Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35794711

RESUMO

In 2014, the Immune Epitope Database automated benchmark was created to compare the performance of the MHC class I binding predictors. However, this is not a straightforward process due to the different and non-standardized outputs of the methods. Additionally, some methods are more restrictive regarding the HLA alleles and epitope sizes for which they predict binding affinities, while others are more comprehensive. To address how these problems impacted the ranking of the predictors, we developed an approach to assess the reliability of different metrics. We found that using percentile-ranked results improved the stability of the ranks and allowed the predictors to be reliably ranked despite not being evaluated on the same data. We also found that given the rate new data are incorporated into the benchmark, a new method must wait for at least 4 years to be ranked against the pre-existing methods. The best-performing tools with statistically indistinguishable scores in this benchmark were NetMHCcons, NetMHCpan4.0, ANN3.4, NetMHCpan3.0 and NetMHCpan2.8. The results of this study will be used to improve the evaluation and display of benchmark performance. We highly encourage anyone working on MHC binding predictions to participate in this benchmark to get an unbiased evaluation of their predictors.


Assuntos
Benchmarking , Alelos , Epitopos , Ligação Proteica , Reprodutibilidade dos Testes
2.
Glycobiology ; 33(7): 528-531, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37306951

RESUMO

Carbohydrate structures in the Carbohydrate Structure Database have been referenced to glycoepitopes from the Immune Epitope Database allowing users to explore the glycan structures and contained epitopes. Starting with an epitope, one can figure out the glycans from other organisms that share the same structural determinant, and retrieve the associated taxonomical, medical, and other data. This database mapping demonstrates the advantages of the integration of immunological and glycomic databases.


Assuntos
Bases de Dados Factuais , Polissacarídeos/química , Epitopos/química
3.
Proteins ; 89(7): 866-883, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33594723

RESUMO

Accurate prediction of peptide binding affinity to the major histocompatibility complex (MHC) proteins has the potential to design better therapeutic vaccines. Previous work has shown that pan-specific prediction algorithms can achieve better prediction performance than other approaches. However, most of the top algorithms are neural networks based black box models. Here, we propose DeepAttentionPan, an improved pan-specific model, based on convolutional neural networks and attention mechanisms for more flexible, stable and interpretable MHC-I binding prediction. With the attention mechanism, our ensemble model consisting of 20 trained networks achieves high and more stabilized prediction performance. Extensive tests on IEDB's weekly benchmark dataset show that our method achieves state-of-the-art prediction performance on 21 test allele datasets. Analysis of the peptide positional attention weights learned by our model demonstrates its capability to capture critical binding positions of the peptides, which leads to mechanistic understanding of MHC-peptide binding with high alignment with experimentally verified results. Furthermore, we show that with transfer learning, our pan model can be fine-tuned for alleles with few samples to achieve additional performance improvement. DeepAttentionPan is freely available as an open-source software at https://github.com/jjin49/DeepAttentionPan.


Assuntos
Aprendizado Profundo , Antígenos HLA-A/química , Peptídeos/química , Alelos , Área Sob a Curva , Benchmarking , Sítios de Ligação , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Antígenos HLA-A/imunologia , Antígenos HLA-A/metabolismo , Humanos , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica
4.
BMC Bioinformatics ; 20(1): 490, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601176

RESUMO

BACKGROUND: The development of accurate epitope prediction tools is important in facilitating disease diagnostics, treatment and vaccine development. The advent of new approaches making use of antibody and TCR sequence information to predict receptor-specific epitopes have the potential to transform the epitope prediction field. Development and validation of these new generation of epitope prediction methods would benefit from regularly updated high-quality receptor-antigen complex datasets. RESULTS: To address the need for high-quality datasets to benchmark performance of these new generation of receptor-specific epitope prediction tools, a webserver called SCEptRe (Structural Complexes of Epitope-Receptor) was created. SCEptRe extracts weekly updated 3D complexes of antibody-antigen, TCR-pMHC and MHC-ligand from the Immune Epitope Database and clusters them based on antigen, receptor and epitope features to generate benchmark datasets. SCEptRe also provides annotated information such as CDR sequences and VDJ genes on the receptors. Users can generate custom datasets based by selecting thresholds for structural quality and clustering parameters (e.g. resolution, R-free factor, antigen or epitope sequence identity) based on their need. CONCLUSIONS: SCEptRe provides weekly updated, user-customized comprehensive benchmark datasets of immune receptor-epitope structural complexes. These datasets can be used to develop and benchmark performance of receptor-specific epitope prediction tools in the future. SCEptRe is freely accessible at http://tools.iedb.org/sceptre .


Assuntos
Complexo Antígeno-Anticorpo , Bases de Dados de Proteínas , Epitopos/metabolismo , Receptores Imunológicos/metabolismo , Epitopos/imunologia , Humanos , Receptores Imunológicos/imunologia
5.
Chirality ; 31(4): 321-327, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30801797

RESUMO

Acute myocardial infarction (AMI) is one of the most severe cardiovascular diseases in humans, often resulting in unexpected death. Early detection is critical for patient survival. Sandwich ELISA is a common method for the detection of AMI. However, ELISA kits from different manufacturers can give different results, in part because of the lack of standardized epitopes. Therefore, the purpose of this study was to find two standardized epitopes. We predicted two antigen epitopes and respectively immunize mice to manufacture standardized monoclonal antibodies. Eight monoclonal antibodies were prepared. Monoclonal antibodies 7D2 and 2C3 were selected with high affinity, and their characteristics were explored. The results show that monoclonal antibodies 7D2 and 2C3 can both bind to various modified forms and complexes of cardiac troponin I (cTnI), were not cross-reaction with related antigens of normal human serum and can be paired. Therefore, we deem epitopes 30 to 42 and 77 to 89 standardized epitopes.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Miocárdio/metabolismo , Troponina I/imunologia , Epitopos/química , Humanos , Modelos Moleculares , Conformação Proteica , Padrões de Referência
6.
Clin Immunol ; 149(3): 534-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24263283

RESUMO

Protein therapeutics hold a prominent and rapidly expanding place among medicinal products. Purified blood products, recombinant cytokines, growth factors, enzyme replacement factors, monoclonal antibodies, fusion proteins, and chimeric fusion proteins are all examples of therapeutic proteins that have been developed in the past few decades and approved for use in the treatment of human disease. Despite early belief that the fully human nature of these proteins would represent a significant advantage, adverse effects associated with immune responses to some biologic therapies have become a topic of some concern. As a result, drug developers are devising strategies to assess immune responses to protein therapeutics during both the preclinical and the clinical phases of development. While there are many factors that contribute to protein immunogenicity, T cell- (thymus-) dependent (Td) responses appear to play a critical role in the development of antibody responses to biologic therapeutics. A range of methodologies to predict and measure Td immune responses to protein drugs has been developed. This review will focus on the Td contribution to immunogenicity, summarizing current approaches for the prediction and measurement of T cell-dependent immune responses to protein biologics, discussing the advantages and limitations of these technologies, and suggesting a practical approach for assessing and mitigating Td immunogenicity.


Assuntos
Produtos Biológicos/imunologia , Imunidade Celular/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Formação de Anticorpos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Bioensaio , Produtos Biológicos/administração & dosagem , Biomarcadores Farmacológicos/análise , Citocinas/administração & dosagem , Citocinas/imunologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Simulação de Acoplamento Molecular , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia
7.
Methods Mol Biol ; 2673: 453-474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258932

RESUMO

For the development of multi-peptide vaccine, identification of antigenic epitopes is crucial. If it is done using wet lab techniques, the identification process can be time-consuming, laborious, and cost-intensive. In silico tools, on the other hand, enable researchers to predict potential epitopes with little to no cost for further in vivo and in vitro testing. The rapid identification process using in silico tools helps in responding to health emergencies faster. Developing an efficient and high coverage vaccine is one of the ways to reduce morbidity and mortality rates of the diseases and protect the affected populations. In this chapter, we introduce the necessary tools and methodology for the identification and characterization of antigenic epitopes to design a multi-epitope vaccine using varicella-zoster virus as an example vector model.


Assuntos
Varicela , Herpes Zoster , Humanos , Varicela/prevenção & controle , Vacinologia/métodos , Epitopos , Vacinas de Subunidades Antigênicas , Antígenos , Herpes Zoster/prevenção & controle , Biologia Computacional/métodos , Epitopos de Linfócito T , Epitopos de Linfócito B , Simulação de Acoplamento Molecular
8.
Asian Pac J Cancer Prev ; 24(10): 3629-3636, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898872

RESUMO

OBJECTIVE: This study investigates the association between HLA-A and -B allele diversity, Fusobacterium nucleatum Fap2 protein-derived antigenic coverage, and colorectal cancer (CRC) epidemiology across diverse populations. METHODS: We examined 75 HLA-I alleles and explored 698 potential HLA-A and B-restricted Fap2-derived antigens, assessing how 21 countries may respond to these peptides based on their HLA-I distribution frequencies. Additionally, we correlated in-silico predicted Fap2 population coverage with CRC epidemiology. CRC incidence and mortality data were obtained from the Global Cancer Observatory, and HLA-A and HLA-B allele frequencies from the Allele Frequency Net Database. Binding predictions for Fap2 antigens were performed using netMHCpan4, with stringent selection criteria applied to identify relevant peptides. Population coverage was calculated using the IEDB population coverage tool, and data analysis conducted using the R programming language. RESULTS: Clustering of HLA-A and -B allele frequencies partially differentiated countries with lower CRC incidence from others. Distinct patterns of Fap2 protein coverage were observed among different populations. interestingly, we found a significant inverse correlation between CRC incidence (p = 0.0037, R = -0.6) and predicted Fap2 antigen coverage, as well as CRC mortality (p = 0.013, R = -0.53). Furthermore, we identified a specific set of Fap2-derived peptides that bind to HLA supertypes, providing a global coverage of 99.04%. CONCLUSION: Our population-based study is the first to demonstrate that higher Fap2 coverage is associated with lower CRC incidence, underscoring the potential significance of Fap2-specific CD8+ T cell responses in CRC tumorigenesis.


Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Humanos , Fusobacterium nucleatum/genética , Alelos , Incidência , Peptídeos , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Antígenos HLA-A
9.
Front Immunol ; 13: 847756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386688

RESUMO

Modern vaccine designs and studies of human leukocyte antigen (HLA)-mediated immune responses rely heavily on the knowledge of HLA allele-specific binding motifs and computational prediction of HLA-peptide binding affinity. Breakthroughs in HLA peptidomics have considerably expanded the databases of natural HLA ligands and enabled detailed characterizations of HLA-peptide binding specificity. However, cautions must be made when analyzing HLA peptidomics data because identified peptides may be contaminants in mass spectrometry or may weakly bind to the HLA molecules. Here, a hybrid de novo peptide sequencing approach was applied to large-scale mono-allelic HLA peptidomics datasets to uncover new ligands and refine current knowledge of HLA binding motifs. Up to 12-40% of the peptidomics data were low-binding affinity peptides with an arginine or a lysine at the C-terminus and likely to be tryptic peptide contaminants. Thousands of these peptides have been reported in a community database as legitimate ligands and might be erroneously used for training prediction models. Furthermore, unsupervised clustering of identified ligands revealed additional binding motifs for several HLA class I alleles and effectively isolated outliers that were experimentally confirmed to be false positives. Overall, our findings expanded the knowledge of HLA binding specificity and advocated for more rigorous interpretation of HLA peptidomics data that will ensure the high validity of community HLA ligandome databases.


Assuntos
Antígenos HLA , Antígenos de Histocompatibilidade Classe I , Antígenos HLA/genética , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Ligantes , Peptídeos , Ligação Proteica
10.
Front Oncol ; 12: 888556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35785204

RESUMO

In the past decade, the substantial achievements of therapeutic cancer vaccines have shed a new light on cancer immunotherapy. The major challenge for designing potent therapeutic cancer vaccines is to identify neoantigens capable of inducing sufficient immune responses, especially involving major histocompatibility complex (MHC)-II epitopes. However, most previous studies on T-cell epitopes were focused on either ligand binding or antigen presentation by MHC rather than the immunogenicity of T-cell epitopes. In order to better facilitate a therapeutic vaccine design, in this study, we propose a revolutionary new tool: a convolutional neural network model named FIONA (Flexible Immunogenicity Optimization Neural-network Architecture) trained on IEDB datasets. FIONA could accurately predict the epitopes presented by the given specific MHC-II subtypes, as well as their immunogenicity. By leveraging the human leukocyte antigen allele hierarchical encoding model together with peptide dense embedding fusion encoding, FIONA (with AUC = 0.94) outperforms several other tools in predicting epitopes presented by MHC-II subtypes in head-to-head comparison; moreover, FIONA has unprecedentedly incorporated the capacity to predict the immunogenicity of epitopes with MHC-II subtype specificity. Therefore, we developed a reliable pipeline to effectively predict CD4+ T-cell immune responses against cancer and infectious diseases.

11.
JHEP Rep ; 4(11): 100576, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36185575

RESUMO

Background & Aims: Antigen-specific immunotherapy is a promising strategy to treat HBV infection and hepatocellular carcinoma (HCC). To facilitate killing of malignant and/or infected hepatocytes, it is vital to know which T cell targets are presented by human leucocyte antigen (HLA)-I complexes on patient-derived hepatocytes. Here, we aimed to reveal the hepatocyte-specific HLA-I peptidome with emphasis on peptides derived from HBV proteins and tumour-associated antigens (TAA) to guide development of antigen-specific immunotherapy. Methods: Primary human hepatocytes were isolated with high purity from (HBV-infected) non-tumour and HCC tissues using a newly designed perfusion-free procedure. Hepatocyte-derived HLA-bound peptides were identified by unbiased mass spectrometry (MS), after which source proteins were subjected to Gene Ontology and pathway analysis. HBV antigen and TAA-derived HLA peptides were searched for using targeted MS, and a selection of peptides was tested for immunogenicity. Results: Using unbiased data-dependent acquisition (DDA), we acquired a high-quality HLA-I peptidome of 2 × 105 peptides that contained 8 HBV-derived peptides and 14 peptides from 8 known HCC-associated TAA that were exclusive to tumours. Of these, 3 HBV- and 12 TAA-derived HLA peptides were detected by targeted MS in the sample they were originally identified in by DDA. Moreover, 2 HBV- and 2 TAA-derived HLA peptides were detected in samples in which no identification was made using unbiased MS. Finally, immunogenicity was demonstrated for 5 HBV-derived and 3 TAA-derived peptides. Conclusions: We present a first HLA-I immunopeptidome of isolated primary human hepatocytes, devoid of immune cells. Identified HBV-derived and TAA-derived peptides directly aid development of antigen-specific immunotherapy for chronic HBV infection and HCC. The described methodology can also be applied to personalise immunotherapeutic treatment of liver diseases in general. Lay summary: Immunotherapy that aims to induce immune responses against a virus or tumour is a promising novel treatment option to treat chronic HBV infection and liver cancer. For the design of successful therapy, it is essential to know which fragments (i.e. peptides) of virus-derived and tumour-specific proteins are presented to the T cells of the immune system by diseased liver cells and are thus good targets for immunotherapy. Here, we have isolated liver cells from patients who have chronic HBV infection and/or liver cancer, analysed what peptides are presented by these cells, and assessed which peptides are able to drive immune responses.

12.
Saudi J Biol Sci ; 29(6): 103283, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35574284

RESUMO

Objective: Influenza A virus belongs to the most studied virus and its mutant initiates epidemic and pandemics outbreaks. Inoculation is the significant foundation to diminish the risk of infection. To prevent an incidence of influenza from the transmission, various practical approaches require more advancement and progress. More efforts and research must take in front to enhance vaccine efficacy. Methods: The present research emphasizes the development and expansion of a universal vaccine for the influenza virus. Research focuses on vaccine design with high efficacy. In this study, numerous computational approaches were used, covering a wide range of elements and ideas in bioinformatics methodology. Various B and T-cell epitopic peptides derived from the Neuraminidase protein N1 are recognized by these approaches. With the implementation of numerous obtained databases and bioinformatics tools, the different immune framework methods of the conserved sequences of N1 neuraminidase were analyzed. NCBI databases were employed to retrieve amino acid sequences. The antigenic nature of the neuraminidase sequence was achieved by the VaxiJen server and Kolaskar and Tongaonkar method. After screening of various B and T cell epitopes, one efficient peptide each from B cell epitope and T cell epitopes was assessed for their antigenic determinant vaccine efficacy. Identical two B cell epitopes were recognized from the N1 protein when analyzed using B-cell epitope prediction servers. The detailed examination of amino acid sequences for interpretation of B and T cell epitopes was achieved with the help of the ABCPred and Immune Epitope Database. Results: Computational immunology via immunoinformatic study exhibited RPNDKTG as having its high conservancy efficiency and demonstrated as a good antigenic, accessible surface hydrophilic B-cell epitope. Among T cell epitope analysis, YVNISNTNF was selected for being a conserved epitope. T cell epitope was also analyzed for its allergenicity and cytotoxicity evaluation. YVNISNTNF epitope was found to be a non-allergen and not toxic for cells as well. This T-cell epitope with maximum world populace coverages was scrutinized for its association with the HLA-DRB1*0401 molecule. Results from docking simulation analyses showed YVNISNTNF having lower binding energy, the radius of gyration (Rg), RMSD values, and RMSE values which make the protein structure more stable and increase its ability to become an epitopic peptide for influenza virus vaccination. Conclusions: We propose that this epitope analysis may be successfully used as a measurement tool for the robustness of an antigen-antibody reaction between mutant strains in the annual design of the influenza vaccine.

13.
Immunol Med ; 44(1): 35-52, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32692610

RESUMO

A new approach toward cancer therapy is the use of cancer vaccine, yet the different molecular bases of cancers, reduce the effectiveness of this approach. In this article, we aim to use matrix metalloproteinase-9 protein (MMP9) which is an essential molecule in the survival and metastasis of all types of cancers as a target for universal cancer vaccine design. The reference sequence of MMP9 protein was obtained from NCBI databases. Furthermore, the B-cell and T cell-related peptides were analyzed using the IEDB website and other related soft wares. The best candidate peptides were then visualized using chimera software. Three peptides were found to be good candidates for interactions with B cells (SLPE, RLYT, and PALPR), while 10 peptides were found as good targets for interactions with MHC1 and another 10 peptides founded suitable for interactions with MHC2 with population coverages of 94.77 and 90.67%, respectively. Finally, the immune response simulation and molecular docking were done using the C-IMMSIM simulator and AutoDock Vina to confirm the effectiveness of the proposed vaccine. By the end of this project: twenty-three peptide-based vaccine was designed for use as a universal cancer vaccine which has a high world population coverage for MHC1 (94.77%) and MHC2 (90.67%) related alleles.


Assuntos
Vacinas Anticâncer , Desenho de Fármacos , Metaloproteinase 9 da Matriz , Vacinas de Subunidades Antigênicas , Linfócitos B , Epitopos de Linfócito B , Epitopos de Linfócito T , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Classe II , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica
14.
J Biomol Struct Dyn ; 39(10): 3793-3801, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32419646

RESUMO

The best therapeutic strategy to find an effective vaccine against SARS-CoV-2 is to explore the target structural protein. In the present study, a novel multi-epitope vaccine is designed using in silico tools that potentially trigger both CD4 and CD8 T-cell immune responses against the novel Coronavirus. The vaccine candidate was designed using B and T-cell epitopes that can act as an immunogen and elicits immune response in the host system. NCBI was used for the retrieval of surface spike glycoprotein, of novel corona virus (SARS-CoV-2) strains. VaxiJen server screens the most important immunogen of all the proteins and IEDB server gives the prediction and analysis of B and T cell epitopes. Final vaccine construct was designed in silico composed of 425 amino acids including the 50S ribosomal protein adjuvant and the construct was computationally validated in terms of antigenicity, allergenicity and stability on considering all critical parameters into consideration. The results subjected to the modeling and docking studies of vaccine were validated. Molecular docking study revealed the protein-protein binding interactions between the vaccine construct and TLR-3 immune receptor. The MD simulations confirmed stability of the binding pose. The immune simulation results showed significant response for immune cells. The findings of the study confirmed that the final vaccine construct of chimeric peptide could able to enhance the immune response against nCoV-19.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Epitopos de Linfócito B , Epitopos de Linfócito T , COVID-19/prevenção & controle , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de Subunidades Antigênicas
15.
Comput Biol Med ; 136: 104746, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34388468

RESUMO

BACKGROUND: Allergy is the abrupt reaction of the immune system that may occur after the exposure to allergens such as proteins, peptides, or chemicals. In the past, various methods have been generated for predicting allergenicity of proteins and peptides. In contrast, there is no method that can predict allergenic potential of chemicals. In this paper, we described a method ChAlPred developed for predicting chemical allergens as well as for designing chemical analogs with desired allergenicity. METHOD: In this study, we have used 403 allergenic and 1074 non-allergenic chemical compounds obtained from IEDB database. The PaDEL software was used to compute the molecular descriptors of the chemical compounds to develop different prediction models. All the models were trained and tested on the 80% training data and evaluated on the 20% validation data using the 2D, 3D and FP descriptors. RESULTS: In this study, we have developed different prediction models using several machine learning approaches. It was observed that the Random Forest based model developed using hybrid descriptors performed the best, and achieved the maximum accuracy of 83.39% and AUC of 0.93 on validation dataset. The fingerprint analysis of the dataset indicates that certain chemical fingerprints are more abundant in allergens that include PubChemFP129 and GraphFP1014. We have also predicted allergenicity potential of FDA-approved drugs using our best model and identified the drugs causing allergic symptoms (e.g., Cefuroxime, Spironolactone, Tioconazole). Our results agreed with allergenicity of these drugs reported in literature. CONCLUSIONS: To aid the research community, we developed a smart-device compatible web server ChAlPred (https://webs.iiitd.edu.in/raghava/chalpred/) that allows to predict and design the chemicals with allergenic properties.


Assuntos
Alérgenos , Proteínas , Computadores , Peptídeos , Software
16.
Front Immunol ; 12: 640725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777034

RESUMO

The adaptive immune system in vertebrates has evolved to recognize non-self antigens, such as proteins expressed by infectious agents and mutated cancer cells. T cells play an important role in antigen recognition by expressing a diverse repertoire of antigen-specific receptors, which bind epitopes to mount targeted immune responses. Recent advances in high-throughput sequencing have enabled the routine generation of T-cell receptor (TCR) repertoire data. Identifying the specific epitopes targeted by different TCRs in these data would be valuable. To accomplish that, we took advantage of the ever-increasing number of TCRs with known epitope specificity curated in the Immune Epitope Database (IEDB) since 2004. We compared seven metrics of sequence similarity to determine their power to predict if two TCRs have the same epitope specificity. We found that a comprehensive k-mer matching approach produced the best results, which we have implemented into TCRMatch, an openly accessible tool (http://tools.iedb.org/tcrmatch/) that takes TCR ß-chain CDR3 sequences as an input, identifies TCRs with a match in the IEDB, and reports the specificity of each match. We anticipate that this tool will provide new insights into T cell responses captured in receptor repertoire and single cell sequencing experiments and will facilitate the development of new strategies for monitoring and treatment of infectious, allergic, and autoimmune diseases, as well as cancer.


Assuntos
Algoritmos , Conjuntos de Dados como Assunto , Epitopos de Linfócito T , Receptores de Antígenos de Linfócitos T , Especificidade do Receptor de Antígeno de Linfócitos T , Humanos , Internet
17.
Curr Res Transl Med ; 68(4): 211-216, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32624427

RESUMO

BACKGROUND: Human herpes viruses (HHV) have been implicated in dementia. Class II Human Leukocyte Antigens (HLA) play a critical role in host protection from foreign antigens including herpes viruses through stimulating antibody production against them. In the present study we investigated the in silico binding affinity of 9 H HV to three Class II HLA alleles that have been found to protect against dementia: DRB1*01:01, DRB1*13:02, and DRB1*15:01. METHODS: A sliding window approach was used to partition the amino acid sequences of surface glycoproteins from HHV 1-8 into subsequences. The binding affinity of the HHV subsequences to Class II HLA surface receptor proteins was predicted using the Sturniolo method in the Immune Epitope Database and reported as a percentile rank. The binding affinity of HHV subsequences to protective alleles was compared to that of three dementia-neutral Class II HLA alleles: DRB1*03:01, DRB1*07:01, and DRB1*08:01. FINDINGS: Binding affinity varied widely for each HLA allele, HHV type, and HHV subsequence. The protective alleles had significantly higher binding affinity that than the neutral alleles. The largest differences in binding affinity between the protective and neutral alleles was shown for HHV-6A and HHV-6B, which had the best overall binding affinity with the protective alleles. INTERPRETATION: The dementia protection conferred by the three protective HLA alleles investigated here is related to their superior ability to bind and successfully eliminate HHV epitopes - in particular, HHV6 - that could otherwise cause dementia if they persisted.


Assuntos
Demência , Antígenos HLA , Cadeias HLA-DRB1 , Herpesvirus Humano 6 , Alelos , Antígenos Virais , Simulação por Computador , Demência/prevenção & controle , Antígenos HLA/imunologia , Cadeias HLA-DRB1/imunologia , Herpesvirus Humano 6/imunologia , Humanos
18.
Methods Mol Biol ; 2131: 213-228, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32162256

RESUMO

Discovery of tumor antigenic epitopes is important for cancer vaccine development. Such epitopes can be designed and modified to become more antigenic and immunogenic in order to overcome immunosuppression towards the native tumor antigen. In silico-guided modification of epitope sequences allows predictive discrimination of those that may be potentially immunogenic. Therefore, only candidates predicted with high antigenicity will be selected, constructed, and tested in the lab. Here, we described the employment of in silico tools using a multiparametric approach to assess both potential T-cell epitopes (MHC class I/II binding) and B-cell epitopes (hydrophilicity, surface accessibility, antigenicity, and linear epitope). A scoring and ranking system based on these parameters was developed to shortlist potential mimotope candidates for further development as peptide cancer vaccines.


Assuntos
Antígenos de Neoplasias/química , Vacinas Anticâncer/imunologia , Neoplasias/imunologia , Antígenos de Neoplasias/imunologia , Simulação por Computador , Bases de Dados Genéticas , Desenho de Fármacos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Peptidomiméticos/imunologia , Vacinas de Subunidades Antigênicas/imunologia
19.
Hum Immunol ; 80(7): 493-502, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30769032

RESUMO

Enterobacterial pathogens that have acquired antibiotic resistance genes are a leading cause of community and hospital acquired infections. In such a situation vaccination is considered as a better option to prevent such infections. In the current study reverse vaccinology approach has been used to select peptides from already known immunogenic proteins to design a chimeric construct. We selected Yersiniabactin receptor of Escherichia coli UMN026 and Flagellin of Stenotrophomonas maltophila. B-cell linear epitopes were predicted using Bepipred prediction tool. Peptide binding with reference sets of 27 alleles of MHC class I and class II was also analyzed. The predicted peptides-MHC complexes were further validated using simulation dynamics. The in-silico construction of chimera was done by restriction mapping and codon optimization. Chimera was evaluated using the immunoinformatic approach as done for the selected proteins. From the 673 amino acids of FyuA protein, a region from 1 to 492 was selected for containing more linear epitopes and the processing scores obtained were significant for MHC class I and class II binding. Similarly, from Flagellin, a region between 60 and 328 amino acids was selected and the peptides present in the selected region showed lower percentile ranks for binding with MHC molecules. The simulation studies validated the predictions of peptide-MHC complexes. The selected gene fragments accommodating maximum part of these peptides were used to design a chimaeric construct of 2454 bp. From the immunoinformatic analysis, the chimera was found to be more immunogenic in terms of increased number of B-cell and T-cell epitopes along with increased coverage of global populations with allelic variability.


Assuntos
Epitopos de Linfócito B/imunologia , Escherichia coli/imunologia , Simulação de Acoplamento Molecular/métodos , Vacinas/imunologia , Alelos , Sequência de Aminoácidos , Antígenos de Bactérias/imunologia , Quimera/imunologia , Códon/imunologia , Epitopos de Linfócito T/imunologia , Flagelina/genética , Flagelina/imunologia , Genes MHC Classe I/imunologia , Genes MHC da Classe II/imunologia , Humanos , Fenóis/imunologia , Ligação Proteica , Estrutura Secundária de Proteína , Análise de Sequência de Proteína , Stenotrophomonas/imunologia , Tiazóis/imunologia
20.
PeerJ ; 6: e5056, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042874

RESUMO

BACKGROUND: Somatic point substitution mutations in the KRAS proto-oncogene primarily affect codons 12/13 where glycine is converted into other amino acids, and are highly prevalent in pancreatic, colorectal, and non-small cell lung cancers. These cohorts are non-responsive to anti-EGFR treatments, and are left with non-specific chemotherapy regimens as their sole treatment options. In the past, the development of peptide vaccines for cancer treatment was reported to have poor AT properties when inducing immune responses. Utilization of bioinformatics tools have since become an interesting approach in improving the design of peptide vaccines based on T- and B-cell epitope predictions. METHODS: In this study, the region spanning exon 2 from the 4th to 18th codon within the peptide sequence of wtKRAS was chosen for sequence manipulation. Mutated G12V and G13D K-ras controls were generated in silico, along with additional single amino acid substitutions flanking the original codon 12/13 mutations. IEDB was used for assessing human and mouse MHC class I/II epitope predictions, as well as linear B-cell epitopes predictions, while RNA secondary structure prediction was performed via CENTROIDFOLD. A scoring and ranking system was established in order to shortlist top mimotopes whereby normalized and reducing weighted scores were assigned to peptide sequences based on seven immunological parameters. Among the top 20 ranked peptide sequences, peptides of three mimotopes were synthesized and subjected to in vitro and in vivo immunoassays. Mice PBMCs were treated in vitro and subjected to cytokine assessment using CBA assay. Thereafter, mice were immunized and sera were subjected to IgG-based ELISA. RESULTS: In silico immunogenicity prediction using IEDB tools shortlisted one G12V mimotope (68-V) and two G13D mimotopes (164-D, 224-D) from a total of 1,680 candidates. Shortlisted mimotopes were predicted to promote high MHC-II and -I affinities with optimized B-cell epitopes. CBA assay indicated that: 224-D induced secretions of IL-4, IL-5, IL-10, IL-12p70, and IL-21; 164-D triggered IL-10 and TNF-α; while 68-V showed no immunological responses. Specific-IgG sera titers against mutated K-ras antigens from 164-D immunized Balb/c mice were also elevated post first and second boosters compared to wild-type and G12/G13 controls. DISCUSSION: In silico-guided predictions of mutated K-ras T- and B-cell epitopes were successful in identifying two immunogens with high predictive scores, Th-bias cytokine induction and IgG-specific stimulation. Developments of such immunogens are potentially useful for future immunotherapeutic and diagnostic applications against KRAS(+) malignancies, monoclonal antibody production, and various other research and development initiatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA