Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 746
Filtrar
1.
Plant J ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037746

RESUMO

The advanced model of floral morphogenesis is based largely on data from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), but this process is less well understood in the Triticeae. Here, we investigated a sterile barley (Hordeum vulgare) mutant with malformed floral organs (designated mfo1), of which the paleae, lodicules, and stamens in each floret were all converted into lemma-like organs, and the ovary was abnormally shaped. Combining bulked-segregant analysis, whole-genome resequencing, and TILLING approaches, the mfo1 mutant was attributed to loss-of-function mutations in the MADS-box transcription factor gene HvAGL6, a key regulator in the ABCDE floral morphogenesis model. Through transcriptomic analysis between young inflorescences of wild-type and mfo1 plants, 380 genes were identified as differentially expressed, most of which function in DNA binding, protein dimerization, cell differentiation, or meristem determinacy. Regulatory pathway enrichment showed HvAGL6 associates with transcriptional abundance of many MADS-box genes, including the B-class gene HvMADS4. Mutants with deficiency in HvMADS4 exhibited the conversion of stamens into supernumerary pistils, producing multiple ovaries resembling the completely sterile multiple ovaries 3.h (mov3.h) mutant. These findings demonstrate that the regulatory model of floral morphogenesis is conserved across plant species and provides insights into the interactions between HvAGL6 and other MADS-box regulators.

2.
Plant J ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843114

RESUMO

WHIRLY1 is a chloroplast-nucleus located DNA/RNA-binding protein with functions in development and stress tolerance. By overexpression of HvWHIRLY1 in barley, one line with a 10-fold and two lines with a 50-fold accumulation of the protein were obtained. In these lines, the relative abundance of the nuclear form exceeded that of the chloroplast form. Growth of the plants was shown to be compromised in a WHIRLY1 abundance-dependent manner. Over-accumulation of WHIRLY1 in chloroplasts had neither an evident impact on nucleoid morphology nor on the composition of the photosynthetic apparatus. Nevertheless, oeW1 plants were found to be compromised in the light reactions of photosynthesis as well as in carbon fixation. The reduction in growth and photosynthesis was shown to be accompanied by a decrease in the levels of cytokinins and an increase in the level of jasmonic acid. Gene expression analyses revealed that in nonstress conditions the oeW1 plants had enhanced levels of pathogen response (PR) gene expression indicating activation of constitutive defense. During growth in continuous light of high irradiance PR gene expression increased indicating that under stress conditions oeW1 are capable to further enhance defense.

3.
Plant J ; 118(3): 892-904, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38281119

RESUMO

The indole alkaloid gramine, 3-(dimethylaminomethyl)indole, is a defensive specialized metabolite found in some barley cultivars. In its biosynthetic process, the tryptophan (Trp) side chain is shortened by two carbon atoms to produce 3-(aminomethyl)indole (AMI), which is then methylated by N-methyltransferase (HvNMT) to produce gramine. Although side chain shortening is one of the crucial scaffold formation steps of alkaloids originating from aromatic amino acids, the gene and enzyme involved in the Trp-AMI conversion reactions are unknown. In this study, through RNA-seq analysis, 35 transcripts were shown to correlate with gramine production; among them, an uncharacterized cytochrome P450 (CYP) gene, CYP76M57, and HvNMT were identified as candidate genes for gramine production. Transgenic Arabidopsis thaliana and rice overexpressing CYP and HvNMT accumulate AMI, N-methyl-AMI, and gramine. CYP76M57, heterologously expressed in Pichia pastoris, was able to act on Trp to produce AMI. Furthermore, the amino group nitrogen of Trp was retained during the CYP76M57-catalyzed reaction, indicating that the C2 shortening of Trp proceeds with an unprecedented biosynthetic process, the removal of the carboxyl group and Cα and the rearrangement of the nitrogen atom to Cß. In some gramine-non-accumulating barley cultivars, arginine 104 in CYP76M57 is replaced by threonine, which abolished the catalytic activity of CYP76M57 to convert Trp into AMI. These results uncovered the missing committed enzyme of gramine biosynthesis in barley and contribute to the elucidation of the potential functions of CYPs in plants and undiscovered specialized pathways.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hordeum , Alcaloides Indólicos , Proteínas de Plantas , Triptofano , Hordeum/genética , Hordeum/enzimologia , Hordeum/metabolismo , Triptofano/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alcaloides Indólicos/metabolismo , Plantas Geneticamente Modificadas , Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Oryza/genética , Oryza/enzimologia , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas , Metiltransferases/genética , Metiltransferases/metabolismo
4.
Plant Physiol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630859

RESUMO

Thousands of barley (Hordeum vulgare L.) mutants have been isolated over the last century, and many are stored in gene banks across various countries. In the present work, we developed a pipeline to efficiently identify causal mutations in barley. The pipeline is also efficient for mutations located in centromeric regions. Through bulked-segregant analyses using whole genome sequencing of pooled F2 seedlings, we mapped two mutations and identified a limited number of candidate genes. We applied the pipeline on F2-mapping populations made from xan-j.59 (unknown mutation) and xan-l.82 (previously known). The Xantha-j (xan-j) gene was identified as encoding chlorophyll synthase, which catalyzes the last step in the chlorophyll biosynthetic pathway: the addition of a phytol moiety to the propionate side chain of chlorophyllide. Key amino-acid residues in the active site, including the binding sites of the isoprenoid and chlorophyllide substrates, were analyzed in an AlphaFold2-generated structural model of the barley chlorophyll synthase. Three allelic mutants, xan-j.19, xan-j.59, and xan-j.64 were characterized. While xan-j.19 is a one-base pair deletion and xan-j.59 is a nonsense mutation, xan-j.64 causes an S212F substitution in chlorophyll synthase. Our analyses of xan-j.64 and treatment of growing barley with clomazone, an inhibitor of chloroplastic isoprenoid biosynthesis, suggest that binding of the isoprenoid substrate is a prerequisite for the stable maintenance of chlorophyll synthase in the plastid. We further suggest that chlorophyll synthase is a sensor for coordinating chlorophyll and isoprenoid biosynthesis.

5.
Plant J ; 113(1): 47-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36377282

RESUMO

Blue aleurone of barley is caused by the accumulation of delphinidin-based derivatives. Although these compounds are ideal nutrients for human health, they are undesirable contaminants in malt brewing. Therefore, the ability to add and remove this trait easily would facilitate breeding barley for different purposes. Here we identified a glutathione S-transferase gene (HvGST) that was responsible for the blue aleurone trait in Tibetan qingke barley by performing a genome-wide association study and RNA-sequencing analysis. Gene variation and expression analysis indicated that HvGST also participates in the transport and accumulation of anthocyanin in purple barley. Haplotype and the geographic distribution analyses of HvGST alleles revealed two independent natural variants responsible for the emergence of white aleurone: a 203-bp deletion causing premature termination of translation in qingke barley and two key single nucleotide polymorphisms in the promoter resulting in low transcription in Western barley. This study contributes to a better understanding of mechanisms of colored barley formation, and provides a comprehensive reference for marker-assisted barley breeding.


Assuntos
Antocianinas , Hordeum , Antocianinas/metabolismo , Estudo de Associação Genômica Ampla , Haplótipos , Hordeum/genética , Hordeum/metabolismo , Melhoramento Vegetal
6.
Plant J ; 115(4): 1037-1050, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37163295

RESUMO

Plants produce dimerized phenolic compounds as secondary metabolites. Hordatine A (HA), a dehydrodimer of p-coumaroylagmatine (pCA), is an antifungal compound accumulated at high levels in young barley (Hordeum vulgare) seedlings. The enzyme responsible for the oxidative dimerization of pCA, which is the final step of the hordatine biosynthetic pathway, has not been identified. In this study, we first verified the presence of this enzyme activity in the crude extract of barley seedlings. Because the enzyme activity was not dependent on H2 O2 , the responsible enzyme was not peroxidase, which was previously implicated in HA biosynthesis. The analysis of the dissection lines of wheat (Triticum aestivum) carrying aberrant barley 2H chromosomes detected HA in the wheat lines carrying the distal part of the 2H short arm. This chromosomal region contains two laccase genes (HvLAC1 and HvLAC2) that are highly expressed at the seedling stage and may encode enzymes that oxidize pCA during the formation of HA. Changes in the HvLAC transcript levels coincided with the changes in the HA biosynthesis-related enzyme activities in the crude extract and the HA content in barley seedlings. Moreover, HvLAC genes were heterologously expressed in Nicotiana benthamiana leaves and in bamboo (Phyllostachys nigra) suspension cells and HA biosynthetic activities were detected in the crude extract of transformed N. benthamiana leaves and bamboo suspension cells. The HA formed by the enzymatic reaction had the same stereo-configuration as the naturally occurring HA. These results demonstrate that HvLAC enzymes mediate the oxidative coupling of pCA during HA biosynthesis.


Assuntos
Hordeum , Hordeum/metabolismo , Ácidos Cumáricos/metabolismo , Lacase/genética , Lacase/metabolismo , Amidas/metabolismo , Acoplamento Oxidativo , Plântula/genética , Plântula/metabolismo
7.
Plant J ; 115(3): 602-613, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37326283

RESUMO

Mitosis and cytokinesis are fundamental processes through which somatic cells increase their numbers and allow plant growth and development. Here, we analyzed the organization and dynamics of mitotic chromosomes, nucleoli, and microtubules in living cells of barley root primary meristems using a series of newly developed stable fluorescent protein translational fusion lines and time-lapse confocal microscopy. The median duration of mitosis from prophase until the end of telophase was 65.2 and 78.2 min until the end of cytokinesis. We showed that barley chromosomes frequently start condensation before mitotic pre-prophase as defined by the organization of microtubules and maintain it even after entering into the new interphase. Furthermore, we found that the process of chromosome condensation does not finish at metaphase, but gradually continues until the end of mitosis. In summary, our study features resources for in vivo analysis of barley nuclei and chromosomes and their dynamics during mitotic cell cycle.


Assuntos
Hordeum , Hordeum/genética , Mitose , Cromossomos , Microtúbulos , Núcleo Celular , Prófase
8.
Plant J ; 116(2): 329-346, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37675599

RESUMO

Seed protein localization in seed storage protein bodies (SSPB) and their significance in germination are well recognized. SSPB are spherical and contain an assembly of water-soluble and salt-soluble proteins. Although the native structures of some SSPB proteins are explored, their structural arrangement to the functional correlation in SSPB remains unknown. SSPB are morphologically analogous to electron-dense amyloid-containing structures reported in other organisms. Here, we show that wheat, mungbean, barley, and chickpea SSPB exhibit a speckled pattern of amyloids interspersed in an amyloid-like matrix along with native structures, suggesting the composite nature of SSPB. This is confirmed by multispectral imaging methods, electron microscopy, infrared, and X-ray diffraction analysis, using in situ tissue sections, ex vivo protoplasts, and in vitro SSPB. Laser capture microdissection coupled with peptide fingerprinting has shown that globulin 1 and 3 in wheat, and 8S globulin and conglycinin in mungbean are the major amyloidogenic proteins. The amyloid composites undergo a sustained degradation during germination and seedling growth, facilitated by an intricate interplay of plant hormones and proteases. These results would lay down the foundation for understanding the amyloid composite structure during SSPB biogenesis and its evolution across the plant kingdom and have implications in both basic and applied plant biology.

9.
Plant J ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37840457

RESUMO

Efficient chromatin condensation is required to transport chromosomes during mitosis and meiosis, forming daughter cells. While it is well accepted that these processes follow fundamental rules, there has been a controversial debate for more than 140 years on whether the higher-order chromatin organization in chromosomes is evolutionarily conserved. Here, we summarize historical and recent investigations based on classical and modern methods. In particular, classical light microscopy observations based on living, fixed, and treated chromosomes covering a wide range of plant and animal species, and even in single-cell eukaryotes suggest that the chromatids of large chromosomes are formed by a coiled chromatin thread, named the chromonema. More recently, these findings were confirmed by electron and super-resolution microscopy, oligo-FISH, molecular interaction data, and polymer simulation. Altogether, we describe common and divergent features of coiled chromonemata in different species. We hypothesize that chromonema coiling in large chromosomes is a fundamental feature established early during the evolution of eukaryotes to handle increasing genome sizes.

10.
Chromosoma ; 132(1): 19-29, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719450

RESUMO

Topoisomerase IIα (Topo IIα) and the centromere-specific histone H3 variant CENH3 are key proteins involved in chromatin condensation and centromere determination, respectively. Consequently, they are required for proper chromosome segregation during cell divisions. We combined two super-resolution techniques, structured illumination microscopy (SIM) to co-localize Topo IIα and CENH3, and photoactivated localization microscopy (PALM) to determine their molecule numbers in barley metaphase chromosomes. We detected a dispersed Topo IIα distribution along chromosome arms but an accumulation at centromeres, telomeres, and nucleolus-organizing regions. With a precision of 10-50 nm, we counted ~ 20,000-40,000 Topo IIα molecules per chromosome, 28% of them within the (peri)centromere. With similar precision, we identified ~13,500 CENH3 molecules per centromere where Topo IIα proteins and CENH3-containing chromatin intermingle. In short, we demonstrate PALM as a useful method to count and localize single molecules with high precision within chromosomes. The ultrastructural distribution and the detected amount of Topo IIα and CENH3 are instrumental for a better understanding of their functions during chromatin condensation and centromere determination.


Assuntos
Hordeum , Hordeum/genética , Metáfase , Microscopia , Centrômero , Cromatina/genética
11.
BMC Plant Biol ; 24(1): 438, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778283

RESUMO

BACKGROUND: Roots play an important role during plant growth and development, ensuring water and nutrient uptake. Understanding the mechanisms regulating their initiation and development opens doors towards root system architecture engineering. RESULTS: Here, we investigated by RNA-seq analysis the changes in gene expression in the barley stem base of 1 day-after-germination (DAG) and 10DAG seedlings when crown roots are formed. We identified 2,333 genes whose expression was lower in the stem base of 10DAG seedlings compared to 1DAG seedlings. Those genes were mostly related to basal cellular activity such as cell cycle organization, protein biosynthesis, chromatin organization, cytoskeleton organization or nucleotide metabolism. In opposite, 2,932 genes showed up-regulation in the stem base of 10DAG seedlings compared to 1DAG seedlings, and their function was related to phytohormone action, solute transport, redox homeostasis, protein modification, secondary metabolism. Our results highlighted genes that are likely involved in the different steps of crown root formation from initiation to primordia differentiation and emergence, and revealed the activation of different hormonal pathways during this process. CONCLUSIONS: This whole transcriptomic study is the first study aiming at understanding the molecular mechanisms controlling crown root development in barley. The results shed light on crown root emergence that is likely associated with a strong cell wall modification, death of the cells covering the crown root primordium, and the production of defense molecules that might prevent pathogen infection at the site of root emergence.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum , Raízes de Plantas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/genética , Transcriptoma , Perfilação da Expressão Gênica , Genes de Plantas
12.
BMC Plant Biol ; 24(1): 214, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532311

RESUMO

BACKGROUND: Barley (H. vulgare L.) is an important cereal crop cultivated across various climates globally. Barley and its ancestor (H. vulgare subsp. spontaneum) are an economically valuable model for genetic research and improvement. Drought, among various abiotic stresses, is a substantial threat to agriculture due to its unpredictable nature and significant impact on crop yield. RESULTS: This study was conducted in both greenhouse and laboratory settings. Prior to the study, wild barley accessions were pre-selected based on their sensitivity or tolerance to drought as determined from fieldwork in the 2020-2021 and 2021-2022 cropping seasons. The effects of three levels of drought stress were evaluated (control, 90-95% field capacity [FC]; mild stress, 50-55% FC; and severe stress, 25-30% FC). Several parameters were assessed, including seedling and root growth, enzymatic activity (CAT, SOD, POD), soluble protein levels, chlorophyll content, carotenoids, abaxial and adaxial stomatal density and dimensions, and relative gene expression of Dhn1, SOD, POD, and CAT. Drought stress significantly increased enzyme activities, especially at 25-30% FC, and more in the tolerant genotype. On the other hand, sensitive genotypes showed a notable increase in stomatal density. Under drought stress, there was a general decline in seedling and root growth, protein content, chlorophyll and carotenoids, and stomatal dimensions. Importantly, gene expression analysis revealed that Dhn1, SOD, POD, and CAT were upregulated under drought, with the highest expression levels observed in the drought-tolerant genotype under severe stress conditions (25-30% FC). CONCLUSIONS: Our investigation highlights the distinct morphological, physiological, biochemical, and gene-expression profiles of drought-resistant and drought-sensitive wild barley genotypes under varying degrees of drought.


Assuntos
Hordeum , Hordeum/genética , Secas , Genótipo , Clorofila/metabolismo , Carotenoides/metabolismo , Expressão Gênica , Superóxido Dismutase/metabolismo , Estresse Fisiológico/genética
13.
BMC Plant Biol ; 24(1): 16, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163863

RESUMO

As climate change increases abiotic stresses like drought and heat, evaluating barley performance under such conditions is critical for maintaining productivity. To assess how barley performs under normal conditions, drought, and heat stress, 29 different varieties were examined, considering agronomic, physiological, and disease-related characteristics. The research was conducted in five environments: two normal environments in 2020/2021 and 2021/2022, two drought stress environments in 2020/2021 and 2021/2022, and one heat stress environment in 2021/2022. The results demonstrated that genotype and environment significantly influenced all traits (p < 0.05), except canopy temperature, while genotype x environment interaction significantly influenced most traits, except total chlorophyll content and canopy temperature. Heat and drought stress environments often resulted in reduced performance for traits like plant height, spike length, grains per spike, and 100-grain weight compared to normal conditions. Based on individual traits, genotypes 07UT-44, 06WA-77, 08AB-09, and 07N6-57 exhibited the highest grain yield (4.1, 3.6, 3.6, and 3.6 t/ha, respectively). Also, these genotypes demonstrated enhanced stability in diverse drought and heat stress conditions, as assessed by the mean performance vs. stability index (Weighted Average of Absolute Scores, WAASB). The multi-trait stability index (MTSI) identified 07UT-44, 07UT-55, 07UT-71, and 08AB-09 as the most stable genotypes in terms of the performance of all traits. The imported lines demonstrated superior performance and stability, highlighting their potential as valuable genetic resources for developing climate-resilient barley.


Assuntos
Hordeum , Resiliência Psicológica , Hordeum/genética , Locos de Características Quantitativas , Genótipo , Fenótipo , Grão Comestível/genética
14.
BMC Plant Biol ; 24(1): 385, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724918

RESUMO

Waterlogging stress is one of the major abiotic stresses affecting the productivity and quality of many crops worldwide. However, the mechanisms of waterlogging tolerance are still elusive in barley. In this study, we identify key differentially expressed genes (DEGs) and differential metabolites (DM) that mediate distinct waterlogging tolerance strategies in leaf and root of two barley varieties with contrasting waterlogging tolerance under different waterlogging treatments. Transcriptome profiling revealed that the response of roots was more distinct than that of leaves in both varieties, in which the number of downregulated genes in roots was 7.41-fold higher than that in leaves of waterlogging sensitive variety after 72 h of waterlogging stress. We also found the number of waterlogging stress-induced upregulated DEGs in the waterlogging tolerant variety was higher than that of the waterlogging sensitive variety in both leaves and roots in 1 h and 72 h treatment. This suggested the waterlogging tolerant variety may respond more quickly to waterlogging stress. Meanwhile, phenylpropanoid biosynthesis pathway was identified to play critical roles in waterlogging tolerant variety by improving cell wall biogenesis and peroxidase activity through DEGs such as Peroxidase (PERs) and Cinnamoyl-CoA reductases (CCRs) to improve resistance to waterlogging. Based on metabolomic and transcriptomic analysis, we found the waterlogging tolerant variety can better alleviate the energy deficiency via higher sugar content, reduced lactate accumulation, and improved ethanol fermentation activity compared to the waterlogging sensitive variety. In summary, our results provide waterlogging tolerance strategies in barley to guide the development of elite genetic resources towards waterlogging-tolerant crop varieties.


Assuntos
Perfilação da Expressão Gênica , Hordeum , Metaboloma , Estresse Fisiológico , Transcriptoma , Hordeum/genética , Hordeum/fisiologia , Hordeum/metabolismo , Estresse Fisiológico/genética , Água/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Planta ; 259(6): 144, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709333

RESUMO

MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.


Assuntos
Hordeum , Ácidos Indolacéticos , Óxido Nítrico , Estresse Oxidativo , Fosfatos , Fotossíntese , Raízes de Plantas , Silício , Hordeum/metabolismo , Hordeum/genética , Hordeum/efeitos dos fármacos , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Silício/farmacologia , Silício/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos/deficiência , Fosfatos/metabolismo , Óxido Nítrico/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/fisiologia
16.
J Exp Bot ; 75(1): 180-203, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611210

RESUMO

Barley (Hordeum vulgare) is an important cereal crop, and its development, defence, and stress responses are modulated by different hormones including jasmonates (JAs) and the antagonistic gibberellins (GAs). Barley productivity is severely affected by the foliar biotrophic fungal pathogen Blumeria hordei. In this study, primary leaves were used to examine the molecular processes regulating responses to methyl-jasmonate (MeJA) and GA to B. hordei infection along the leaf axis. Flow cytometry, microscopy, and spatiotemporal expression patterns of genes associated with JA, GA, defence, and the cell cycle provided insights on cell cycle progression and on the gradient of susceptibility to B. hordei observed along the leaf. Notably, the combination of B. hordei with MeJA or GA pre-treatment had a different effect on the expression patterns of the analysed genes compared to individual treatments. MeJA reduced susceptibility to B. hordei in the proximal part of the leaf blade. Overall, distinctive spatiotemporal gene expression patterns correlated with different degrees of cell proliferation, growth capacity, responses to hormones, and B. hordei infection along the leaf. Our results highlight the need to further investigate differential spatial and temporal responses to pathogens at the organ, tissue, and cell levels in order to devise effective disease control strategies in crops.


Assuntos
Ascomicetos , Hordeum , Ascomicetos/fisiologia , Hordeum/metabolismo , Giberelinas/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Hormônios/metabolismo , Ciclo Celular
17.
J Exp Bot ; 75(8): 2299-2312, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301663

RESUMO

Barley is a staple crop of major global importance and relatively resilient to a wide range of stress factors in the field. Transgenic reporter lines to investigate physiological parameters during stress treatments remain scarce. We generated and characterized transgenic homozygous barley lines (cv. Golden Promise Fast) expressing the genetically encoded biosensor Grx1-roGFP2, which indicates the redox potential of the major antioxidant glutathione in the cytosol. Our results demonstrated functionality of the sensor in living barley plants. We determined the glutathione redox potential (EGSH) of the cytosol to be in the range of -308 mV to -320 mV. EGSH was robust against a combined NaCl (150 mM) and water deficit treatment (-0.8 MPa) but responded with oxidation to infiltration with the phytotoxic secretome of the necrotrophic fungus Botrytis cinerea. The generated reporter lines are a novel resource to study biotic and abiotic stress resilience in barley, pinpointing that even severe abiotic stress leading to a growth delay does not automatically induce cytosolic EGSH oxidation, while necrotrophic pathogens can undermine this robustness.


Assuntos
Técnicas Biossensoriais , Hordeum , Citosol/metabolismo , Hordeum/genética , Hordeum/metabolismo , Estresse Fisiológico , Oxirredução , Glutationa/metabolismo , Técnicas Biossensoriais/métodos
18.
J Exp Bot ; 75(10): 2900-2916, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38366171

RESUMO

The HD-ZIP class I transcription factor Homeobox 1 (HvHOX1), also known as Vulgare Row-type Spike 1 (VRS1) or Six-rowed Spike 1, regulates lateral spikelet fertility in barley (Hordeum vulgare L.). It was shown that HvHOX1 has a high expression only in lateral spikelets, while its paralog HvHOX2 was found to be expressed in different plant organs. Yet, the mechanistic functions of HvHOX1 and HvHOX2 during spikelet development are still fragmentary. Here, we show that compared with HvHOX1, HvHOX2 is more highly conserved across different barley genotypes and Hordeum species, hinting at a possibly vital but still unclarified biological role. Using bimolecular fluorescence complementation, DNA-binding, and transactivation assays, we validate that HvHOX1 and HvHOX2 are bona fide transcriptional activators that may potentially heterodimerize. Accordingly, both genes exhibit similar spatiotemporal expression patterns during spike development and growth, albeit their mRNA levels differ quantitatively. We show that HvHOX1 delays the lateral spikelet meristem differentiation and affects fertility by aborting the reproductive organs. Interestingly, the ancestral relationship of the two genes inferred from their co-expressed gene networks suggested that HvHOX1 and HvHOX2 might play a similar role during barley spikelet development. However, CRISPR-derived mutants of HvHOX1 and HvHOX2 demonstrated the suppressive role of HvHOX1 on lateral spikelets, while the loss of HvHOX2 does not influence spikelet development. Collectively, our study shows that through the suppression of reproductive organs, lateral spikelet fertility is regulated by HvHOX1, whereas HvHOX2 is dispensable for spikelet development in barley.


Assuntos
Hordeum , Proteínas de Plantas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
19.
Ann Bot ; 133(7): 983-996, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38407464

RESUMO

BACKGROUND AND AIMS: Vascular patterning is intimately related to plant form and function. Here, using barley (Hordeum vulgare) as a model, we studied the vascular anatomy of the spike-type inflorescence. The main aim of the present work was to clarify the relationship between rachis (spike axis) vasculature and spike size, to define vascular dynamics and to discuss the implications for transport capacity and its interaction with the spikelets. METHODS: We used serial transverse internode sections to determine the internode area, vascular area and number of veins along the rachis of several barley lines. KEY RESULTS: Internode area and total vascular area show a clear positive correlation with spike size, whereas the number of veins is only weakly correlated. The lateral periphery of the rachis contains large mature veins of constant size, whereas the central part is occupied by small immature veins. Spikelet-derived veins entering the rachis often merge with the immature rachis veins but never merge with the mature veins. An increase in floret fertility through the conversion of a two-rowed barley into an isogenic six-rowed line, in addition to a decrease in floret fertility owing to enhanced pre-anthesis tip degeneration caused by the mutation tip sterile 2.b (tst2.b), significantly affected vein size but had limited to no effects on the number of veins or internode area. CONCLUSIONS: The rachis vasculature is the result of a two-step process involving an initial layout followed by size adjustment according to floret fertility/spike size. The restriction of large mature vessels to the periphery and that of small immature vessels to the centre of the rachis suggests that long-distance transport and local supply to spikelets are spatially separated processes. The identification of spikelet-derived veins entering the rachis without fusing with its vasculature indicates that a vascular continuity between rachis and spikelets might be non-essential.


Assuntos
Hordeum , Feixe Vascular de Plantas , Hordeum/anatomia & histologia , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Feixe Vascular de Plantas/anatomia & histologia , Feixe Vascular de Plantas/fisiologia , Feixe Vascular de Plantas/crescimento & desenvolvimento , Transporte Biológico , Inflorescência/anatomia & histologia , Inflorescência/crescimento & desenvolvimento , Inflorescência/fisiologia
20.
Ann Bot ; 133(7): 931-940, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38448365

RESUMO

BACKGROUND AND AIMS: Internal root aeration is essential for root growth in waterlogged conditions. Aerenchyma provides a path for oxygen to diffuse to the roots. In most wetland species, including rice, a barrier to radial oxygen loss (ROL) allows more of the oxygen to diffuse to the root tip, enabling root growth into anoxic soil. Most dryland crops, including barley, do not form a root ROL barrier. We previously found that abscisic acid (ABA) signalling is involved in the induction of ROL barrier formation in rice during waterlogging. Although rice typically does not form a tight ROL barrier in roots in aerated conditions, an ROL barrier with suberized exodermis was induced by application of exogenous ABA. Therefore, we hypothesized that ABA application could also trigger root ROL barrier formation with hypodermal suberization in barley. METHODS: Formation of an ROL barrier was examined in roots in different exogenous ABA concentrations and at different time points using cylindrical electrodes and Methylene Blue staining. Additionally, we evaluated root porosity and observed suberin and lignin modification. Suberin, lignin and Casparian strips in the cell walls were observed by histochemical staining. We also evaluated the permeability of the apoplast to a tracer. KEY RESULTS: Application of ABA induced suberization and ROL barrier formation in the adventitious roots of barley. The hypodermis also formed lignin-containing Casparian strips and a barrier to the infiltration of an apoplastic tracer (periodic acid). However, ABA application did not affect root porosity. CONCLUSIONS: Our results show that in artificial conditions, barley can induce the formation of ROL and apoplastic barriers in the outer part of roots if ABA is applied exogenously. The difference in ROL barrier inducibility between barley (an upland species) and rice (a wetland species) might be attributable to differences in ABA signalling in roots in response to waterlogging conditions.


Assuntos
Ácido Abscísico , Hordeum , Lignina , Oxigênio , Raízes de Plantas , Hordeum/efeitos dos fármacos , Hordeum/metabolismo , Hordeum/crescimento & desenvolvimento , Ácido Abscísico/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Oxigênio/metabolismo , Lignina/metabolismo , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA