Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
RNA ; 29(8): 1126-1139, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37130702

RESUMO

Riboswitches function as important translational regulators in bacteria. Comprehensive mutational analysis of transcriptional riboswitches has been used to probe the energetic intricacies of interplay between the aptamer and expression platform, but translational riboswitches have been inaccessible to massively parallel techniques. The guanidine-II (gdm-II) riboswitch is an exclusively translational class. We have integrated RelE cleavage with next-generation sequencing to quantify ligand-dependent changes in translation initiation for all single and double mutations of the Pseudomonas aeruginosa gdm-II riboswitch, a total of more than 23,000 variants. This extensive mutational analysis is consistent with the prominent features of the bioinformatic consensus. These data indicate, unexpectedly, that direct sequestration of the Shine-Dalgarno sequence is dispensable for riboswitch function. Additionally, this comprehensive data set reveals important positions not identified in previous computational and crystallographic studies. Mutations in the variable linker region stabilize alternate conformations. The double mutant data reveal the functional importance of the previously modeled P0b helix formed by the 5' and 3' tails that serves as the basis for translational control. Additional mutations to GU wobble base pairs in both P1 and P2 reveal how the apparent cooperativity of the system involves an intricate network of communication between the two binding sites. This comprehensive examination of a translational riboswitch's expression platform illuminates how the riboswitch is precisely tuned and tunable with regard to ligand sensitivity, the amplitude of expression between ON and OFF states, and the cooperativity of ligand binding.


Assuntos
Aptâmeros de Nucleotídeos , Riboswitch , Riboswitch/genética , Guanidina/farmacologia , Ligantes , Guanidinas , Aptâmeros de Nucleotídeos/química , Conformação de Ácido Nucleico
2.
Biochem Biophys Res Commun ; 715: 149994, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38692139

RESUMO

Many virus lysis/transport buffers used in molecular diagnostics, including the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, contain guanidine-based chaotropic salts, primarily guanidine hydrochloride (GuHCl) or guanidine isothiocyanate (GITC). Although the virucidal effects of GuHCl and GITC alone against some enveloped viruses have been established, standardized data on their optimum virucidal concentrations against SARS-CoV-2 and effects on viral RNA stability are scarce. Thus, we aimed to determine the optimum virucidal concentrations of GuHCl and GITC against SARS-CoV-2 compared to influenza A virus (IAV), another enveloped respiratory virus. We also evaluated the effectiveness of viral RNA stabilization at the determined optimum virucidal concentrations under high-temperature conditions (35°C) using virus-specific real-time reverse transcription polymerase chain reaction. Both viruses were potently inactivated by 1.0 M GITC and 2.5 M GuHCl, but the GuHCl concentration for efficient SARS-CoV-2 inactivation was slightly higher than that for IAV inactivation. GITC showed better viral RNA stability than GuHCl at the optimum virucidal concentrations. An increased concentration of GuHCl or GITC increased viral RNA degradation at 35°C. Our findings highlight the need to standardize GuHCl and GITC concentrations in virus lysis/transport buffers and the potential application of these guanidine-based salts alone as virus inactivation solutions in SARS-CoV-2 and IAV molecular diagnostics.


Assuntos
Guanidina , Vírus da Influenza A , RNA Viral , SARS-CoV-2 , Manejo de Espécimes , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Guanidina/farmacologia , Guanidina/química , RNA Viral/genética , Humanos , Manejo de Espécimes/métodos , Genoma Viral , COVID-19/virologia , COVID-19/diagnóstico , Chlorocebus aethiops , Células Vero , Inativação de Vírus/efeitos dos fármacos , Animais , Estabilidade de RNA/efeitos dos fármacos , Contenção de Riscos Biológicos , Guanidinas/farmacologia , Guanidinas/química , Sais/farmacologia , Sais/química
3.
Chembiochem ; 25(1): e202300590, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37908177

RESUMO

Octacosamicin A is an antifungal metabolite featuring a linear polyene-polyol chain flanked by N-hydroxyguanidine and glycine moieties. We report here that sub-inhibitory concentrations of streptomycin elicited the production of octacosamicin A in Amycolatopsis azurea DSM 43854T . We identified the biosynthetic gene cluster (oca BGC) that encodes a modular polyketide synthase (PKS) system for assembling the polyene-polyol chain of octacosamicin A. Our analysis suggested that the N-hydroxyguanidine unit originates from a 4-guanidinobutyryl-CoA starter unit, while the PKS incorporates an α-hydroxyketone moiety using a (2R)-hydroxymalonyl-CoA extender unit. The modular PKS system contains a non-canonical terminal module that lacks thioesterase (TE) and acyl carrier protein (ACP) domains, indicating the biosynthesis is likely to employ an unconventional and cryptic off-loading mechanism that attaches glycine to the polyene-polyol chain via an intermolecular amidation reaction.


Assuntos
Glicina , Policetídeo Sintases , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Polienos
4.
Magn Reson Med ; 91(4): 1512-1527, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38098305

RESUMO

PURPOSE: Guanidinium CEST is sensitive to metabolic changes and pH variation in ischemia, and it can offer advantages over conventional pH-sensitive amide proton transfer (APT) imaging by providing hyperintense contrast in stroke lesions. However, quantifying guanidinium CEST is challenging due to multiple overlapping components and a close frequency offset from water. This study aims to evaluate the applicability of a new rapid and model-free CEST quantification method using double saturation power, termed DSP-CEST, for isolating the guanidinium CEST effect from confounding factors in ischemia. To further reduce acquisition time, the DSP-CEST was combined with a quasi-steady state (QUASS) CEST technique to process non-steady-state CEST signals. METHODS: The specificity and accuracy of the DSP-CEST method in quantifying the guanidinium CEST effect were assessed by comparing simulated CEST signals with/without the contribution from confounding factors. The feasibility of this method for quantifying guanidinium CEST was evaluated in a rat model of global ischemia induced by cardiac arrest and compared to a conventional multiple-pool Lorentzian fit method. RESULTS: The DSP-CEST method was successful in removing all confounding components and quantifying the guanidinium CEST signal increase in ischemia. This suggests that the DSP-CEST has the potential to provide hyperintense contrast in stroke lesions. Additionally, the DSP-CEST was shown to be a rapid method that does not require the acquisition of the entire or a portion of the CEST Z-spectrum that is required in conventional model-based fitting approaches. CONCLUSION: This study highlights the potential of DSP-CEST as a valuable tool for rapid and specific detection of viable tissues.


Assuntos
Encéfalo , Acidente Vascular Cerebral , Ratos , Animais , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Guanidina/metabolismo , Roedores , Isquemia/diagnóstico por imagem , Isquemia/metabolismo , Amidas/metabolismo
5.
Chemistry ; : e202401816, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989823

RESUMO

N-Heterocyclic carbene (NHC)-derived selenoureas comprise a fundamentally important class of NHC derivatives, with key applications in coordination chemistry and the determination of NHC electronic properties. Considering the broad reactivity of chalcogen-containing compounds, it is surprising to note that the use of NHC-derived selenoureas as organic synthons remains essentially unexplored. The present contribution introduces a novel, straightforward transformation leading to azines bearing a guanidine moiety, through the reaction of a wide range of NHC-derived selenoureas with commercially available diazo compounds, in the presence of triphenylphosphine. This transformation offers a new approach to such products, having biological, materials chemistry, and organic synthesis applications. The guanidine-bearing azines are obtained in excellent yields, with all manipulations taking place in air. A reaction mechanism is proposed, based on both experimental mechanistic findings and density functional theory (DFT) calculations. A one-pot, multicomponent transesterification reaction between selenoureas, α-diazoesters, alcohols, and triphenylphosphine was also developed, providing highly functionalized azines.

6.
Bioorg Chem ; 147: 107410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688197

RESUMO

A new series of benzene-sulfonamide derivatives 3a-i was designed and synthesized via the reaction of N-(pyrimidin-2-yl)cyanamides 1a-i with sulfamethazine sodium salt 2 as dual Src/Abl inhibitors. Spectral data IR, 1H-, 13C- NMR and elemental analyses were used to confirm the structures of all the newly synthesized compounds 3a-i and 4a-i. Crucially, we screened all the synthesized compounds 3a-i against NCI 60 cancer cell lines. Among all, compound 3b was the most potent, with IC50 of 0.018 µM for normoxia, and 0.001 µM for hypoxia, compared to staurosporine against HL-60 leukemia cell line. To verify the selectivity of this derivative, it was assessed against a panel of tyrosine kinase EGFR, VEGFR-2, B-raf, ERK, CK1, p38-MAPK, Src and Abl enzymes. Results revealed that compound 3b can effectively and selectively inhibit Src/Abl with IC500.25 µM and Abl inhibitory activity with IC500.08 µM, respectively, and was found to be more potent on these enzymes than other kinases that showed the following results: EGFR IC500.31 µM, VEGFR-2 IC500.68 µM, B-raf IC500.33 µM, ERK IC501.41 µM, CK1 IC500.29 µM and p38-MAPK IC500.38 µM. Moreover, cell cycle analysis and apoptosis performed to compound 3b against HL-60 suggesting its antiproliferative activity through Src/Abl inhibition. Finally, molecular docking studies and physicochemical properties prediction for compounds 3b, 3c, and 3 h were carried out to investigate their biological activities and clarify their bioavailability.


Assuntos
Antineoplásicos , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-abl , Quinases da Família src , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Guanidina/farmacologia , Guanidina/química , Guanidina/síntese química , Guanidina/análogos & derivados , Células HL-60 , Leucemia/tratamento farmacológico , Leucemia/patologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo , Relação Estrutura-Atividade , Cianamida/síntese química , Cianamida/química , Cianamida/farmacologia
7.
Mol Divers ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324159

RESUMO

Dicyandiamide (DCD) reacted with amino acids 1a-f to produce biguanides 2 and 4 and guanidine pyrazolones 3, 5, 6, 7, and 8, according to the reaction. DCD exhibited the following reactions: imidodicarbonimidicdiamide 9, diazocan-2-ylguanidine 10, methyl biguanidylthion 11, N-carbamothioylimidodicarbonimidicdiamide 12, 2-guanidinebenzoimidazole 13a, 2-guanidinylbenzoxazole 13b, and 2-guanidinylbenzothiazol 13c. These reactions were triggered by 6-amino caproic acid, thioacetamide, thiourea, o-aminophenol, o-aminothiophenol, and anthranilic acid, respectively. Compound 2 had the least antimicrobial activity, while compound 13c demonstrated the most antibacterial impact against all bacterial strains. Furthermore, in terms of antiglycation efficacy (AGEs), 12, 11, and 7 were the most effective AGE cross-linking inhibitors. Eight and ten, which showed a considerable inhibition on cross-linking AGEs, come next. Compounds 4 and 6 on the other hand have shown the least suppression of AGE production. The most promising antiglycation scaffolds 8, 11, and 12 in the Human serum albumin (HAS) active site were shown to be able to adopt crucial binding interactions with important amino acids based on the results of in silico molecular docking. The most promising antiglycation compounds 8, 11, and 12 were also shown to have better hydrophilicity, acceptable lipophilicity, gastrointestinal tract absorption (GIT), and blood-brain barrier penetration qualities when their physicochemical properties were examined using the egg-boiled method.

8.
Ecotoxicol Environ Saf ; 272: 116084, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350217

RESUMO

Polyhexamethylene guanidine (PHMG) is manufactured and applied extensively due to its superior disinfectant capabilities. However, the inhalatory exposure to PHMG aerosols is increasingly recognized as a potential instigator of pulmonary fibrosis, prompting an urgent call for elucidation of the underlying pathophysiological mechanisms. Within this context, alveolar macrophages play a pivotal role in the primary immune defense in the respiratory tract. Dysregulated lipid metabolism within alveolar macrophages leads to the accumulation of foam cells, a process that is intimately linked with the pathogenesis of pulmonary fibrosis. Therefore, this study examines PHMG's effects on alveolar macrophage foaminess and its underlying mechanisms. We conducted a 3-week inhalation exposure followed by a 3-week recovery period in C57BL/6 J mice using a whole-body exposure system equipped with a disinfection aerosol generator (WESDAG). The presence of lipid-laden alveolar macrophages and downregulation of pulmonary tissue lipid transport proteins ABCA1 and ABCG1 were observed in mice. In cell culture models involving lipid-loaded macrophages, we demonstrated that PHMG promotes foam cell formation by inhibiting lipid efflux in mouse alveolar macrophages. Furthermore, PHMG-induced foam cells were found to promote an increase in the release of TGF-ß1, fibronectin deposition, and collagen remodeling. In vivo interventions were subsequently implemented on mice exposed to PHMG aerosols, aiming to restore macrophage lipid efflux function. Remarkably, this intervention demonstrated the potential to retard the progression of pulmonary fibrosis. In conclusion, this study underscores the pivotal role of macrophage foaming in the pathogenesis of PHMG disinfectants-induced pulmonary fibrosis. Moreover, it provides compelling evidence to suggest that the regulation of macrophage efflux function holds promise for mitigating the progression of pulmonary fibrosis, thereby offering novel insights into the mechanisms underlying inhaled PHMG disinfectants-induced pulmonary fibrosis.


Assuntos
Desinfetantes , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Guanidina/toxicidade , Guanidina/metabolismo , Camundongos Endogâmicos C57BL , Aerossóis e Gotículas Respiratórios , Pulmão , Guanidinas/metabolismo , Macrófagos , Desinfetantes/farmacologia , Lipídeos
9.
Ecotoxicol Environ Saf ; 281: 116680, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964057

RESUMO

Inhaling polyhexamethylene guanidine (PHMG) aerosol, a broad-spectrum disinfectant, can lead to severe pulmonary fibrosis. Ferroptosis, a form of programmed cell death triggered by iron-dependent lipid peroxidation, is believed to play a role in the chemical-induced pulmonary injury. This study aimed to investigate the mechanism of ferroptosis in the progression of PHMG-induced pulmonary fibrosis. C57BL/6 J mice and the alveolar type II cell line MLE-12 were used to evaluate the toxicity of PHMG in vivo and in vitro, respectively. The findings indicated that iron deposition was observed in PHMG induced pulmonary fibrosis mouse model and ferroptosis related genes have changed after 8 weeks PHMG exposure. Additionally, there were disturbances in the antioxidant system and mitochondrial damage in MLE-12 cells following a 12-hour treatment with PHMG. Furthermore, the study observed an increase in lipid peroxidation and a decrease in GPX4 activity in MLE-12 cells after exposure to PHMG. Moreover, pretreatment with the ferroptosis inhibitors Ferrostatin-1 (Fer-1) and Liproxstatin-1 (Lip-1) not only restored the antioxidant system and GPX4 activity but also mitigated lipid peroxidation. Current data exhibit the role of ferroptosis pathway in PHMG-induced pulmonary fibrosis and provide a potential target for future treatment.


Assuntos
Ferroptose , Guanidinas , Peroxidação de Lipídeos , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fibrose Pulmonar , Animais , Ferroptose/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Camundongos , Peroxidação de Lipídeos/efeitos dos fármacos , Linhagem Celular , Guanidinas/toxicidade , Guanidinas/farmacologia , Masculino , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Cicloexilaminas/farmacologia , Fenilenodiaminas , Quinoxalinas , Compostos de Espiro
10.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257365

RESUMO

Numerous types of oligonucleotide modifications have been developed since automated synthesis of DNA/RNA became a common instrument in the creation of synthetic oligonucleotides. Despite the growing number of types of oligonucleotide modifications under development, only a few of them and, moreover, their combinations have been studied widely enough in terms of their influence on the properties of corresponding NA constructions. In the present study, a number of oligonucleotides with combinations of 3'-end lipophilic (a single cholesteryl or a pair of dodecyl residues) and phosphate backbone modifications were synthesized. The influence of the combination of used lipophilic groups with phosphate modifications of various natures and different positions on the efficiency of cell penetration was evaluated. The obtained results indicate that even a couple of phosphate modifications are able to affect a set of oligonucleotide properties in a complex manner and can remarkably change cellular uptake. These data clearly show that the strategy of using different patterns of modification combinations has great potential for the rational design of oligonucleotide structures with desired predefined properties.


Assuntos
Oligonucleotídeos , Fosfatos , Transporte Biológico , RNA
11.
RNA ; 27(10): 1257-1264, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34257148

RESUMO

The widespread ykkC-I riboswitch class exemplifies divergent riboswitch evolution. To analyze how natural selection has diversified its versatile RNA fold, we determined the X-ray crystal structure of the Burkholderia sp. TJI49 ykkC-I subtype-1 (Guanidine-I) riboswitch aptamer domain. Differing from the previously reported structures of orthologs from Dickeya dadantii and Sulfobacillus acidophilus, our Burkholderia structure reveals a chelated K+ ion adjacent to two Mg2+ ions in the guanidine-binding pocket. Thermal melting analysis shows that K+ chelation, which induces localized conformational changes in the binding pocket, improves guanidinium-RNA interactions. Analysis of ribosome structures suggests that the [K+(Mg2+)2] ion triad is uncommon. It is, however, reminiscent of metal ion clusters found in the active sites of ribozymes and DNA polymerases. Previous structural characterization of ykkC-I subtype-2 RNAs, which bind the effector ligands ppGpp and PRPP, indicate that in those paralogs, an adenine responsible for K+ chelation in the Burkholderia Guanidine-I riboswitch is replaced by a pyrimidine. This mutation results in a water molecule and Mg2+ ion binding in place of the K+ ion. Thus, our structural analysis demonstrates how ion and solvent chelation tune divergent ligand specificity and affinity among ykkC-I riboswitches.


Assuntos
Burkholderia/genética , Quelantes/química , Guanidinas/química , Magnésio/química , Potássio/química , Riboswitch , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Pareamento de Bases , Sequência de Bases , Evolução Biológica , Burkholderia/metabolismo , Quelantes/metabolismo , Clostridiales/genética , Clostridiales/metabolismo , Cristalografia por Raios X , Dickeya/genética , Dickeya/metabolismo , Guanidinas/metabolismo , Magnésio/metabolismo , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Potássio/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Água/química , Água/metabolismo
12.
Invest New Drugs ; 41(5): 688-698, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37556022

RESUMO

Medulloblastoma (MB) is the most common pediatric brain tumor. The therapy frequently causes serious side effects, and new selective therapies are needed. MB expresses hyper sialylation, a possible target for selective therapy. The cytotoxic efficacy of a poly guanidine conjugate (GuaDex) incubated with medulloblastoma cell cultures (DAOY and MB-LU-181) was investigated. The cells were incubated with 0.05-8 µM GuaDex from 15 min to 72 h. A fluorometric cytotoxicity assay (FMCA) measured the cytotoxicity. Labeled GuaDex was used to study tumor cell interaction. FITC-label Sambucus nigra confirmed high expression of sialic acid (Sia). Immunofluorescence microscopy was used to visualize the cell F-actin and microtubules. The cell interactions were studied by confocal and fluorescence microscopy. Annexin-V assay was used to detect apoptosis. Cell cycle analysis was done by DNA content determination. A wound-healing migration assay determined the effects on the migratory ability of DAOY cells after GuaDex treatment. IC50 for GuaDex was 223.4 -281.1 nM. FMCA showed potent growth inhibition on DAOY and MB-LU-181 cells at 5 uM GuaDex after 4 h of incubation. GuaDex treatment induced G2/M phase cell cycle arrest. S. nigra FITC-label lectin confirmed high expression of Sia on DAOY medulloblastoma cells. The GuaDex treatment polymerized the cytoskeleton (actin filaments and microtubules) and bound to DNA, inducing condensation. The Annexin V assay results were negative. Cell migration was inhibited at 0.5 µM GuaDex concentration after 24 h of incubation. GuaDex showed potent cytotoxicity and invasion-inhibitory effects on medulloblastoma cells at low micromolar concentrations. GuaDex efficacy was significant and warrants further studies.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Guanidina/farmacologia , Guanidina/uso terapêutico , Fluoresceína-5-Isotiocianato/farmacologia , Fluoresceína-5-Isotiocianato/uso terapêutico , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , DNA
13.
Chemistry ; 29(32): e202300514, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36924243

RESUMO

Copper amine oxidases are enzymes that exhibit in their active site a mononuclear copper complex and a 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor; in the oxidative half of the catalytic cycle, the enzymes regulate their activity by a temperature-dependent electron transfer equilibrium between the CuII complex with the reduced, aminoquinol form of the cofactor and the reactive CuI complex with the corresponding oxidized, semiquinone form of the cofactor. Here, we report the first mononuclear copper complex with redox-active ligands showing quantitative, reversible electromerism between a CuII eletromer with reduced, neutral ligand and a CuI electromer with an oxidized, radical monocationic ligand. The CuII form, being exclusively present at low temperature, exhibits a lower enthalpy (like the enzymes), but the CuI complex exhibits a higher entropy and is exclusively present at room temperature in CH2 Cl2 solution. Further analysis, based on six different copper complexes, discloses a large solvent effect on electromerism.


Assuntos
Cobre , Elétrons , Cobre/química , Ligantes , Transporte de Elétrons , Oxirredução
14.
Chemistry ; 29(64): e202302418, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37606189

RESUMO

Using unconventional synthesis protocols, two redox-active triguanidine units are connected by a dithiolate bridge, aligning the two redox-active units in close proximity. The reduced, neutral and the tetracationic redox states with two dicationic triguanidine units are isolated and fully characterized. Then, the dicationic redox states are prepared by mixing the neutral and tetracationic molecules. At low temperatures, the dications are diamagnetic (singlet ground state) with two different triguanidine units (neutral and dicationic). At room temperature, the triplet state with two radical monocationic triguanidine units is populated. At low temperature (210 K), chemical exchange by intramolecular through-space electron-transfer between the two triguanidine units is evidenced by EXSY NMR spectroscopy. Intramolecular through-space transfer of two electrons from the neutral to the dicationic triguanidine unit is accompanied by migration of the counterions in opposite direction. The rate of double-electron transfer critically depends on the bridge. No electron-transfer is measured in the absence of a bridge (in a mixture of one dicationic and one neutral triguanidine), and relatively slow electron transfer if the bridge does not allow the two triguanidine units to approach each other close enough. The results give detailed, quantitative insight into the factors that influence intramolecular through-space double-electron-transfer processes.

15.
Chemphyschem ; 24(2): e202200640, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36205532

RESUMO

Our recent work on the E-Z isomerization reaction of guanidine using ab initio chemical dynamics simulations [Rashmi et al., Regul. Chaotic Dyn. 2021, 26, 119] emphasized the role of second-order saddle (SOS) in the isomerization reaction; however, we could not unequivocally establish the non-statistical nature of the dynamics followed in the reaction. In the present study, we performed thousands of on-the-fly trajectories using forces computed at the MNDO level to investigate the influence of second-order saddle in the E-Z isomerization reaction of guanidine and the role of intramolecular vibrational energy redistribution (IVR) on the reaction dynamics. The simulations reveal that while majority of the trajectories follow the traditional transition state pathways, 15 % of the trajectories follow the SOS path. The dynamics was found to be highly non-statistical with the survival probabilities of the reactants showing large deviations from those obtained within the RRKM assumptions. In addition, a detailed analysis of the dynamics using time-dependent frequencies and the frequency ratio spaces reveal the existence of multiple resonance junctions that indicate the existence of regular dynamics and long-lived quasi-periodic trajectories in the phase space associated with non-RRKM behavior.


Assuntos
Vibração , Guanidina , Isomerismo , Físico-Química
16.
Chem Rec ; 23(7): e202200304, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36762723

RESUMO

In this account, we further describe our already developed N-sp2 hybrid guanidinium as an efficient phase-transfer catalyst and ion pair catalysis based on N-sp2 hybrid pentanidinium and its application in some new reactions. The sp3 hybrid quaternary ammonium salt has a tetrahedral structure, which means that three sides of it can be effectively steric, allowing the remaining side to be close to the substrate. However, the sp2 hybrid ammonium salt allows the substrate to form ion pairs from both directions respectively, so it is a greater challenge to control the stereoselectivity of the reaction. Van der Waals forces, such as hydrogen bonds and π - π ${\pi -\pi }$ interactions, have been used to make electrophiles approach from a certain direction, leading to a higher enantioselectivity. Based on the above idea, we designed an N-sp2 hybrid phase-transfer catalyst, pentanidinium. Pentanidinium has five conjugated nitrogen atoms, one of which has a formal positive charge, which is necessary for it to become an ion pair catalyst. We have confirmed that pentanidinium can catalyze α-hydroxylation of 3-substituted-2-oxindoles, Michael addition of 3-alkyloxindoles with vinyl sulfone, and alkylation reactions of sulfenate anions and dihydrocoumarins, desymmetrization of pro-chiral sulfinate to afford enantioenriched sulfinate esters. Pentanidinium with side chain structure changes can also be catalyzed efficiently with enantioconvergent halogenophilic nucleophilic substitution, including azidation and thioesterification. In the reaction catalyzed by pentanidinium, it always attracts us with the advantages of low catalytic load and good enantioselectivity.


Assuntos
Compostos de Amônio , Ésteres , Estereoisomerismo , Catálise , Alquilação , Ésteres/química
17.
RNA Biol ; 20(1): 10-19, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548032

RESUMO

Riboswitches are regulatory RNAs that specifically bind a small molecule or ion. Like metabolite-binding proteins, riboswitches can evolve new ligand specificities, and some examples of this phenomenon have been validated. As part of work based on comparative genomics to discover novel riboswitches, we encountered a candidate riboswitch with striking similarities to the recently identified guanidine-IV riboswitch. This candidate riboswitch, the Gd4v motif, is predicted in four distinct bacterial phyla, thus almost as widespread as the guanidine-IV riboswitch. Bioinformatic and experimental analysis suggest that the Gd4v motif is a riboswitch that binds a ligand other than guanidine. It is found associated with gene classes that differ from genes regulated by confirmed guanidine riboswitches. In inline-probing assays, we showed that free guanidine binds only weakly to one of the tested sequences of the variant. Further tested compounds did not show binding, attenuation of transcription termination, or activation of a genetic reporter construct. We characterized an N-acetyltransferase frequently associated with the Gd4v motif and compared its substrate preference to an N-acetyltransferase that occurs under control of guanidine-IV riboswitches. The substrates of this Gd4v-motif-associated enzyme did not show activity for Gd4v RNA binding or transcription termination. Hence, the ligand of the candidate riboswitch motif remains unidentified. The variant RNA motif is predominantly found in gut metagenome sequences, hinting at a ligand that is highly relevant in this environment. This finding is a first step to determining the identity of this unknown ligand, and understanding how guanidine-IV-riboswitch-like structures can evolve to bind different ligands.


Assuntos
Riboswitch , Guanidina/química , Guanidina/metabolismo , Conformação de Ácido Nucleico , Ligantes , Guanidinas/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo
18.
J Fluoresc ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747598

RESUMO

For the synthesis of heteroatom-doped carbon nanostructures, biomass is considered as a promising option. Utilizing the microwave-assisted method, we have demonstrated an easy and straightforward one-pot synthesis of nitrogen-doped luminous carbon dots (NCDs) from jamun seed powder and guanidine hydrochloride. Structural and morphological analyses were performed using various analytical techniques. Under ultraviolet light of 315 nm, NCDs emit a bright blue fluorescence, possess a high quantum yield of 26.90%, exhibit strong water dispersion, and demonstrated excellent stability. The average particle size of the NCDs was found to be 7.5±1.2 nm, with a spherical shape. NCDs exhibit high selectivity and sensitivity in fluorescence quenching when exposed to Mn7+ ions. Over a concentration range of 2-30 µM, the fluorescence response (F0/F) shows a linear relationship with Mn7+ concentration, with a detection limit of 0.81 µM. The probe exhibited negligible interference and proved to be effective in accurately quantifying Mn7+ in spiked real-water samples.

19.
Anal Bioanal Chem ; 415(10): 1953-1965, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36849617

RESUMO

Persistent and mobile organic compounds (PMOCs) are highly soluble in water, thereby posing a threat to water resource quality. Currently, there are no methods that can accurately quantify guanidine derivative PMOCs, other than 1,3-diphenylguanidine (DPG) and cyanoguanidine (CG), in aqueous media. In this study, we developed a quantitation method that combines solid-phase extraction and liquid chromatography (LC)-tandem mass spectrometry to detect seven guanidine derivatives in aquatic environments and applied it to environmental water samples. Five LC columns were examined, and among them, a hydrophilic interaction liquid chromatography column was chosen owing to its suitable instrument detection limit and retention factor. Method precision was assessed using seven replicate analyses of river water. The corresponding analyte recoveries ranged from 73 to 137% (coefficient of variation = 2.1-5.8%). DPG and CG were detected in ultrapure water samples at levels up to 0.69 and 150 ng L-1, respectively; DPG and CG levels up to 44 and 2600 ng L-1, respectively, were detected in lake water, river water, sewage effluent, and tap water sampled in Western Japan. This is the first reported detection of DPG in the surface water of Japan, revealing that DPG and CG are ubiquitous compounds in aquatic environments. Moreover, this is the first study to detect 1-(o-tolyl)biguanide and N,N'''-1,6-hexanediylbis(N'-cyanoguanidine) in water. This study provides a foundation for further research on the distribution, fate, and emission source of these pollutants, which is critical to maintain high water quality and to determine regulatory limits for these pollutants.

20.
Environ Res ; 231(Pt 2): 116172, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201704

RESUMO

The current study aimed to investigate the toxicity of positively charged polyhexamethylene guanidine (PHMG) polymer and its complexation with different anionic natural polymers such as k-carrageenan (kCG), chondroitin sulfate (CS), sodium alginate (Alg.Na), polystyrene sulfonate sodium (PSS.Na) and hydrolyzed pectin (HP). The physicochemical properties of the synthesized PHMG and its combination with anionic polyelectrolyte complexes (PECs) namely PHMG:PECs were characterized using zeta potential, XPS, FTIR, and TG analysis. Furthermore, cytotoxic behavior of the PHMG and PHMG:PECs, respectively, were evaluated using human liver cancer cell line (HepG2). The study results revealed that the PHMG alone had slightly higher cytotoxicity to the HepG2 cells than the prepared polyelectrolyte complexes such as PHMG:PECs. The PHMG:PECs showed a significant reduction of cytotoxicity to the HepG2 cells than the pristine PHMG alone. A reduction of PHMG toxicity was observed may be due to the facile formation of complexation between the positively charged PHMG and negatively charged anionic natural polymers such as kCG, CS, Alg. Na, PSS.Na and HP, respectively, via charge balance or neutralization. The experimental results indicate that the suggested method might significantly lower PHMG toxicity while improving biocompatibility.


Assuntos
Desinfetantes , Humanos , Guanidina , Polieletrólitos/toxicidade , Guanidinas/toxicidade , Guanidinas/química , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA