RESUMO
Grain boundaries (GBs) serve not only as strong barriers to dislocation motion, but also as important carriers to accommodate plastic deformation in crystalline solids. During deformation, the inherent excess volume associated with loose atomic packing in GBs brings about a microscopic degree of freedom that can initiate GB plasticity, which is beyond the classic geometric description of GBs. However, identification of this atomistic process has long remained elusive due to its transient nature. Here, we use Au polycrystals to unveil a general and inherent route to initiating GB plasticity via a transient topological transition process triggered by the excess volume. This route underscores the general impact of a microscopic degree of freedom which is governed by a stress-triaxiality-based criterion. Our findings provide a missing perspective for developing a more comprehensive understanding of the role of GBs in plastic deformation.
RESUMO
Grain rotation is commonly observed during the evolution of microstructures in polycrystalline materials of different kinds, including metals, ceramics, and colloidal crystals. It is widely accepted that interface migration in these systems is mediated by the motion of line defects with step and dislocation character, i.e., disconnections. We propose a crystallography-respecting continuum model for arbitrarily curved grain boundaries or heterophase interfaces, accounting for the disconnections' role in grain rotation. Numerical simulations demonstrate that changes in grain orientations, as well as interface morphology and internal stress field, are associated with disconnection flow. Our predictions agree with molecular dynamics simulation results for pure capillarity-driven evolution of grain boundaries and are interpreted through an extended Cahn-Taylor model.
RESUMO
Negative differential resistance (NDR), a phenomenon in which the current decreases when the applied voltage is increased, is attracting attention as a unique electrical property. Here, we propose a broad spectral photo/gate cotunable channel switching NDR (CS-NDR) device. The proposed CS-NDR device has superior linear gate-tunable NDR behavior and highly reproducible properties compared to the previously reported NDR devices, as the fundamental mechanism of the CS-NDR device is directly related to a charge transport channel switching by the linear increase of the applied drain voltage. We also experimentally demonstrate that the photoinduced NDR behavior of the CS-NDR device was derived from the grain boundaries of dinaphtho[2;3-b:2',3'-f]-thieno[3,2-b]thiophene. Furthermore, this work produces a 9 × 9 CS-NDR device array composed of 81 devices, providing the reproducibility and uniformity of the CS-NDR device. Finally, we successfully demonstrate the detection of text images with 81 CS-NDR devices using the proposed photo/gate cotunable NDR behavior.
RESUMO
Natural phosphatases featuring paired metal sites inspire various advanced nanozymes with phosphatase-like activity as alternatives in practical applications. Numerous efforts to create point defects show limited metal site pairs, further resulting in insufficient activity. However, it remains a grand challenge to accurately engineer abundant metal site pairs in nanozymes. Herein, we report a grain-boundary-rich ceria metallene nanozyme (GB-CeO2) with phosphatase-like activity. Grain boundaries acting as the line or interfacial defects can effectively increase the content of Ce4+/Ce3+ site pairs to 72.28%, achieving a 49.28-fold enhancement in activity. Furthermore, abundant grain boundaries optimize the band structure to assist the photoelectron transfer under irradiation, which further increases the content of metal site pairs to 88.96% and finally realizes a 114.39-fold enhanced activity over that of CeO2 without irradiation. Given the different inhibition effects of pesticides on catalysts with and without irradiation, GB-CeO2 was successfully applied to recognize mixed toxic pesticides.
Assuntos
Cério , Cério/química , Catálise , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Nanoestruturas/química , Praguicidas/químicaRESUMO
Cation-doped cubic Li7La3Zr2O12 is regarded as a promising solid electrolyte for safe and energy-dense solid-state lithium batteries. However, it suffers from the formation of Li2CO3 and high electronic conductivity, which give rise to an unconformable Li/Li7La3Zr2O12 interface and lithium dendrites. Herein, composite AlF3-Li6.4La3Zr1.4Ta0.6O12 solid electrolytes were created based on thermal AlF3 decomposition and F/O displacement reactions under a high-temperature sintering process. When the AlF3 is thermally decomposed, it leaves Al2O3/AlF3 meliorating the grain boundaries and F- ions partially displacing O2- ions in the grains. Due to the higher electronegativity of F- in the grains and the grain-boundary modification, these AlF3-Li6.4La3Zr1.4Ta0.6O12 deliver optimized electronic conduction and chemical stability against the formation of Li2CO3. The Li/AlF3-Li6.4La3Zr1.4Ta0.6O12/Li cell exhibits a low interfacial resistance of â¼16 Ω cm2 and an ultrastable long-term cycling behavior for 800 h under a current density of 200 µA/cm2, leading to Li//LiCoO2 solid-state batteries with good rate performance and cycling stability.
RESUMO
Grain boundary (GB) fracture is a major mechanism of material failure in polycrystalline ceramics. However, the intricate atomic arrangements of GBs have impeded our understanding of the atomistic mechanisms of these processes. In this study, we investigated the atomic-scale crack propagation behavior of an α-Al2O3 ∑13 grain boundary, using a combination of in situ transmission electron microscopy (TEM) and scanning TEM. The atomic-scale fracture path along the GB core was directly determined by the observation of the atomic structures of the fractured surfaces, which is consistent with density functional theory calculations. We found that the GB fracture can be attributed to the weaker local bonds and a smaller number of bonds along the fracture path. Our findings provide atomistic insights into the mechanisms of crack propagation along GBs, offering significant implications for GB engineering and the toughening of ceramics.
RESUMO
Grain boundaries (GBs) in two-dimensional (2D) covalent organic frameworks (COFs) unavoidably form during the fabrication process, playing pivotal roles in the physical characteristics of COFs. Herein, molecular dynamics simulations were employed to elucidate the fracture failure and thermal transport mechanisms of polycrystalline COFs (p-COFs). The results revealed that the tilt angle of GBs significantly influences out-of-plane wrinkles and residual stress in monolayer p-COFs. The tensile strength of p-COFs can be enhanced and weakened with the tilt angle, which exhibits an inverse relationship with the defect density. The crack always originates from weaker heptagon rings during uniaxial tension. Notably, the thermal transport in p-COFs is insensitive to the GBs due to the variation of minor polymer chain length at defects, which is abnormal for other 2D crystalline materials. This study contributes insights into the impact of GBs in p-COFs and offers theoretical guidance for structural design and practical applications of advanced COFs.
RESUMO
The electrochemical CO2 reduction reaction (eCO2RR) to multicarbon chemicals provides a promising avenue for storing renewable energy. Herein, we synthesized small Cu nanoparticles featuring enriched tiny grain boundaries (RGBs-Cu) through spatial confinement and in situ electroreduction. In-situ spectroscopy and theoretical calculations demonstrate that small-sized Cu grain boundaries significantly enhance the adsorption of the *CO intermediate, owing to the presence of abundant low-coordinated and disordered atoms. Furthermore, these grain boundaries, generated in situ under high current conditions, exhibit excellent stability during the eCO2RR process, thereby creating a stable *CO-rich microenvironment. This high local *CO concentration around the catalyst surface can reduce the energy barrier for C-C coupling and significantly increase the Faradaic efficiency (FE) for multicarbon products across both neutral and alkaline electrolytes. Specifically, the developed RGBs-Cu electrocatalyst achieved a peak FE of 77.3% for multicarbon products and maintained more than 134 h stability at a constant current density of -500 mA cm-2.
RESUMO
Materials with pseudoelasticity can recover from large strains exceeding their elastic limits during unloading, making them promising damage-tolerant building blocks for advanced nanodevices. Nevertheless, a practical approach to realize controllable pseudoelastic behavior at nanoscale remains challenging. Here, we proposed a grain boundary (GB) engineering approach to endow metallic nanocrystals with a controllable pseudoelasticity. Both in situ nanomechanical testing and atomistic simulations demonstrate that such controllable pseudoelasticity is governed by the extension and contraction of an inherent stacking fault array at the GB. By precisely tuning GB misorientation and inclination, our simulation results reveal that metallic nanocrystals can exhibit tailored pseudoelastic performance across a broad spectrum of GBs in different face-centered cubic metals. These findings enrich our understanding of the intrinsic pseudoelasticity of GBs and provide a GB engineering approach toward metallic materials with reversible deformability.
RESUMO
We present large-scale atomistic simulations that reveal triple junction (TJ) segregation in Pt-Au nanocrystalline alloys in agreement with experimental observations. While existing studies suggest grain boundary solute segregation as a route to thermally stabilize nanocrystalline materials with respect to grain coarsening, here we quantitatively show that it is specifically the segregation to TJs that dominates the observed stability of these alloys. Our results reveal that doping the TJs renders them immobile, thereby locking the grain boundary network and hindering its evolution. In dilute alloys, it is shown that grain boundary and TJ segregation are not as effective in mitigating grain coarsening, as the solute content is not sufficient to dope and pin all grain boundaries and TJs. Our work highlights the need to account for TJ segregation effects in order to understand and predict the evolution of nanocrystalline alloys under extreme environments.
RESUMO
Nanoscale defects like grain boundaries (GBs) would introduce local phonon modes and affect the bulk materials' thermal, electrical, optical, and mechanical properties. It is highly desirable to correlate the phonon modes and atomic arrangements for individual defects to precisely understand the structure-property relation. Here we investigated the localized phonon modes of Al2O3 GBs by combination of the vibrational electron energy loss spectroscopy (EELS) in scanning transmission electron microscope and density functional perturbation theory (DFPT). The differences between GB and bulk obtained from the vibrational EELS show that the GB exhibited more active vibration at the energy range of <50 meV and >80 meV, and further DFPT results proved the wide distribution of bond lengths at GB are the main factor for the emergence of local phonon modes. This research provides insights into the phonon-defect relation and would be of importance in the design and application of polycrystalline materials.
RESUMO
The oriented attachment (OA) of nanoparticles (NPs) is an important crystal growth mechanism in many materials. However, a comprehensive understanding of the atomic-scale alignment and attachment processes is still lacking. We conducted in situ atomic resolution studies using high-resolution transmission electron microscopy to reveal how two Pt NPs coalesce into a single particle via OA, which involves the formation of atomic-scale links and a grain boundary (GB) between the NPs, as well as GB migration. Density functional theory calculations showed that the system energy changes as a function of the number of disconnections during the coalescence process. Additionally, the formation and annihilation processes of disconnection are always accompanied by the cooperative reorientation motion of atoms. These results further elucidate the growth mechanism of OA at the atomic scale, providing microscopic insights into OA dynamics and a framework for the development of processing strategies for nanocrystalline materials.
RESUMO
Oxide ceramics are considered promising candidates as solid electrolytes (SEs) for sodium metal batteries. However, the high sintering temperature induced boundaries and pores between angular grains lead to high grain boundary resistance and pathways for dendrite growth. Herein, we report a grain boundary modification strategy, which in situ generates an amorphous matrix among Na5SmSi4O12 oxide grains via tuning the chemical composition. The mechanical properties as well as electron mitigating capability of modified SE have been significantly enhanced. As a result, the SE achieves a room-temperature total ionic conductivity of 5.61 mS cm-1, the highest value for sodium-based oxide SEs. The Na|SE|Na symmetric cell achieves a high critical current density of 2.5 mA cm-2 and excellent cycle life over more than 2800 h at 0.15 mA cm-2 without dendrite formation. The full cell with Na3V2(PO4)3 as the cathode demonstrates impressive cycling performance, maintaining stability over 3000 cycles at 5C without observable loss of capacity.
RESUMO
Electron mobility in nitride semiconductors is limited by electron-phonon, defect, grain-boundary, and dislocation scatterings. Scandium nitride (ScN), an emerging rocksalt indirect bandgap semiconductor, exhibits varying electron mobilities depending on growth conditions. Since achieving high mobility is crucial for ScN's device applications, a microscopic understanding of different scattering mechanisms is extremely important. Utilizing the ab initio Boltzmann transport formalism and experimental measurements, here we show the hierarchy of various scattering processes in restricting the electron mobility of ScN. Calculations unveil that though Fröhlich interactions set an intrinsic upper bound for ScN's electron mobility of â¼524 cm2/V·s at room temperature, ionized-impurity and grain-boundary scatterings significantly reduce mobility. The experimental temperature dependence of mobilities is captured well considering both nitrogen-vacancy and oxygen-substitutional impurities with appropriate ratios, and room-temperature doping dependency agrees well with the empirical Caughey-Thomas model. Furthermore, we suggest modulation doping and polar-discontinuity doping to reduce ionized-impurity scattering in achieving a high-mobility ScN for device applications.
RESUMO
Grain boundaries (GBs)-triggered severe non-radiative recombination is recently recognized as the main culprits for carrier loss in polycrystalline kesterite photovoltaic devices. Accordingly, further optimization of kesterite-based thin film solar cells critically depends on passivating the grain interfaces of polycrystalline Cu2 ZnSn(S,Se)4 (CZTSSe) thin films. Herein, 2D material of graphene is first chosen as a passivator to improve the detrimental GBs. By adding graphene dispersion to the CZTSSe precursor solution, single-layer graphene is successfully introduced into the GBs of CZTSSe absorber. Due to the high carrier mobility and electrical conductivity of graphene, GBs in the CZTSSe films are transforming into electrically benign and do not act as high recombination sites for carrier. Consequently, benefitting from the significant passivation effect of GBs, the use of 0.05 wt% graphene additives increases the efficiency of CZTSSe solar cells from 10.40% to 12.90%, one of the highest for this type of cells. These results demonstrate a new route to further increase kesterite-based solar cell efficiency by additive engineering.
RESUMO
N-type Mg3 Sb2 -based thermoelectric materials show great promise in power generation due to their mechanical robustness, low cost of Mg, and high figure of merit (ZT) over a wide range of temperatures. However, their poor thermal stability hinders their practical applications. Here, MgB2 is introduced to improve the thermal stability of n-type Mg3 Sb2 . Enabled by MgB2 decomposition, extra Mg can be released into the matrix for Mg compensation thermodynamically, and secondary phases of MgâB compounds can kinetically prevent Mg diffusion along grain boundaries. These synergetic effects inhibit the formation of Mg vacancies at elevated temperatures, thereby enhancing the thermal stability of n-type Mg3 Sb2 . Consequently, the Mg3.05 (Sb0.75 Bi0.25 )1.99 Te0.01 (MgB2 )0.03 sample exhibits negligible variation in thermoelectric performance during the 120-hour continuous measurement at 673 K. Moreover, the ZT of n-type Mg3 Sb2 can be maintained by adding MgB2 , reaching a high average ZT of ≈1.1 within 300-723 K. An eight-pair Mg3 Sb2 -GeTe-based thermoelectric device is also fabricated, achieving an energy conversion efficiency of ≈5.7% at a temperature difference of 438 K with good thermal stability. This work paves a new way to enhance the long-term thermal stability of n-type Mg3 Sb2 -based alloys and other thermoelectrics for practical applications.
RESUMO
Infiltration of excessive antibiotics into aquatic ecosystems plays a significant role in antibiotic resistance, a major global health challenge. It is therefore critical to develop effective technologies for their removal. Herein, defect-rich Bi2WO6 nanoparticles are solvothermally prepared via epitaxial growth on pristine Bi2WO6 seed nanocrystals, and the efficiency of the photocatalytic degradation of ciprofloxacin, a common antibiotic, is found to increase markedly from 62.51% to 98.27% under visible photoirradiation for 60 min. This is due to the formation of a large number of structural defects, where the synergistic interactions between grain boundaries and adjacent dislocations and oxygen vacancies lead to an improved separation and migration efficiency of photogenerated carriers and facilitate the adsorption and degradation of ciprofloxacin, as confirmed in experimental and theoretical studies. Results from this work demonstrate the unique potential of defect engineering for enhanced photocatalytic performance, a critical step in removing antibiotic contaminants in aquatic ecosystems.
Assuntos
Antibacterianos , Bismuto , Antibacterianos/química , Bismuto/química , Catálise , Ciprofloxacina/química , Nanopartículas/química , Tungstênio/química , ÓxidosRESUMO
Spiral inorganic perovskite nanowires (NWs) possess unique morphologies and properties that allow them highly attractive for applications in optoelectronic and catalytic fields. In popular solution-based synthesis methodology, however, challenges persist in simultaneously achieving precise and facile control over morphological twisting and fantastic carrier lifetimes. Here, a cooperative strategy of concurrently employing selective etching and ligand engineering is applied to facilitate the formation of spiral CsPbBr3 perovskite NWs with an ultralong carrier lifetime of ≈2 µs. Specifically, a novel amine of 1-(p-tolyl)ethanamine is introduced to functionalize as both a selective etchant and the source of forming an effective ligand to passivate the exposed facets, favoring the structural twisting and the enhancement of carrier lifetimes. The twisting behaviors are dependent on the etch ratios, which are essentially associated with the densities of grain boundaries and dislocations in the NWs. The ultralong carrier lifetime and long-term stability of the spiral NWs open up new possibilities for all-inorganic perovskites in optoelectronic and photocatalytic fields, while the cooperative synthesis strategy paves the way for exploring complex spiral structures with tunable morphology and functionality.
RESUMO
Small-sized metals generally exhibit unusual deformation responses subjected to cyclic loading, since their limited volume cannot effectively accommodate micro-sized dislocation patterns typically found in their bulk counterparts. Here, the cyclic behaviors in Cu nanopillars with different configurations are investigated using in situ transmission electron microscopy fatigue test. Dislocation tangles formed in single- and twinned-crystal nanopillars as a result of cycling-induced operations of multiple slip systems and further unpinning and absorption of pinned dislocations. While, nanopillars configured with low-angle grain boundary (LAGB) underwent the degradation and eventual decomposition of the LAGB due to the cycling-induced emission of grain boundary dislocations, which resulted in high-density mobile dislocations to withstand the cyclic loading. These findings contribute to a systematic and comprehensive understanding of the micro-mechanics of dislocation-related phenomena in the cyclic response of nanoscale metals.
RESUMO
Grain boundary (GB) glassy phase often results in poor ceramic performances. Here, a Multicomponent Grain Boundary Entropy (MGBE) descriptor extracted from high-throughput first-principle calculations is proposed to capture the nature of high-entropy GB phases in ceramics. In a Si3N4 ceramic model system, MGBE is found to have a direct correlation with GB phase crystallinity, element segregation, and formation of pores. The predicted highest MGBE sintering additive combination (MgO-Y2O3-Er2O3-Yb2O3) leads to high-performance ceramics of homogenous microstructure and pure GB (YErYb)2Si3O3N4 phase without observable glassy film. Conversely, low MGBE additives result in a substantial amount of GB glassy phase, element segregation, and pore clusters. The MGBE descriptor can make a rapid screening of multicomponent sintering additives, offering a novel approach for rational designing of ceramics with targeted microstructure and performances.