Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Trends Biochem Sci ; 48(9): 748-750, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331830

RESUMO

Nitroxyl (HNO), a one-electron reduced and protonated congener of nitric oxide (•NO), was recently discovered in Arabidopsis thaliana. Due to its distinct chemical properties, we believe HNO must be further studied to determine how many physiological processes it impacts.


Assuntos
Arabidopsis , Óxido Nítrico , Óxidos de Nitrogênio/química , Biologia
2.
Circulation ; 147(18): 1382-1403, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36951067

RESUMO

BACKGROUND: Aortic aneurysm and aortic dissection (AAD) are life-threatening vascular diseases, with endothelium being the primary target for AAD treatment. Protein S-sulfhydration is a newly discovered posttranslational modification whose role in AAD has not yet been defined. This study aims to investigate whether protein S-sulfhydration in the endothelium regulates AAD and its underlying mechanism. METHODS: Protein S-sulfhydration in endothelial cells (ECs) during AAD was detected and hub genes regulating homeostasis of the endothelium were identified. Clinical data of patients with AAD and healthy controls were collected, and the level of the cystathionine γ lyase (CSE)/hydrogen sulfide (H2S) system in plasma and aortic tissue were determined. Mice with EC-specific CSE deletion or overexpression were generated, and the progression of AAD was determined. Unbiased proteomics and coimmunoprecipitation combined with mass spectrometry analysis were conducted to determine the upstream regulators of the CSE/H2S system and the findings were confirmed in transgenic mice. RESULTS: Higher plasma H2S levels were associated with a lower risk of AAD, after adjustment for common risk factors. CSE was reduced in the endothelium of AAD mouse and aorta of patients with AAD. Protein S-sulfhydration was reduced in the endothelium during AAD and protein disulfide isomerase (PDI) was the main target. S-sulfhydration of PDI at Cys343 and Cys400 enhanced PDI activity and mitigated endoplasmic reticulum stress. EC-specific CSE deletion was exacerbated, and EC-specific overexpression of CSE alleviated the progression of AAD through regulating the S-sulfhydration of PDI. ZEB2 (zinc finger E-box binding homeobox 2) recruited the HDAC1-NuRD complex (histone deacetylase 1-nucleosome remodeling and deacetylase) to repress the transcription of CTH, the gene encoding CSE, and inhibited PDI S-sulfhydration. EC-specific HDAC1 deletion increased PDI S-sulfhydration and alleviated AAD. Increasing PDI S-sulfhydration with the H2S donor GYY4137 or pharmacologically inhibiting HDAC1 activity with entinostat alleviated the progression of AAD. CONCLUSIONS: Decreased plasma H2S levels are associated with an increased risk of aortic dissection. The endothelial ZEB2-HDAC1-NuRD complex transcriptionally represses CTH, impairs PDI S-sulfhydration, and drives AAD. The regulation of this pathway effectively prevents AAD progression.


Assuntos
Aneurisma Aórtico , Dissecção Aórtica , Animais , Camundongos , Cistationina gama-Liase/genética , Células Endoteliais/metabolismo , Endotélio/metabolismo , Histona Desacetilase 1 , Sulfeto de Hidrogênio/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Proteína S , Homeobox 2 de Ligação a E-box com Dedos de Zinco
3.
Am J Physiol Regul Integr Comp Physiol ; 326(2): R134-R146, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982188

RESUMO

Certain deep-diving marine mammals [i.e., northern elephant seal (Mirounga angustirostris), Weddell seal (Leptonychotes weddellii)] have blood carbon monoxide (CO) levels that are comparable with those of chronic cigarette smokers. Most CO produced in humans is a byproduct of heme degradation, which is released when red blood cells (RBCs) are destroyed. Elevated CO can occur in humans when RBC lifespan decreases. The contribution of RBC turnover to CO concentrations in marine mammals is unknown. Here, we report the first RBC lifespans in two healthy marine mammal species with different diving capacities and heme stores, the shallow-diving bottlenose dolphin (Tursiops truncatus) and deep-diving beluga whale (Delphinapterus leucas), and we relate the lifespans to the levels of CO in blood and breath. The belugas, with high blood heme stores, had the longest mean RBC lifespan compared with humans and bottlenose dolphins. Both cetacean species were found to have three times higher blood CO content compared with humans. The estimated CO production rate from heme degradation indicates some marine mammals may have additional mechanisms for CO production, or delay CO removal from the body, potentially from long-duration breath-holds.NEW & NOTEWORTHY This is the first study to determine the red blood cell lifespan in a marine mammal species. High concentrations of carbon monoxide (CO) were found in the blood of bottlenose dolphins and in the blood and breath of belugas compared with healthy humans. Red blood cell turnover accounted for these high levels in bottlenose dolphins, but there may be alternative mechanisms of endogenous CO production that are contributing to the CO concentrations observed in belugas.


Assuntos
Golfinho Nariz-de-Garrafa , Caniformia , Gelatina , Focas Verdadeiras , Humanos , Animais , Longevidade , Monóxido de Carbono , Eritrócitos , Heme
4.
Chemistry ; : e202402163, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949770

RESUMO

Gases are essential for various applications relevant to human health, including in medicine, biomedical imaging, and pharmaceutical synthesis. However, gases are significantly more challenging to safely handle than liquids and solids. Herein, we review the use of porous materials, such as metal-organic frameworks (MOFs), zeolites, and silicas, to adsorb medicinally relevant gases and facilitate their handling as solids. Specific topics include the use of MOFs and zeolites to deliver H2S for therapeutic applications, 129Xe for magnetic resonance imaging, O2 for the treatment of cancer and hypoxia, and various gases for use in organic synthesis. This Perspective aims to bring together the organic, inorganic, medicinal, and materials chemistry communities to inspire the design of next-generation porous materials for the storage and delivery of medicinally relevant gases.

5.
Mol Cell Biochem ; 479(3): 539-552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37106243

RESUMO

The role of carbon monoxide (CO) has evolved albeit controversial disputes on its toxicity. This biological gasotransmitter participates in the endogenous regulation of neurotransmitters and neuropeptides released in the nervous system. Exogenous CO gas inhalation at a lower concentration has been the subject of investigations, which have revealed its biological homeostatic mechanisms and protective effects against many pathological conditions. This therapeutic procedure of CO is, however, limited due to its immediate release, which favours haemoglobin at a high affinity with the subsequent generation of toxic carboxyhaemoglobin in tissues. In order to address this problem, carbon monoxide releasing molecule-2 (CORM-2) or also known as tricarbonyldichlororuthenium II dimer is developed to liberate a controlled amount of CO in the biological systems. In this review, we examine several potential mechanisms exerted by this therapeutic compound to produce the anti-nociceptive effect that has been demonstrated in previous studies. This review could shed light on the role of CORM-2 to reduce pain, especially in cases of chronic and neuropathic pain.


Assuntos
Gasotransmissores , Compostos Organometálicos , Monóxido de Carbono/farmacologia , Monóxido de Carbono/fisiologia , Compostos Organometálicos/química
6.
J Exp Bot ; 74(19): 6104-6118, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36548145

RESUMO

Plant root growth and developmental capacities reside in a few stem cells of the root apical meristem (RAM). Maintenance of these stem cells requires regenerative divisions of the initial stem cell niche (SCN) cells, self-maintenance, and proliferative divisions of the daughter cells. This ensures sufficient cell diversity to guarantee the development of complex root tissues in the plant. Damage in the root during growth involves the formation of a new post-embryonic root, a process known as regeneration. Post-embryonic root development and organogenesis processes include primary root development and SCN maintenance, plant regeneration, and the development of adventitious and lateral roots. These developmental processes require a fine-tuned balance between cell proliferation and maintenance. An important regulator during root development and regeneration is the gasotransmitter nitric oxide (NO). In this review we have sought to compile how NO regulates cell rate proliferation, cell differentiation, and quiescence of SCNs, usually through interaction with phytohormones, or other molecular mechanisms involved in cellular redox homeostasis. NO exerts a role on molecular components of the auxin and cytokinin signaling pathways in primary roots that affects cell proliferation and maintenance of the RAM. During root regeneration, a peak of auxin and cytokinin triggers specific molecular programs. Moreover, NO participates in adventitious root formation through its interaction with players of the brassinosteroid and cytokinin signaling cascade. Lately, NO has been implicated in root regeneration under hypoxia conditions by regulating stem cell specification through phytoglobins.


Assuntos
Proteínas de Arabidopsis , Raízes de Plantas , Raízes de Plantas/metabolismo , Óxido Nítrico/metabolismo , Meristema , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo
7.
Nitric Oxide ; 130: 36-57, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460229

RESUMO

Nitric oxide (NO) is a diatomic gaseous molecule, which plays different roles in different strata of organisms. Discovered as a neurotransmitter in animals, NO has now gained a significant place in plant signaling cascade. NO regulates plant growth and several developmental processes including germination, root formation, stomatal movement, maturation and defense in plants. Due to its gaseous state, it is unchallenging for NO to reach different parts of cell and counterpoise antioxidant pool. Various abiotic and biotic stresses act on plants and affect their growth and development. NO plays a pivotal role in alleviating toxic effects caused by various stressors by modulating oxidative stress, antioxidant defense mechanism, metal transport and ion homeostasis. It also modulates the activity of some transcriptional factors during stress conditions in plants. Besides its role during stress conditions, interaction of NO with other signaling molecules such as other gasotransmitters (hydrogen sulfide), phytohormones (abscisic acid, salicylic acid, jasmonic acid, gibberellin, ethylene, brassinosteroids, cytokinins and auxin), ions, polyamines, etc. has been demonstrated. These interactions play vital role in alleviating plant stress by modulating defense mechanisms in plants. Taking all these aspects into consideration, the current review focuses on the role of NO and its interaction with other signaling molecules in regulating plant growth and development, particularly under stressed conditions.


Assuntos
Antioxidantes , Óxido Nítrico , Plantas , Estresse Fisiológico/fisiologia , Reguladores de Crescimento de Plantas
8.
Nitric Oxide ; 138-139: 51-63, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364740

RESUMO

Carbon monoxide (CO) has been recognized as a crucial gasotransmitter mainly produced by heme oxygenase (HO)-catalyzed heme degradation in plant. Recent studies have shown that CO plays an important role in regulating growth and development of plant, as well as and responding to a variety of abiotic stresses. Meanwhile, many studies have reported on CO working in combination with other signal molecules to mitigate abiotic stress. Here, we presented a comprehensive overview of recent developments in which CO reduces plant damage caused by abiotic stresses. The regulation of antioxidant system, photosynthetic system, ion balance and transport are the main mechanisms of CO-alleviated abiotic stress. We also proposed and discussed the relationship between CO and other signal molecules, including nitric oxide (NO), hydrogen sulfide (H2S), hydrogen gas (H2), abscisic acid (ABA), indole 3-acetic acid (IAA), gibberellin (GA), cytokine (CTK), salicylic acid (SA), jasmonic acid (JA), hydrogen peroxide (H2O2) and calcium ion (Ca2+). Furthermore, the important role of HO genes in alleviating abiotic stress was also discussed. We proposed promising and new research directions for the study of plant CO, which can provide further insights on the role of CO in plant growth and development under abiotic stress.


Assuntos
Heme , Sulfeto de Hidrogênio , Monóxido de Carbono/metabolismo , Peróxido de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Estresse Fisiológico , Plantas/metabolismo , Heme Oxigenase (Desciclizante)
9.
Sensors (Basel) ; 23(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992027

RESUMO

As the third gasotransmitter, hydrogen sulfide (H2S) is involved in a variety of physiological and pathological processes wherein abnormal levels of H2S indicate various diseases. Therefore, an efficient and reliable monitoring of H2S concentration in organisms and living cells is of great significance. Of diverse detection technologies, electrochemical sensors possess the unique advantages of miniaturization, fast detection, and high sensitivity, while the fluorescent and colorimetric ones exhibit exclusive visualization. All these chemical sensors are expected to be leveraged for H2S detection in organisms and living cells, thus offering promising options for wearable devices. In this paper, the chemical sensors used to detect H2S in the last 10 years are reviewed based on the different properties (metal affinity, reducibility, and nucleophilicity) of H2S, simultaneously summarizing the detection materials, methods, linear range, detection limits, selectivity, etc. Meanwhile, the existing problems of such sensors and possible solutions are put forward. This review indicates that these types of chemical sensors competently serve as specific, accurate, highly selective, and sensitive sensor platforms for H2S detection in organisms and living cells.


Assuntos
Sulfeto de Hidrogênio , Metais , Corantes Fluorescentes/química , Colorimetria
10.
Angew Chem Int Ed Engl ; 62(22): e202302303, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37078735

RESUMO

Inducing high levels of reactive oxygen species (ROS) inside tumor cells is a cancer therapy method termed chemodynamic therapy (CDT). Relying on delivery of Fenton reaction promoters such as Fe2+ , CDT takes advantage of overproduced ROS in the tumor microenvironment. We developed a peptide-H2 S donor conjugate, complexed with Fe2+ , termed AAN-PTC-Fe2+ . The AAN tripeptide was specifically cleaved by legumain, an enzyme overexpressed in glioma cells, to release carbonyl sulfide (COS). Hydrolysis of COS by carbonic anhydrase formed H2 S, an inhibitor of catalase, an enzyme that detoxifies H2 O2 . Fe2+ and H2 S together increased intracellular ROS levels and decreased viability in C6 glioma cells compared with controls lacking either Fe2+ , the AAN sequence, or the ability to generate H2 S. AAN-PTC-Fe2+ performed better than temezolimide while exhibiting no cytotoxicity toward H9C2 cardiomyocytes. This study provides an H2 S-amplified, enzyme-responsive platform for synergistic cancer treatment.


Assuntos
Glioma , Nanopartículas , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Peptídeos/farmacologia , Linhagem Celular Tumoral , Microambiente Tumoral , Peróxido de Hidrogênio
11.
Med Res Rev ; 42(5): 1930-1977, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35657029

RESUMO

Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.


Assuntos
Sulfeto de Hidrogênio , Humanos , Sulfeto de Hidrogênio/farmacologia
12.
Cell Tissue Res ; 389(2): 171-185, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35593936

RESUMO

Glaucoma is a neurodegenerative disease of visual system characterized by gradual loss of retinal ganglion cells (RGC). Since mitochondrial dysfunction of RGC is significantly involved in the pathological mechanisms of glaucoma, and hydrogen sulfide (H2S) takes part in the pathogeny of glaucoma and shows promising potential in restoring mitochondrial function in other neurons, the authors aimed to investigate the impact of H2S on mitochondrial function of RGC with a rat glaucoma model. An established chronic ocular hypertension (COH) rat model induced by injection of cross-linking hydrogel into anterior chamber was adopted, and a H2S donor, sodium hydrosulfide (NaHS), was selected to treat rats through intraperitoneal injection. After a period of 4 weeks, RGCs were isolated from the subjected rats with an immunopanning method and went through evaluations of mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (MPTP) opening, intracellular Ca2 + level, reactive oxygen species (ROS) level, and cytosolic Cytochrome C distribution. The results showed that the mitochondrial function of RGC in experimental glaucoma was markedly improved by H2S supplement, being presented as stabilization of MMP, alleviation of MPTP opening, improvement of intracellular Ca2+ hemostasis, reduction of ROS accumulation, and inhibition of Cytochrome C release. Our study implicated that preservation of mitochondrial function by H2S probably plays a key role in protecting RGC in the context of glaucomatous neuropathy, and it is worth further deepgoing research to benefit the development of glaucoma treatment.


Assuntos
Glaucoma , Sulfeto de Hidrogênio , Doenças Neurodegenerativas , Animais , Citocromos c/metabolismo , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Células Ganglionares da Retina/metabolismo
13.
J Exp Bot ; 73(17): 5851-5862, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35430633

RESUMO

Melatonin, a molecule that was first identified in animal tissues, has been confirmed to be involved as a potential phytohormone in a variety of plant physiological responses. It is considered primarily as an antioxidant with important actions in controlling reactive oxygen and reactive nitrogen species. In addition to its role in regulating plant growth and development, phytomelatonin is involved in protection against abiotic and biotic stresses. The 'gasotransmitter'-that is, a gaseous signaling molecule-is a new concept that has been advanced in the past two decades, with functions in animal and plant physiological regulation. Gasotransmitters including nitric oxide, carbon monoxide, hydrogen sulfide, methane, and, more recently identified, hydrogen gas are critical and indispensable in a wide range of biological processes. This review investigates the interrelationship between phytomelatonin and the above-mentioned gasotransmitters from the perspective of biosynthetic origin and functions. Moreover, the potential future research directions for phytomelatonin and gasotransmitters interactions are discussed.


Assuntos
Gasotransmissores , Sulfeto de Hidrogênio , Melatonina , Animais , Antioxidantes , Monóxido de Carbono , Gasotransmissores/fisiologia , Hidrogênio , Metano , Óxido Nítrico , Oxigênio , Reguladores de Crescimento de Plantas
14.
Eur J Nucl Med Mol Imaging ; 49(12): 4073-4087, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35680737

RESUMO

PURPOSE: Hydrogen sulfide (H2S) plays important roles in brain pathophysiology. However, nuclear imaging probes for the in vivo detection of brain H2S in living animals have not been developed. Here, we report the first nuclear imaging probe that enables in vivo imaging of endogenous H2S in the brain of live mice. METHODS: Utilizing a bis(thiosemicarbazone) backbone, a fluorescent ATSM-FITC conjugate was synthesized. Its copper complex, Cu(ATSM-FITC) was thoroughly tested as a biosensor for H2S. The same ATSM-FITC ligand was quantitatively labeled with [64Cu]CuCl2 to obtain a radioactive [64Cu][Cu(ATSM-FITC)] imaging probe. Biodistribution and positron emission tomography (PET) imaging studies were performed in healthy mice and neuroinflammation models. RESULTS: The Cu(ATSM-FITC) complex reacts instantly with H2S to release CuS and becomes fluorescent. It showed excellent reactivity, sensitivity, and selectivity to H2S. Endogenous H2S levels in living cells were successfully detected by fluorescence microscopy. Exceptionally high brain uptake of [64Cu][Cu(ATSM-FITC)] (> 9% ID/g) was observed in biodistribution and PET imaging studies. Subtle changes in brain H2S concentrations in live mice were accurately detected by quantitative PET imaging. Due to its dual modality feature, increased H2S levels in neuroinflammation models were characterized at the subcellular level by fluorescence imaging and at the whole-body scale by PET imaging. CONCLUSION: Our biosensor can be readily utilized to study brain H2S function in live animal models and shows great potential as a novel imaging agent for diagnosing brain diseases.


Assuntos
Complexos de Coordenação , Sulfeto de Hidrogênio , Compostos Organometálicos , Tiossemicarbazonas , Animais , Encéfalo/diagnóstico por imagem , Cobre , Fluoresceína-5-Isotiocianato , Corantes Fluorescentes , Ligantes , Camundongos , Doenças Neuroinflamatórias , Distribuição Tecidual
15.
Proc Natl Acad Sci U S A ; 116(35): 17541-17546, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31405982

RESUMO

Nitric oxide (NO) is a major inhibitory neurotransmitter that mediates nonadrenergic noncholinergic (NANC) signaling. Neuronal NO synthase (nNOS) is activated by Ca2+/calmodulin to produce NO, which causes smooth muscle relaxation to regulate physiologic tone. nNOS serine1412 (S1412) phosphorylation may reduce the activating Ca2+ requirement and sustain NO production. We developed and characterized a nonphosphorylatable nNOSS1412A knock-in mouse and evaluated its enteric neurotransmission and gastrointestinal (GI) motility to understand the physiologic significance of nNOS S1412 phosphorylation. Electrical field stimulation (EFS) of wild-type (WT) mouse ileum induced nNOS S1412 phosphorylation that was blocked by tetrodotoxin and by inhibitors of the protein kinase Akt but not by PKA inhibitors. Low-frequency depolarization increased nNOS S1412 phosphorylation and relaxed WT ileum but only partially relaxed nNOSS1412A ileum. At higher frequencies, nNOS S1412 had no effect. nNOSS1412A ileum expressed less phosphodiesterase-5 and was more sensitive to relaxation by exogenous NO. Under non-NANC conditions, peristalsis and segmentation were faster in the nNOSS1412A ileum. Together these findings show that neuronal depolarization stimulates enteric nNOS phosphorylation by Akt to promote normal GI motility. Thus, phosphorylation of nNOS S1412 is a significant regulatory mechanism for nitrergic neurotransmission in the gut.


Assuntos
Motilidade Gastrointestinal , Íleo/fisiologia , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alanina/metabolismo , Animais , GMP Cíclico/metabolismo , Motilidade Gastrointestinal/genética , Camundongos , Músculo Liso/metabolismo , Mutação , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Fosforilação , Ratos
16.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163358

RESUMO

Epilepsy is a heterogenous neurological disorder characterized by recurrent unprovoked seizures, mitochondrial stress, and neurodegeneration. Hydrogen sulfide (H2S) is a gasotransmitter that promotes mitochondrial function and biogenesis, elicits neuromodulation and neuroprotection, and may acutely suppress seizures. A major gap in knowledge remains in understanding the role of mitochondrial dysfunction and progressive changes in H2S levels following acute seizures or during epileptogenesis. We thus sought to quantify changes in H2S and its methylated metabolite (MeSH) via LC-MS/MS following acute maximal electroshock and 6 Hz 44 mA seizures in mice, as well as in the early phases of the corneally kindled mouse model of chronic seizures. Plasma H2S was acutely reduced after a maximal electroshock seizure. H2S or MeSH levels and expressions of related genes in whole brain homogenates from corneally kindled mice were not altered. However, plasma H2S levels were significantly lower during kindling, but not after established kindling. Moreover, we demonstrated a time-dependent increase in expression of mitochondrial membrane integrity-related proteins, OPA1, MFN2, Drp1, and Mff during kindling, which did not correlate with changes in gene expression. Taken together, short-term reductions in plasma H2S could be a novel biomarker for seizures. Future studies should further define the role of H2S and mitochondrial stress in epilepsy.


Assuntos
Eletrochoque/efeitos adversos , Epilepsia/metabolismo , Sulfeto de Hidrogênio/sangue , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Epilepsia/etiologia , Regulação da Expressão Gênica , Excitação Neurológica , Masculino , Metilação , Camundongos , Espectrometria de Massas em Tandem , Fatores de Tempo
17.
Chembiochem ; 22(15): 2521-2525, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34137488

RESUMO

Hypoxia-inducible factor prolyl hydroxylase domain 2 (PHD2) is an important oxygen sensor in animals. By using the CO-releasing molecule-2 (CORM-2) as an in situ CO donor, we demonstrate that CO is an inhibitor of PHD2. This report provides further evidence about the emerging role of CO in oxygen sensing and homeostasis.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia
18.
Nitric Oxide ; 107: 31-45, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33338600

RESUMO

Along with nitric oxide (NO), the gasotransmitters carbon monoxide (CO) and hydrogen sulfide (H2S) are emerging as potentially important players in newborn physiology, as mediators of newborn disease, and as new therapeutic modalities. Several recent studies have addressed H2S in particular in animal models of bronchopulmonary dysplasia (BPD), a common complication of preterm birth where oxygen toxicity stunts lung development. In those studies, exogenous H2S attenuated the impact of oxygen toxicity on lung development, and two H2S-generating enzymes were documented to affect pulmonary vascular development. H2S is directly generated endogenously by three enzymes, one of which, 3-mercaptopyruvate sulfurtransferase (MPST), has not been studied in the lung. In a hyperoxia-based animal model of BPD, oxygen exposure deregulated MPST expression during post-natal lung development, where MPST was localized to the smooth muscle layer of the pulmonary vessels in developing lungs. siRNA-mediated abrogation of MPST expression in human pulmonary artery smooth muscle cells in vitro limited baseline cell migration and cell proliferation, without affecting apoptosis or cell viability. In vivo, MPST was dispensable for normal lung development in Mpst-/-mice, and MPST did not contribute to stunted lung development driven by hyperoxia exposure, assessed by design-based stereology. These data demonstrate novel roles for MPST in pulmonary vascular smooth muscle cell physiology. The potential caveats of using Mpst-/- mice to study normal and aberrant lung development are also discussed, highlighting the possible confounding, compensatory effects of other H2S-generating enzymes that are present alongside MPST in the smooth muscle compartment of developing pulmonary vessels.


Assuntos
Gasotransmissores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Pulmão/metabolismo , Músculo Liso Vascular/metabolismo , Organogênese/fisiologia , Sulfurtransferases/metabolismo , Animais , Animais Recém-Nascidos , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/citologia , Masculino , Camundongos Endogâmicos C57BL , Sulfurtransferases/genética
19.
Nitric Oxide ; 107: 46-57, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33253886

RESUMO

The hydropersulfide (RSSH) functional group has received significant recent interest due to its unique chemical properties that set it apart from other biological species. The chemistry of RSSH predicts that one possible biological role may be as a protectant against cellular oxidative and electrophilic stress. That is, RSSH has reducing and nucleophilic properties that may combat the potentially destructive biochemistry of toxicologically relevant oxidants and electrophiles. However, there are currently numerous other molecules that have established roles in this regard. For example, ascorbate and tocopherols are potent antioxidants that quench deleterious oxidative reactions and glutathione (GSH) is a well-established and highly prevalent biological protectant against electrophile toxicity. Thus, in order to begin to understand the possible role of RSSH species as protectants against oxidative/electrophilic stress, the inherent chemical properties of RSSH versus these other protectants will be discussed and contrasted.


Assuntos
Antioxidantes/fisiologia , Estresse Oxidativo/fisiologia , Sulfetos/metabolismo , Animais , Antioxidantes/química , Ácido Ascórbico/química , Ácido Ascórbico/fisiologia , Glutationa/química , Glutationa/fisiologia , Humanos , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/química , Óxido Nítrico/fisiologia , Oxirredução , Sulfetos/química
20.
Adv Exp Med Biol ; 1315: 161-179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34302692

RESUMO

Hydrogen sulfide (H2S), an endogenous, gaseous, signaling transmitter, has been shown to have vasodilative, anti-oxidative, anti-inflammatory, and cytoprotective activities. Increasing evidence also indicates that H2S can suppress the production of inflammatory mediators by immune cells, for example, T cells and macrophages. Inflammation is closely related to an immune response in several diseases such as rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), and cancer. Considering these biological effects of H2S, a potential role in the treatment of immune-related RA is being exploited. In the present review, we will provide an overview of the therapeutic potential of H2S in RA treatment.


Assuntos
Artrite Reumatoide , Sulfeto de Hidrogênio , Lúpus Eritematoso Sistêmico , Anti-Inflamatórios/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Humanos , Inflamação/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA