Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 171: 104727, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357549

RESUMO

Insecticide resistance is an ongoing challenge in agriculture and disease vector control. Here, we demonstrate a novel strategy to attenuate resistance. We used genomics tools to target fundamental energy-associated pathways and identified a potential "Achilles' heel" for resistance, a resistance-associated protein that, upon inhibition, results in a substantial loss in the resistance phenotype. Specifically, we compared the gene expression profiles and structural variations of the insulin/insulin-like growth factor signaling (IIS) pathway genes in DDT-susceptible (91-C) and -resistant (91-R) Drosophila melanogaster (Drosophila) strains. A total of eight and seven IIS transcripts were up- and down-regulated, respectively, in 91-R compared to 91-C. A total of 114 nonsynonymous mutations were observed between 91-C and 91-R, of which 51.8% were fixed. Among the differentially expressed transcripts, phosphoenolpyruvate carboxykinase (PEPCK), down-regulated in 91-R, encoded the greatest number of amino acid changes, prompting us to perform PEPCK inhibitor-pesticide exposure bioassays. The inhibitor of PEPCK, hydrazine sulfate, resulted in a 161- to 218-fold decrease in the DDT resistance phenotype (91-R) and more than a 4- to 5-fold increase in susceptibility in 91-C. A second target protein, Glycogen synthase kinase 3ß (GSK3ß-PO), had one amino acid difference between 91-C and 91-R, and the corresponding transcript was also down-regulated in 91-R. A GSK3ß-PO inhibitor, lithium chloride, likewise reduced the resistance but to a lesser extent than did hydrazine sulfate for PEPCK. We demonstrate the potential role of IIS genes in DDT resistance and the potential discovery of an "Achilles' heel" against pesticide resistance in this pathway.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , DDT/farmacologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Calcanhar , Resistência a Inseticidas/genética , Insulina , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA