , Mutação de Sentido Incorreto , Análise por Conglomerados , Exoma/genética , Genoma Humano/genética , Humanos , Mutação de Sentido Incorreto/genética , Virulência
13.
FASEB J ; 38(16): e23883, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39150825

RESUMO

Mutations in SCN4A gene encoding Nav1.4 channel α-subunit, are known to cause neuromuscular disorders such as myotonia or paralysis. Here, we study the effect of two amino acid replacements, K1302Q and G1306E, in the DIII-IV loop of the channel, corresponding to mutations found in patients with myotonia. We combine clinical, electrophysiological, and molecular modeling data to provide a holistic picture of the molecular mechanisms operating in mutant channels and eventually leading to pathology. We analyze the existing clinical data for patients with the K1302Q substitution, which was reported for adults with or without myotonia phenotypes, and report two new unrelated patients with the G1306E substitution, who presented with severe neonatal episodic laryngospasm and childhood-onset myotonia. We provide a functional analysis of the mutant channels by expressing Nav1.4 α-subunit in Xenopus oocytes in combination with ß1 subunit and recording sodium currents using two-electrode voltage clamp. The K1302Q variant exhibits abnormal voltage dependence of steady-state fast inactivation, being the likely cause of pathology. K1302Q does not lead to decelerated fast inactivation, unlike several other myotonic mutations such as G1306E. For both mutants, we observe increased window currents corresponding to a larger population of channels available for activation. To elaborate the structural rationale for our experimental data, we explore the contacts involving K/Q1302 and E1306 in the AlphaFold2 model of wild-type Nav1.4 and Monte Carlo-minimized models of mutant channels. Our data provide the missing evidence to support the classification of K1302Q variant as likely pathogenic and may be used by clinicians.


Assuntos
Miotonia , Canal de Sódio Disparado por Voltagem NAV1.4 , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Humanos , Animais , Miotonia/genética , Feminino , Xenopus laevis , Masculino , Mutação , Oócitos/metabolismo , Adulto , Substituição de Aminoácidos
14.
Artigo em Inglês | MEDLINE | ID: mdl-39360413

RESUMO

BACKGROUND: Endothelial cell (EC)-pericyte interactions are known to remodel in response to hemodynamic forces; yet there is a lack of mechanistic understanding of the signaling pathways that underlie these events. Here, we have identified a novel signaling network regulated by blood flow in ECs-the chemokine receptor CXCR3 (CXC motif chemokine receptor 3) and one of its ligands, CXCL11 (CXC motif chemokine ligand 11)-that delimits EC angiogenic potential and promotes pericyte recruitment to ECs during development. METHODS: We investigated the role of CXCR3 on vascular development using both 2- and 3-dimensional in vitro assays, to study EC-pericyte interactions and EC behavioral responses to blood flow. Additionally, genetic mutants and pharmacological modulators were used in zebra fish in vivo to study the impacts of CXCR3 loss and gain of function on vascular development. RESULTS: In vitro modeling of EC-pericyte interactions demonstrates that suppression of EC-specific CXCR3 signaling leads to loss of pericyte association with EC tubes. In vivo, phenotypic defects are particularly noted in the cranial vasculature, where we see a loss of pericyte association with ECs and expansion of the vasculature in zebra fish treated with the Cxcr3 inhibitor AMG487 or in homozygous cxcr3.1/3.2/3.3 triple mutants. We also demonstrate that CXCR3-deficient ECs are more elongated, move more slowly, and have impaired EC-EC junctions compared with their control counterparts. CONCLUSIONS: Our results suggest that CXCR3 signaling in ECs helps promote vascular stabilization events during development by preventing EC overgrowth and promoting pericyte recruitment.

15.
Brain ; 147(10): 3442-3457, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38875478

RESUMO

USP25 encodes ubiquitin-specific protease 25, a key member of the deubiquitinating enzyme family that is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown aetiology. Five heterozygous USP25 variants, including two de novo and three co-segregated variants, were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared with the East Asian population and all populations in the gnomAD database. The mean age at onset of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom, except that one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was expressed ubiquitously in mouse brain with two peaks, on embryonic Days 14-16 and postnatal Day 21, respectively. In human brain, likewise, USP25 is expressed in the fetus/early childhood stage and with a second peak at ∼12-20 years old, consistent with the seizure onset age in patients during infancy and in juveniles. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knockout mice, which showed increased seizure susceptibility compared with wild-type mice in a pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we used multiple functional detections. In HEK293 T cells, the variant associated with a severe phenotype (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed stable truncated dimers with an increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del variants increased neuronal excitability in mouse brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating that USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play an epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have a profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.


Assuntos
Epilepsia Generalizada , Ubiquitina Tiolesterase , Humanos , Animais , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Feminino , Camundongos , Masculino , Criança , Epilepsia Generalizada/genética , Adolescente , Lactente , Heterozigoto , Adulto Jovem , Pré-Escolar , Adulto , Sequenciamento do Exoma , Estudos de Coortes , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem
16.
Mol Cell ; 68(6): 1134-1146.e6, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29225033

RESUMO

TP53 missense mutations significantly influence the development and progression of various human cancers via their gain of new functions (GOF) through different mechanisms. Here we report a unique mechanism underlying the GOF of p53-R249S (p53-RS), a p53 mutant frequently detected in human hepatocellular carcinoma (HCC) that is highly related to hepatitis B infection and aflatoxin B1. A CDK inhibitor blocks p53-RS's nuclear translocation in HCC, whereas CDK4 interacts with p53-RS in the G1/S phase of the cells, phosphorylates it, and enhances its nuclear localization. This is coupled with binding of a peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) to p53-RS, but not the p53 form with mutations of four serines/threonines previously shown to be crucial for PIN1 binding. As a result, p53-RS interacts with c-Myc and enhances c-Myc-dependent rDNA transcription key for ribosomal biogenesis. These results unveil a CDK4-PIN1-p53-RS-c-Myc pathway as a novel mechanism for the GOF of p53-RS in HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Mutação , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Serina/metabolismo , Proteína Supressora de Tumor p53/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células , Quinase 4 Dependente de Ciclina/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Peptidilprolil Isomerase de Interação com NIMA/genética , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Serina/genética , Células Tumorais Cultivadas
17.
J Med Genet ; 61(8): 780-782, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38548315

RESUMO

Schaaf-Yang syndrome (SYS) is an ultra-rare neurodevelopmental disorder caused by truncating mutations in MAGEL2 Heterologous expression of wild-type (WT) or a truncated (p.Gln638*) C-terminal HA-tagged MAGEL2 revealed a shift from a primarily cytoplasmic to a more nuclear localisation for the truncated protein variant. We now extend this analysis to six additional SYS mutations on a N-terminal FLAG-tagged MAGEL2. Our results replicate and extend our previous findings, showing that all the truncated MAGEL2 proteins consistently display a predominant nuclear localisation, irrespective of the C-terminal or N-terminal position and the chemistry of the tag. The variants associated with arthrogryposis multiplex congenita display a more pronounced nuclear retention phenotype, suggesting a correlation between clinical severity and the degree of nuclear mislocalisation. These results point to a neomorphic effect of truncated MAGEL2, which might contribute to the pathogenesis of SYS.


Assuntos
Núcleo Celular , Proteínas de Neoplasias , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Mutação , Fenótipo , Artrogripose/genética , Artrogripose/patologia , Citoplasma/metabolismo , Citoplasma/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Transporte Proteico , Células HEK293 , Hipopituitarismo , Fácies , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Intrinsicamente Desordenadas , Transtornos da Impressão Genômica , Deficiências do Desenvolvimento , Transtornos Cromossômicos
18.
J Allergy Clin Immunol ; 154(1): 229-236.e2, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38438084

RESUMO

BACKGROUND: Immune dysregulation often presents as autoimmunity, inflammation, and/or lymphoproliferation. Several germline genetic defects have been associated with immune dysregulation; they include heterozygous gain-of-function (GOF) mutations in IKZF1, an essential transcription factor for hematopoiesis containing zinc finger domains (ZFs). However, in a large percentage of patients, the genetic origin of their immunedysregulation remains undetermined. OBJECTIVE: A family with 2 members presenting immune dysregulation signs was studied to identify the genetic cause of their disease. METHODS: Whole exome sequencing, analysis of immunologic parameters, and functional assays (including Western blotting, electrophoretic mobility shift assay during the cell cycle, and TH cell differentiation) were performed. RESULTS: The 2 patients carried a novel heterozygous mutation in IKZF1 (IKZF1T398M). IKZF1 heterozygous mutations have previously been shown to be responsible for several distinct human immunologic diseases by directly affecting the ability of ZFs to bind to DNA or to dimerize. Herein, we showed that the IKZF1T398M, which is outside the ZFs, caused impaired phosphorylation of IKZF1, resulting in enhanced DNA-binding ability at the S phase of the cell cycle, reduction of the G1-S phase transition, and decreased proliferation. Confirming these data, similar functional alterations were observed with IKZF1T398A, but not with IKZF1T398D, mimicking dephosphorylation and phosphorylation, respectively. In T lymphocytes, expression of IKZF1T398M led to TH cell differentiation skewed toward TH2 cells. Thus, our data indicate that IKZF1T398M behaves as a GOF variant underlying immune dysregulation. CONCLUSION: Disturbed IKZF1 phosphorylation represents a novel GOF mechanism (GOF by loss of phosphorylation (termed as GOF-LOP) associated with immune dysregulation, highlighting the regulatory role of IKZF1 during cell cycle progression through phosphorylation.


Assuntos
Mutação com Ganho de Função , Fator de Transcrição Ikaros , Humanos , Fator de Transcrição Ikaros/genética , Fosforilação , Feminino , Masculino , Linhagem , Adulto
19.
J Allergy Clin Immunol ; 154(3): 819-826, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38579942

RESUMO

BACKGROUND: Monoallelic loss-of-function IKZF1 (IKAROS) variants cause B-cell deficiency or combined immunodeficiency, whereas monoallelic gain-of-function (GOF) IKZF1 variants have recently been reported to cause hypergammaglobulinemia, abnormal plasma cell differentiation, autoimmune and allergic manifestations, and infections. OBJECTIVE: We studied 7 relatives with autoimmune/inflammatory and lymphoproliferative manifestations to identify the immunologic disturbances and the genetic cause of their disease. METHODS: We analyzed biopsy results and performed whole-exome sequencing and immunologic studies. RESULTS: Disease onset occurred at a mean age of 25.2 years (range, 10-64, years). Six patients suffered from autoimmune/inflammatory diseases, 4 had confirmed IG4-related disease (IgG4-RD), and 5 developed B-cell malignancies: lymphoma in 4 and multiple myeloma in the remaining patient. Patients without immunosuppression were not particularly prone to infectious diseases. Three patients suffered from life-threatening coronavirus disease 2019 pneumonia, of whom 1 had autoantibodies neutralizing IFN-α. The recently described IKZF1 GOF p.R183H variant was found in the 5 affected relatives tested and in a 6-year-old asymptomatic girl. Immunologic analysis revealed hypergammaglobulinemia and high frequencies of certain lymphocyte subsets (exhausted B cells, effector memory CD4 T cells, effector memory CD4 T cells that have regained surface expression of CD45RA and CD28-CD57+ CD4+ and CD8+ T cells, TH2, and Tfh2 cells) attesting to immune dysregulation. Partial clinical responses to rituximab and corticosteroids were observed, and treatment with lenalidomide, which promotes IKAROS degradation, was initiated in 3 patients. CONCLUSIONS: Heterozygosity for GOF IKZF1 variants underlies autoimmunity/inflammatory diseases, IgG4-RD, and B-cell malignancies, the onset of which may occur in adulthood. Clinical and immunologic data are similar to those for patients with unexplained IgG4-RD. Patients may therefore benefit from treatments inhibiting pathways displaying IKAROS-mediated overactivity.


Assuntos
Fator de Transcrição Ikaros , Doença Relacionada a Imunoglobulina G4 , Humanos , Fator de Transcrição Ikaros/genética , Feminino , Adulto , Masculino , Criança , Pessoa de Meia-Idade , Adolescente , Doença Relacionada a Imunoglobulina G4/genética , Doença Relacionada a Imunoglobulina G4/imunologia , Adulto Jovem , Mutação com Ganho de Função , COVID-19/genética , COVID-19/imunologia , SARS-CoV-2/imunologia , Linfócitos B/imunologia , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Sequenciamento do Exoma , Linhagem
20.
J Allergy Clin Immunol ; 153(1): 275-286.e18, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935260

RESUMO

BACKGROUND: Inborn errors of immunity (IEI) with dysregulated JAK/STAT signaling present with variable manifestations of immune dysregulation and infections. Hematopoietic stem cell transplantation (HSCT) is potentially curative, but initially reported outcomes were poor. JAK inhibitors (JAKi) offer a targeted treatment option that may be an alternative or bridge to HSCT. However, data on their current use, treatment efficacy and adverse events are limited. OBJECTIVE: We evaluated the current off-label JAKi treatment experience for JAK/STAT inborn errors of immunity (IEI) among European Society for Immunodeficiencies (ESID)/European Society for Blood and Marrow Transplantation (EBMT) Inborn Errors Working Party (IEWP) centers. METHODS: We conducted a multicenter retrospective study on patients with a genetic disorder of hyperactive JAK/STAT signaling who received JAKi treatment for at least 3 months. RESULTS: Sixty-nine patients (72% children) were evaluated (45 STAT1 gain of function [GOF], 21 STAT3-GOF, 1 STAT5B-GOF, 1 suppressor of cytokine signaling 1 [aka SOCS1] loss of function, 1 JAK1-GOF). Ruxolitinib was the predominantly prescribed JAKi (80%). Overall, treatment resulted in improvement (partial or complete remission) of clinical symptoms in 87% of STAT1-GOF and in 90% of STAT3-GOF patients. We documented highly heterogeneous dosing and monitoring regimens. The response rate and time to response varied across different diseases and manifestations. Adverse events including infection and weight gain were frequent (38% of patients) but were mild (grade I-II) and transient in most patients. At last follow-up, 52 (74%) of 69 patients were still receiving JAKi treatment, and 11 patients eventually underwent HSCT after receipt of previous JAKi bridging therapy, with 91% overall survival. CONCLUSIONS: Our study suggests that JAKi may be highly effective to treat symptomatic JAK/STAT IEI patients. Prospective studies to define optimal JAKi dosing for the variable clinical presentations and age ranges should be pursued.


Assuntos
Síndromes de Imunodeficiência , Inibidores de Janus Quinases , Criança , Humanos , Inibidores de Janus Quinases/uso terapêutico , Estudos Retrospectivos , Estudos Prospectivos , Síndromes de Imunodeficiência/terapia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA