Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 989
Filtrar
1.
Chemistry ; 30(8): e202303415, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37994293

RESUMO

Hybrid metal halides (HMHs) based phase transition materials have received widespread attention due to their excellent performance and potential applications in energy harvesting, optoelectronics, ferroics, and actuators. Nevertheless, effectively regulating the properties of phase transitions is still a thorny problem. In this work, two chiral lead-free HMHs (R-3FP)2 SbCl5 (1; 3FP=3-fluoropyrrolidinium) and (R-3FP)2 SbBr5 (2) were synthesized. By replacing the halide ions in the inorganic skeleton, the phase transition temperature of 2 changes with an increase of about 20 K, compared with 1. Meanwhile, both compounds display reversible dielectric switching properties. Through crystal structure analysis and Hirshfeld surface analysis, their phase transitions are ascribed to the disorder of the cations and deformation of the inorganic chains.

2.
Mol Divers ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210216

RESUMO

The spiro-oxindole derivatives were synthesized via a 1,3-dipolar cycloaddition approach and characterized by FT-IR, 1H, 13C NMR and mass spectral techniques. The single crystal XRD of 6d further validates the formation of compounds. DFT calculations indicated the reactive nature of compound 6d. Docking studies with 5LAW disclosed the minimum binding energy of - 10.83 kcal/mol for 6d. Furthermore, safe oral bioavailability was ensured by the physicochemical, pharmacokinetic, and toxicity predictions. The anticancer analysis of synthesized compounds showed substantial activity against A549 cells, notably with an IC50 value of 8.13 ± 0.66 µM for 6d compared to standard doxorubicin. 6d was also evaluated for cytotoxicity against L929 healthy cells and A549, showing selectivity towards A549 than healthy cells. AO/EB staining method showed early apoptotic cellular death in the A549 cell line in a dose-dependent manner.

3.
Molecules ; 29(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38930825

RESUMO

The current article reports the investigation of three new Ni(II) complexes with ONS-donor dithiocarbazate ligands: [Ni(L1)PPh3] (1), [Ni(L2)PPh3] (2), and [Ni(L2)Py] (3). Single-crystal X-ray analyses revealed mononuclear complexes with a distorted square planar geometry and the metal centers coordinated with a doubly deprotonated dithiocarbazate ligand and coligand pyridine or triphenylphosphine. The non-covalent interactions were investigated by the Hirshfeld surface and the results revealed that the strongest interactions were π⋅⋅⋅π stacking interactions and non-classical hydrogen bonds C-H···H and C-H···N. Physicochemical and spectroscopic methods indicate the same structures in the solid state and solution. The toxicity effects of the free ligands and Ni(II) complexes were tested on the human breast cancer cell line MCF-7 and non-malignant breast epithelial cell line MCF-10A. The half-maximal inhibitory concentration (IC50) values, indicating that the compounds were potent in inhibiting cell growth, were obtained for both cell lines at three distinct time points. While inhibitory effects were evident in both malignant and non-malignant cells, all three complexes demonstrated lower IC50 values for malignant breast cell lines than their non-malignant counterparts, suggesting a stronger impact on cancerous cell lines. Furthermore, molecular docking studies were performed showing the complex (2) as a promising candidate for further therapeutic exploration.


Assuntos
Antineoplásicos , Complexos de Coordenação , Simulação de Acoplamento Molecular , Níquel , Humanos , Níquel/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ligantes , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Linhagem Celular Tumoral , Cristalografia por Raios X , Células MCF-7 , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos
4.
Molecules ; 29(19)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39407629

RESUMO

A novel (E)-1-(4-methylbenzylidene)-4-(3-isopropylphenyl) thiosemicarbazone was synthesized in a one-pot four-step synthetic route. Fourier transform infrared spectroscopy (FTIR), 1H and 13C nuclear magnetic resonances (NMR), single-crystal X-ray diffraction, and UV-visible absorption spectroscopy were utilized to confirm the successful preparation of the title compound. Single-crystal data indicated that the intramolecular hydrogen bond N(3)-H(3)···N(1) and intermolecular hydrogen bond N(2)-H(2)···S(1) (1 - x, 1 - y, 1 - z) existed in the crystal structure and packing of the title compound. Besides the covalent interaction, the non-covalent weak intramolecular hydrogen bond N(3)-H(3)···N(1) discussed by atoms in molecules (AIM) theory also functioned in maintaining the title compound's crystal structure. The strong intermolecular hydrogen bond N(2)-H(2)···S(1) (1 - x, 1 - y, 1 - z) discussed by Hirshfeld surface analysis played a major role in maintaining the title compound's crystal packing. The local maximum and minimum electrostatic potential of the title compound was predicted by electrostatic potential (ESP) analysis. The UV-visible spectra and HOMO-LUMO analysis revealed that the title compound has a low ΔEHOMO-LUMO energy gap (3.86 eV), which implied its high chemical reactivity due to the easy occurrence of charge transfer interactions within the molecule. Molecular docking and in vitro antifungal assays evidenced that its antifungal activity is comparable to the reported pyrimethanil, indicating its usage as a potential candidate for future antifungal drugs.

5.
Molecules ; 29(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39339432

RESUMO

Paracetamol is an important analgesic and antipyretic drug showing poor tabletability. Among the various approaches used to improve this property, understanding the forces that govern the crystal packing is revealed to be crucial. We prepared three stable compounds: (par)2∙(nap) (1), (par)∙(quin) (2), and (par)∙(acr) (3) (nap-naphthalene, quin-quinoline, acr-acridine) being cocrystals or solvate. The structural studies showed that all the reported compounds are composed of alternately arranged layers of paracetamol and coformer. Several supramolecular motifs in the paracetamol layer were identified: R44(22) in (1); R64(20) and R22(8) in (2); and R22(8), R42(12), and R44(26) rings in (3). The stability of the crystal network was studied by interactions analysis performed by Hirshfeld surface and fingerprint approaches and the energy between the closest units in the crystal network was calculated. It showed that the strongest interactions were found between blocks connected by N-H⋯O=C and O-H⋯O/N hydrogen bonds due to an important coulombic factor. The dispersive energy becomes important for tail-to-tail (and head-to-tail) arranged paracetamol units, and it prevails in the case of stacking interactions between coformer molecules. The importance of dispersive forces increases with the size of the aromatic system of the coformer. XAS studies confirmed the successful preparation of compounds and provided some details about electron structure.

6.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474559

RESUMO

A new bis-Schiff base (L) Ca(II) complex, CaL, was synthesized by the reaction of calcium perchlorate tetrahydrate, 1,3-diamino-2-hydroxypropane, and 2-formyl phenoxyacetic acid in an ethanol-water (v:v = 2:1) solution and characterized by IR, UV-vis, TG-DTA, and X-ray single crystal diffraction analysis. The structural analysis indicates that the Ca(II) complex crystallizes in the monoclinic system, space group P121/n1, and the Ca(II) ions are six-coordinated with four O atoms (O8, O9, O11, O12, or O1, O2, O4, O6) and two N atoms (N1, N2, or N3, N4) of one bis-Schiff base ligand. The Ca(II) complex forms a tetramer by intermolecular O-H…O hydrogen bonds. The tetramer units further form a three-dimensional network structure by π-π stacking interactions of benzene rings. The Hirschfeld surface of the Ca(II) complex shows that the H…H contacts represent the largest contribution (41.6%) to the Hirschfeld surface, followed by O…H/H…O and C…H/H…C contacts with contributions of 35.1% and 18.1%, respectively. To understand the electronic structure of the Ca(II) complex, the DFT calculations were carried out. The photocatalytic CO2 reduction test of the Ca(II) complex exhibited a yield of 47.9 µmol/g (CO) and a CO selectivity of 99.3% after six hours.

7.
Molecules ; 29(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792035

RESUMO

The crystal structure of 4-methylcatechol (4MEC) has, to date, never been solved, despite its very simple chemical formula C7O2H8 and the many possible applications envisaged for this molecule. In this work, this gap is filled and the structure of 4MEC is obtained by combining X-ray powder diffraction and first principle calculations to carefully locate hydrogen atoms. Two molecules are present in the asymmetric unit. Hirshfeld analysis confirmed the reliability of the solved structure, since the two molecules show rather different environments and H-bond interactions of different directionality and strength. The packing is characterised by a peculiar hydrogen bond network with hydroxyl nests formed by two adjacent octagonal frameworks. It is noteworthy that the observed short contacts suggest strong inter-molecular interactions, further confirmed by strong inter-crystalline aggregation observed by microscopic images, indicating the growth, in many crystallization attempts, of single aggregates taller than half a centimetre and, often, with spherical shapes. These peculiarities are induced by the presence of methyl group in 4MEC, since the parent compound catechol, despite its chemical similarity, shows a standard layered packing alternating hydrophobic and polar layers. Finally, the complexity and peculiarity of the packing and crystal growth features explain why a single crystal could not be obtained for a standard structural analysis.

8.
Chembiochem ; 24(20): e202300331, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37548339

RESUMO

Three dinuclear coordination complexes generated from 1-n-butyl-2-((5-methyl-1H-pyrazole-3-yl)methyl)-1H-benzimidazole (L), have been synthesized and characterized spectroscopically and structurally by single crystal X-ray diffraction analysis. Reaction with iron(II) chloride and then copper(II) nitrate led to a co-crystal containing 78 % of [Cu(NO3 )(µ-Cl)(L')]2 (C1 ) and 22 % of [Cu(NO3 )(µ-NO3 )(L')]2 (C2 ), where L was oxidized to a new ligand L' . A mechanism is provided. Reaction with copper chloride led to the dinuclear complex [Cu(Cl)(µ-Cl)(L)]2 (C3 ). The presence of N-H⋅⋅⋅O and C-H⋅⋅⋅O intermolecular interactions in the crystal structure of C1 and C2 , and C-H⋅⋅⋅N and C-H⋅⋅⋅Cl hydrogen bonding in the crystal structure of C3 led to supramolecular structures that were confirmed by Hirshfeld surface analysis. The ligands and their complexes were tested for free radical scavenging activity and ferric reducing antioxidant power. The complex C1 /C2 shows remarkable antioxidant activities as compared to the ligand L and reference compounds.


Assuntos
Complexos de Coordenação , Cobre , Cobre/química , Antioxidantes , Ligantes , Cloretos , Complexos de Coordenação/química , Benzimidazóis , Cristalografia por Raios X
9.
J Fluoresc ; 33(3): 1077-1087, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36571646

RESUMO

Novel materials of (E)-N'-(4-chlorobenzylidene)-4-hydroxybenzohydrazide (CBHB) and (E)-N'-(4-(diethylamino) benzylidene)-4-hydroxybenzohydrazide (DEABHB) were synthesized by condensation reaction process and solvent evaporation method was employed to grow CBHB and DEABHB single crystals at room temperature. Lattice parameters of CBHB and DEABHB compounds were recorded using single crystal X-ray diffraction method. The presence of functional groups of the synthesized CBHB and DEABHB compounds were confirmed by Fourier transform infrared and Fourier transform Raman spectral analyses. Various intermolecular interactions were studied using Hirshfeld surface analysis. Thermal stability of the hydrazone Schiff base compounds CBHB and DEABHB were studied by thermogravimetric and differential thermal analyses. Third order nonlinear optical properties of CBHB and DEABHB were measured using open aperature Z scan technique. Two photon absorption coefficient and optical limiting properties of the crystals were reported from the Z scan studies.

10.
Mol Divers ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36656464

RESUMO

Five new nickel(II) complexes have been synthesised with an NNO donor tridentate aroylhydrazone (HFPB) employing the chloride, nitrate, acetate and perchlorate salts, and all the complexes are physiochemically characterized. Elemental analyses suggested stoichiometries as Ni(FPB)(NO3)]·2H2O (1), [Ni(HFPB)(FPB)]Cl (2), [Ni(FPB)(OAc)(DMF)] (3), [Ni(FPB)(ClO4)]·DMF (4), [Ni(FPB)2] (5). Aroylhydrazone is found coordinating in deprotonated iminolate form in four of the complexes (1, 3, 4, 5) however in one case (complex 2), two aroylhydrazone moieties are binding to the metal centre in the neutral and anionic forms. The structure of the bisligated complex 5, found using single crystal X ray diffraction studies confirmed that the metal has a distorted octahedral N4O2 coordination environment, with each of the two deprotonated ligands coordinating through the pyridine nitrogen, imino-hydrazone nitrogen and the enolate oxygen of the hydrazone moiety. To compare and study, the electronic interactions and stabilities of the metal complexes, various quantum chemical parameters were calculated. Moreover, Hirshfeld surface analysis was carried out for complex 5 to determine the intermolecular interactions. The biophysical attributes of the ligand and complex 5 have been investigated with CT-DNA and experimental outcomes show that the Ni(II) complex exhibited higher binding propensity towards DNA as compared to ligand. Furthermore, to specifically understand the type of interactions of the metal complexes with DNA, molecular docking studies were effectuated. In addition, the electronic and related reactivity behaviors of the ligand and five Ni(II) complexes were studied using B3LYP/6-31 + + G**/LANL2DZ level. As expected, the obtained results from Natural Bond Orbital (NBO) computations displayed that the resonance interactions (n → π* and π → π*) play a determinant role in evaluating the chemical attributes of the reported compounds.

11.
Polyhedron ; 233: 116304, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36710999

RESUMO

A new Zn(II) coordination polymer based on o-phthalato (Phth) and 2-aminopyridine (2-Ampy) viz. {[Zn(2-Ampy)2(Phth)]∙(H2O)]}n (1) has been synthesized at room temperature and characterized by elemental analyses, electronic spectroscopy, FT-IR spectroscopy, thermal analysis (TGA/DSC), powder X-ray diffraction (PXRD) and single crystal X-ray diffraction. The basic trimeric units of 1 form a polymeric chain by N-H⋯O and π⋯π interactions. These polymeric chains interconnect through various non-covalent interactions in two perpendicular directions to ultimately give rise to a 3D architecture of 1. The interesting non-covalent interactions in 1, contributing to its stability in the solid state are studied by Hirshfeld surface analysis and other different theoretical tools. Molecular docking study of 1 is performed against six different proteins of SARS-CoV-2. The drug potential of the synthesized compound is evaluated by ADMET calculations.

12.
J Mol Struct ; 1278: 134857, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36619309

RESUMO

In this study, polynuclear Cu(II) complex (1), Mn(II) and Mn(III) complex (2) have been prepared with a Schiff base ligand derived from 2-Hydroxy-3-methoxybenzaldehyde with 2-amino-2-methyl-1-propanol. The compounds were characterized by elemental analysis, FT-IR, and UV-Vis spectroscopy. The molecular and crystal structures of (1-2) were determined by the single-crystal x-ray diffraction technique. It turned out that Cu(II) complex (1) forms an S4 -symmetrical tetrameric cage structure, with square-planar coordinated Cu and bridging O atoms at the vertexes of the approximate cube. In the crystal structure of 1, there are large channels along the c-axis, between the tetramers; the solvent- DMSO molecules, occupies these channels. In turn, the complex (2) creates a centrosymmetric trimeric structure, with three octahedrally coordinated Mn ions bridged by O atoms from ligand molecules and acetate ions. The electrochemical behavior studies of the complexes in DMSO displayed the electronic effects of the groups on the redox potential. The redox behavior of Schiff base (1) and (2) complexes included quasi -reversible and irreversible voltammograms, respectively. Intermolecular interactions in the solid states were studied by Hirshfeld surface analysis. These studies provide a comprehensive description of these inter-contact exchanges using an attractive graphical representation using Hirshfeld surfaces and fingerprint plots, along with enrichment ratios. Furthermore, assessment of the inhibitory effect against coronavirus (main protease SARS-CoV-2) was performed by a molecular docking study for both complexes (1 and 2). Both complexes showed a good affinity for CoV-2 for PDB protein ID: 6M03 and 6Y2F.

13.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446308

RESUMO

A supramolecular self-assembly of semiconducting polymers and small molecules plays an important role in charge transportation, performance, and lifetime of an optoelectronic device. Tremendous efforts have been put into the strategies to self-organize these materials. In this regard, here, we present the self-organization of terthiophene and its methyl alcohol derivative with 4,4'-bipyridine (44BiPy). An unexpected 2D layered organization of 5,5″-dimethyl-2,2':5',2″-terthiophene (DM3T) and 44BiPy was obtained and analyzed. Single-crystal X-ray diffraction analysis revealed that DM3T and 44BiPy consist of stacked, almost independent, infinite 2D layers while held together by weak hydrogen bonds. In addition to this peculiar supramolecular arrangement of these compounds, the investigation of their photophysical properties showed strong fluorescence quenching of DM3T by 44BiPy in the solid state, suggesting an efficient charge transfer. On the other hand, the methyl alcohol derivative of terthiophene, DM3TMeOH, organized in a closed cyclic motif with 44BiPy via hydrogen bonds.


Assuntos
Metanol , Tiofenos , Ligação de Hidrogênio , Cristalografia por Raios X
14.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675059

RESUMO

The nature of intra- and intermolecular non-covalent interactions was studied in four naphthalene derivatives commonly referred to as "proton sponges". Special attention was paid to an intramolecular hydrogen bond present in the protonated form of the compounds. The unsubstituted "proton sponge" served as a reference structure to study the substituent influence on the hydrogen bond (HB) properties. We selected three compounds substituted by methoxy, amino, and nitro groups. The presence of the substituents either retained the parent symmetry or rendered the compounds asymmetric. In order to reveal the non-covalent interaction properties, the Hirshfeld surface (HS) was computed for the crystal structures of the studied compounds. Next, quantum-chemical simulations were performed in vacuo and in the crystalline phase. Car-Parrinello molecular dynamics (CPMD), Path Integral Molecular Dynamics (PIMD), and metadynamics were employed to investigate the time-evolution changes of metric parameters and free energy profile in both phases. Additionally, for selected snapshots obtained from the CPMD trajectories, non-covalent interactions and electronic structure were studied. Quantum theory of atoms in molecules (QTAIM) and the Density Overlap Regions Indicator (DORI) were applied for this purpose. It was found based on Hirshfeld surfaces that, besides intramolecular hydrogen bonds, other non-covalent interactions are present and have a strong impact on the crystal structure organization. The CPMD results obtained in both phases showed frequent proton transfer phenomena. The proton was strongly delocalized in the applied time-scale and temperature, especially in the PIMD framework. The use of metadynamics allowed for tracing the free energy profiles and confirming that the hydrogen bonds present in "proton sponges" are Low-Barrier Hydrogen Bonds (LBHBs). The electronic and topological analysis quantitatively described the temperature dependence and time-evolution changes of the electronic structure. The covalency of the hydrogen bonds was estimated based on QTAIM analysis. It was found that strong hydrogen bonds show greater covalency, which is additionally determined by the proton position in the hydrogen bridge.


Assuntos
Automóveis , Prótons , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Entropia
15.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108369

RESUMO

In recent years, fluorescent compounds that emit efficiently in the solid state have become particularly interesting, especially those that are easily prepared and inexpensive. Hence, exploring the photophysical properties of stilbene derivatives, supported by a detailed analysis of molecular packing obtained from single-crystal X-ray diffraction data, is a relevant area of research. A complete understanding of the interactions to determine the molecular packing in the crystal lattice and their effect on the material's physicochemical properties is essential to tune various properties effectively. In the present study, we examined a series of methoxy-trans-stilbene analogs with substitution pattern-dependent fluorescence lifetimes between 0.82 and 3.46 ns and a moderate-to-high fluorescence quantum yield of 0.07-0.69. The relationships between the solid-state fluorescence properties and the structure of studied compounds based on X-ray analysis were investigated. As a result, the QSPR model was developed using PLSR (Partial Least Squares Regression). Decomposition of the Hirshfeld surfaces (calculated based on the arrangement of molecules in the crystal lattice) revealed the various types of weak intermolecular interactions that occurred in the crystal lattice. The obtained data, in combination with global reactivity descriptors calculated using HOMO and LUMO energy values, were used as explanatory variables. The developed model was characterized by good validation metrics (RMSECAL = 0.017, RMSECV = 0.029, R2CAL = 0.989, and R2CV = 0.968) and indicated that the solid-state fluorescence quantum yield of methoxy-trans-stilbene derivatives was mainly dependent on weak intermolecular C…C contacts corresponding to π-π stacking and C…O/O…C interactions. To a lesser extent and inversely proportional, the fluorescence quantum yield was affected by the interactions of the type O…H/H…O and H…H and the electrophilicity of the molecule.

16.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511201

RESUMO

The current research describes the synthesis and characterization of 2-acetylpyridine N(4)-cyclohexyl-thiosemicarbazone ligand (HL) and their two metal complexes, [Au(L)Cl][AuCl2] (1) and [Pd(L)Cl]·DMF (2). The molecular structures of the compounds were determined by physicochemical and spectroscopic methods. Single crystal X-ray diffraction was employed in the structural elucidation of the new complexes. The complexes showed a square planar geometry to the metal center Au(III) and Pd(II), coordinated with a thiosemicarbazone molecule by the NNS-donor system and a chloride ion. Complex (1) also shows the [AuCl2]- counter-ion in the asymmetric unit, and complex (2) has one DMF solvent molecule. These molecules play a key role in the formation of supramolecular structures due to different interactions. Noncovalent interactions were investigated through the 3D Hirshfeld surface by the dnorm function and the 2D fingerprint plots. The biological activity of the compounds was evaluated in vitro against the human glioma U251 cells. The cytotoxicity results revealed great antitumor activity in complex (1) compared with complex (2) and the free ligand. Molecular docking simulations were used to predict interactions and properties with selected proteins and DNA of the synthesized compounds.


Assuntos
Antineoplásicos , Complexos de Coordenação , Tiossemicarbazonas , Humanos , Simulação de Acoplamento Molecular , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Paládio/farmacologia , Paládio/química , Ouro/química , Ligantes , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Estrutura Molecular , Cristalografia por Raios X , Antineoplásicos/química
17.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982543

RESUMO

Through the salification reaction of carboxylation, successful attachment of the long-chain alkanoic acid to the two ends of 1,3-propanediamine was realized, which enabled the doubling of the long-chain alkanoic acid carbon chain. Hydrous 1,3-propanediamine dihexadecanoate (abbreviated as 3C16) and 1,3-propanediamine diheptadecanoate (abbreviated as 3C17) were synthesized afterward, and their crystal structures were characterized by the X-ray single crystal diffraction technique. By analyzing their molecular and crystal structure, their composition, spatial structure, and coordination mode were determined. Two water molecules played important roles in stabilizing the framework of both compounds. Hirshfeld surface analysis revealed the intermolecular interactions between the two molecules. The 3D energy framework map presented the intermolecular interactions more intuitively and digitally, in which dispersion energy plays a dominant role. DFT calculations were performed to analyze the frontier molecular orbitals (HOMO-LUMO). The energy difference between the HOMO-LUMO is 0.2858 eV and 0.2855 eV for 3C16 and 3C17, respectively. DOS diagrams further confirmed the distribution of the frontier molecular orbitals of 3C16 and 3C17. The charge distributions in the compounds were visualized using a molecular electrostatic potential (ESP) surface. ESP maps indicated that the electrophilic sites are localized around the oxygen atom. The crystallographic data and parameters of quantum chemical calculation in this paper will provide data and theoretical support for the development and application of such materials.


Assuntos
Compostos de Amônio , Sais , Modelos Moleculares , Cristalografia por Raios X
18.
Molecules ; 28(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959737

RESUMO

Coordination polymers (CPs) are an assorted class of coordination complexes that are gaining attention for the safe and sustainable removal of organic dyes from wastewater discharge by either adsorption or photocatalytic degradation. Herein, three different coordination polymers with compositions [Ni(HL)(H2O)2·1.9H2O] (1), [Mn3(HL)(L)(µ3-OH)(H2O)(phen)2·2H2O] (2), and [Cd(HL)4(H2O)]·H2O (3) (H3L = 2-(3,5-dicarboxyphenyl)-6-carboxybenzimidazole; phen = 1,10-phenanthroline) have been synthesized and characterized spectroscopically and by single crystal X-ray diffraction. Single crystal X-ray diffraction results indicated that 1 forms a 2D layer-like framework, while 2 exhibits a 3-connected net with the Schläfli symbol of (44.6), and 3 displays a 3D supramolecular network in which two adjacent 2D layers are held by π···π interactions. All three compounds have been used as photocatalysts to catalyze the photodegradation of antibiotic dinitrozole (DTZ) and rhodamine B (RhB). The photocatalytic results suggested that the Mn-based CP 2 exhibited better photodecomposition of DTZ (91.1%) and RhB (95.0%) than the other two CPs in the time span of 45 min. The observed photocatalytic mechanisms have been addressed using Hirshfeld surface analyses.

19.
Molecules ; 28(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894661

RESUMO

Metal-organic frameworks (MOFs) are peculiar multimodal materials that find photocatalytic applications for the decomposition of lethal molecules present in the wastewater. In this investigation, two new d10-configuration-based MOFs, [Zn2(L)(H2O)(bbi)] (1) and [Cd2(L)(bbi)] (2) (5,5-(1,4-phenylenebis(methyleneoxy)diisophthalic acid (H2L) and 1,1'-(1,4-butanediyl)bis(imidazole) (bbi)), have been synthesized and characterized. The MOF 1 displayed a (4,6)-connected (3.43.52)(32.44.52.66.7) network topology, while 2 had a (3,10)-connected network with a Schläfli symbol of (410.511.622.72)(43)2. These MOFs have been employed as photocatalysts to photodegrade nitrophenolic compounds, especially p-nitrophenol (PNP). The photocatalysis studies reveal that 1 displayed relatively better photocatalytic performance than 2. Further, the photocatalytic efficacy of 1 has been assessed by altering the initial PNP concentration and photocatalyst dosage, which suggest that at 80 ppm PNP concentration and at its 50 mg concentration the MOF 1 can photo-decompose around 90.01% of PNP in 50 min. Further, radical scavenging experiments reveal that holes present over 1 and ·OH radicals collectively catalyze the photodecomposition of PNP. In addition, utilizing density of states (DOS) calculations and Hirshfeld surface analyses, a plausible photocatalysis mechanism for nitrophenol degradation has been postulated.

20.
Molecules ; 28(16)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37630399

RESUMO

3-ferrocenyl-estra-1,3,5 (10)-triene-17-one (2), [Fe(C5H5)(C24H25O3)], crystallizes in the monoclinic space group C2. The cyclopentadienyl (Cp) rings adopt a nearly eclipsed conformation, and the Cp plane is tilted by 87.66° with respect to the substituted phenyl plane. An average Fe-C(Cp) bond length of 2.040(13) Å was determined, similar to the one reported for ferrocene. Hirshfeld surfaces and two-dimensional fingerprint plots were generated to analyze weak intermolecular C-H···π and C-H···O interactions. Density functional theory studies revealed a 1.15 kcal/mol rotational barrier for the C3-O1 single bound. Fluorescence quenching studies and in silico docking studies suggest that human serum albumin forms a complex with 2 via a static mechanism dominated by van der Waals interactions and hydrogen bonding interactions.


Assuntos
Pesquisa , Albumina Sérica Humana , Humanos , Fluorescência , Ligação de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA