Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 443
Filtrar
1.
Nano Lett ; 24(30): 9245-9252, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39012311

RESUMO

At near-parallel orientation, twisted bilayers of transition metal dichalcogenides exhibit interlayer charge transfer-driven out-of-plane ferroelectricity. Here, we report detailed electrical transport in a dual-gated graphene field-effect transistor placed on a 2.1° twisted bilayer WSe2. We observe hysteretic transfer characteristics and an emergent charge inhomogeneity with multiple local Dirac points evolving with an increasing electric displacement field (D). Concomitantly, we also observe a strong nonlocal voltage signal at D ∼ 0 V/nm that decreases rapidly with increasing D. A linear scaling of the nonlocal signal with longitudinal resistance suggests edge mode transport, which we attribute to the breaking of valley symmetry of graphene due to the spatially fluctuating electric field from the underlying polarized moiré domains. A quantitative analysis suggests the emergence of finite-size domains in graphene that modulate the charge and the valley currents simultaneously. This work underlines the impact of interfacial ferroelectricity that can trigger a new generation of devices.

2.
Magn Reson Med ; 92(3): 1011-1021, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38623991

RESUMO

PURPOSE: Demonstrate the potential of spatiotemporal encoding (SPEN) MRI to deliver largely undistorted 2D, 3D, and diffusion weighted images on a 110 mT portable system. METHODS: SPEN's quadratic phase modulation was used to subsample the low-bandwidth dimension of echo planar acquisitions, delivering alias-free images with an enhanced immunity to image distortions in a laboratory-built, low-field, portable MRI system lacking multiple receivers. RESULTS: Healthy brain images with different SPEN time-bandwidth products and subsampling factors were collected. These compared favorably to EPI acquisitions including topup corrections. Robust 3D and diffusion weighted SPEN images of diagnostic value were demonstrated, with 2.5 mm isotropic resolutions achieved in 3 min scans. This performance took advantage of the low specific absorption rate and relative long TEs associated with low-field MRI. CONCLUSION: SPEN MRI provides a robust and advantageous fast acquisition approach to obtain faithful 3D images and DWI data in low-cost, portable, low-field systems without parallel acceleration.


Assuntos
Encéfalo , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Desenho de Equipamento , Reprodutibilidade dos Testes , Algoritmos , Aumento da Imagem/métodos , Sensibilidade e Especificidade , Análise Espaço-Temporal , Processamento de Sinais Assistido por Computador , Imagem Ecoplanar , Análise de Falha de Equipamento , Interpretação de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética
3.
Magn Reson Med ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301778

RESUMO

PURPOSE: Spatiotemporal encoding (SPEN) MRI offers a unique alternative to address image distortion problems in echo planar acquisition-based techniques, at portable low-field systems that lack multiple receiver coils. However, existing 2-π multislice SPEN schemes fail to keep consistent SNRs and contrasts with different numbers of slice settings. This work proposes a new multislice SPEN scheme (SPENms) to achieve stable quality imaging in portable low-field MRI systems. METHODS: The proposed SPENms includes the insertion of one selective π pulse and one non-selective π pulse, closely arranged together, before the frequency-swept π pulse in the original 2D SPEN sequence. Theoretical simulations and experiments on phantoms and human brains were conducted to validate its SNR and contrast performances under different parameters compared to the existing 2-π multislice SPEN scheme. RESULTS: Both simulations and experiments demonstrate the consistent image quality of SPENms with different scanning parameters and targets, as well as good distortion resistance and scan efficiency. Robust diffusion weighted multislice SPEN images of diagnostic value were also highlighted. CONCLUSION: SPENms provides a robust fast echo planar acquisition approach to obtain multislice 2D images with less distortions, consistent SNRs and contrasts at portable low-field MRI systems.

4.
Magn Reson Med ; 91(6): 2498-2507, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38247050

RESUMO

PURPOSE: To mitigate B 1 + $$ {B}_1^{+} $$ inhomogeneity at 7T for multi-channel transmit arrays using unsupervised deep learning with convolutional neural networks (CNNs). METHODS: Deep learning parallel transmit (pTx) pulse design has received attention, but such methods have relied on supervised training and did not use CNNs for multi-channel B 1 + $$ {B}_1^{+} $$ maps. In this work, we introduce an alternative approach that facilitates the use of CNNs with multi-channel B 1 + $$ {B}_1^{+} $$ maps while performing unsupervised training. The multi-channel B 1 + $$ {B}_1^{+} $$ maps are concatenated along the spatial dimension to enable shift-equivariant processing amenable to CNNs. Training is performed in an unsupervised manner using a physics-driven loss function that minimizes the discrepancy of the Bloch simulation with the target magnetization, which eliminates the calculation of reference transmit RF weights. The training database comprises 3824 2D sagittal, multi-channel B 1 + $$ {B}_1^{+} $$ maps of the healthy human brain from 143 subjects. B 1 + $$ {B}_1^{+} $$ data were acquired at 7T using an 8Tx/32Rx head coil. The proposed method is compared to the unregularized magnitude least-squares (MLS) solution for the target magnetization in static pTx design. RESULTS: The proposed method outperformed the unregularized MLS solution for RMS error and coefficient-of-variation and had comparable energy consumption. Additionally, the proposed method did not show local phase singularities leading to distinct holes in the resulting magnetization unlike the unregularized MLS solution. CONCLUSION: Proposed unsupervised deep learning with CNNs performs better than unregularized MLS in static pTx for speed and robustness.


Assuntos
Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Encéfalo/diagnóstico por imagem
5.
Magn Reson Med ; 92(2): 532-542, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38650080

RESUMO

PURPOSE: CEST can image macromolecules/compounds via detecting chemical exchange between labile protons and bulk water. B1 field inhomogeneity impairs CEST quantification. Conventional B1 inhomogeneity correction methods depend on interpolation algorithms, B1 choices, acquisition number or calibration curves, making reliable correction challenging. This study proposed a novel B1 inhomogeneity correction method based on a direct saturation (DS) removed omega plot model. METHODS: Four healthy volunteers underwent B1 field mapping and CEST imaging under four nominal B1 levels of 0.75, 1.0, 1.5, and 2.0 µT at 5T. DS was resolved using a multi-pool Lorentzian model and removed from respective Z spectrum. Residual spectral signals were used to construct the omega plot as a linear function of 1/ B 1 2 $$ {B}_1^2 $$ , from which corrected signals at nominal B1 levels were calculated. Routine asymmetry analysis was conducted to quantify amide proton transfer (APT) effect. Its distribution across white matter was compared before and after B1 inhomogeneity correction and also with the conventional interpolation approach. RESULTS: B1 inhomogeneity yielded conspicuous artifact on APT images. Such artifact was mitigated by the proposed method. Homogeneous APT maps were shown with SD consistently smaller than that before B1 inhomogeneity correction and the interpolation method. Moreover, B1 inhomogeneity correction from two and four CEST acquisitions yielded similar results, superior over the interpolation method that derived inconsistent APT contrasts among different B1 choices. CONCLUSION: The proposed method enables reliable B1 inhomogeneity correction from at least two CEST acquisitions, providing an effective way to improve quantitative CEST MRI.


Assuntos
Algoritmos , Artefatos , Voluntários Saudáveis , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Masculino , Feminino , Encéfalo/diagnóstico por imagem , Prótons , Substância Branca/diagnóstico por imagem , Imagens de Fantasmas
6.
Magn Reson Med ; 92(3): 967-981, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38297511

RESUMO

PURPOSE: Hyperpolarized xenon MRI suffers from heterogeneous coil bias and magnetization decay that obscure pulmonary abnormalities. Non-physiological signal variability can be mitigated by measuring and mapping the nominal flip angle, and by rescaling the images to correct for signal bias and decay. While flip angle maps can be calculated from sequentially acquired images, scan time and breath-hold duration are doubled. Here, we exploit the low-frequency oversampling of 2D-spiral and keyhole reconstruction to measure flip angle maps from a single acquisition. METHODS: Flip angle maps were calculated from two images generated from a single dataset using keyhole reconstructions and a Bloch-equation-based model suitable for hyperpolarized substances. Artifacts resulting from acquisition and reconstruction schemes (e.g., keyhole reconstruction radius, slice-selection profile, spiral-ordering, and oversampling) were assessed using point-spread functions. Simulated flip angle maps generated using keyhole reconstruction were compared against the paired-image approach using RMS error (RMSE). Finally, feasibility was demonstrated for in vivo xenon ventilation imaging. RESULTS: Simulations demonstrated accurate flip angle maps and B1-inhomogeneity correction can be generated with only 1.25-fold central-oversampling and keyhole reconstruction radius = 5% (RMSE = 0.460°). These settings also generated accurate flip angle maps in a healthy control (RSME = 0.337°) and a person with cystic fibrosis (RMSE = 0.404°) in as little as 3.3 s. CONCLUSION: Regional lung ventilation images with reduced impact of B1-inhomogeneity can be acquired rapidly by combining 2D-spiral acquisition, Bloch-equation-based modeling, and keyhole reconstruction. This approach will be especially useful for breath-hold studies where short scan durations are necessary, such as dynamic imaging and applications in children or people with severely compromised respiratory function.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Pulmão , Imageamento por Ressonância Magnética , Isótopos de Xenônio , Humanos , Imageamento por Ressonância Magnética/métodos , Isótopos de Xenônio/química , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Simulação por Computador , Algoritmos , Masculino , Feminino , Imagens de Fantasmas , Adulto , Suspensão da Respiração , Fibrose Cística/diagnóstico por imagem
7.
Magn Reson Med ; 91(6): 2508-2518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38321602

RESUMO

PURPOSE: The purpose of this study is to improve the image quality of diffusion-weighted images obtained with a single RF transmit channel 7 T MRI setup using time-resampled frequency-offset corrected inversion (TR-FOCI) pulses to refocus the spins in a twice-refocused spin-echo readout scheme. METHODS: We replaced the conventional Shinnar-Le Roux-pulses in the twice refocused diffusion sequence with TR-FOCI pulses. The slice profiles were evaluated in simulation and experimentally in phantoms. The image quality was evaluated in vivo comparing the Shinnar-Le Roux and TR-FOCI implementation using a b value of 0 and of 1000 s/mm2. RESULTS: The b0 and diffusion-weighted images acquired using the modified sequence improved the image quality across the whole brain. A region of interest-based analysis showed an SNR increase of 113% and 66% for the nondiffusion-weighted (b0) and the diffusion-weighted (b = 1000 s/mm2) images in the temporal lobes, respectively. Investigation of all slices showed that the adiabatic pulses mitigated B 1 + $$ {B}_1^{+} $$ inhomogeneity globally using a conventional single-channel transmission setup. CONCLUSION: The TR-FOCI pulse can be used in a twice-refocused spin-echo diffusion pulse sequence to mitigate the impact of B 1 + $$ {B}_1^{+} $$ inhomogeneity on the signal intensity across the brain at 7 T. However, further work is needed to address SAR limitations.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imagens de Fantasmas
8.
Magn Reson Med ; 92(2): 869-880, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38469911

RESUMO

PURPOSE: Ultra-high field MRI offers unprecedented detail for noninvasive visualization of the human brain. However, brain imaging is challenging at 7T due to the B 1 + $$ {}_1^{+} $$ field inhomogeneity, which results in signal intensity drops in temporal lobes and a bright region in the brain center. This study aims to evaluate using a metasurface to improve brain imaging at 7T and simplify the investigative workflow. METHODS: Two flexible metasurfaces comprising a periodic structure of copper strips and parallel-plate capacitive elements printed on an ultra-thin substrate were optimized for brain imaging and implemented via PCB. We considered two setups: (1) two metasurfaces located near the temporal lobes and (2) one metasurface placed near the occipital lobe. The effect of metasurface placement on the transmit efficiency and specific absorption rate was evaluated via electromagnetic simulation studies with voxelized models. In addition, their impact on signal-to-noise ratio (SNR) and diagnostic image quality was assessed in vivo for two male and one female volunteers. RESULTS: Placement of metasurfaces near the regions of interest led to an increase in homogeneity of the transmit field by 5% and 10.5% in the right temporal lobe and occipital lobe for a male subject, respectively. SAR efficiency values changed insignificantly, dropping by less than 8% for all investigated setups. In vivo studies also confirmed the numerically predicted improvement in field distribution and receive sensitivity in the desired ROI. CONCLUSION: Optimized metasurfaces enable homogenizing transmit field distribution in the brain at 7T. The proposed lightweight and flexible structure can potentially provide MR examination with higher diagnostic value images.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Razão Sinal-Ruído , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Masculino , Feminino , Desenho de Equipamento , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Simulação por Computador , Adulto , Algoritmos
9.
Magn Reson Med ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250435

RESUMO

PURPOSE: To develop a 3D spherical EPTI (sEPTI) acquisition and a comprehensive reconstruction pipeline for rapid high-quality whole-brain submillimeter T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and QSM quantification. METHODS: For the sEPTI acquisition, spherical k-space coverage is utilized with variable echo-spacing and maximum kx ramp-sampling to improve efficiency and signal incoherency compared to existing EPTI approaches. For reconstruction, an iterative rank-shrinking B0 estimation and odd-even high-order phase correction algorithms were incorporated into the reconstruction to better mitigate artifacts from field imperfections. A physics-informed unrolled network was utilized to boost the SNR, where 1-mm and 0.75-mm isotropic whole-brain imaging were performed in 45 and 90 s at 3 T, respectively. These protocols were validated through simulations, phantom, and in vivo experiments. Ten healthy subjects were recruited to provide sufficient data for the unrolled network. The entire pipeline was validated on additional five healthy subjects where different EPTI sampling approaches were compared. Two additional pediatric patients with epilepsy were recruited to demonstrate the generalizability of the unrolled reconstruction. RESULTS: sEPTI achieved 1.4 × $$ \times $$ faster imaging with improved image quality and quantitative map precision compared to existing EPTI approaches. The B0 update and the phase correction provide improved reconstruction performance with lower artifacts. The unrolled network boosted the SNR, achieving high-quality T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and QSM quantification with single average data. High-quality reconstruction was also obtained in the pediatric patients using this network. CONCLUSION: sEPTI achieved whole-brain distortion-free multi-echo imaging and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and QSM quantification at 0.75 mm in 90 s which has the potential to be useful for wide clinical applications.

10.
NMR Biomed ; : e5198, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840502

RESUMO

BACKGROUND: Very low-field MR has emerged as a promising complementary device to high-field MRI scanners, offering several advantages. One of the key benefits is that very low-field scanners are generally more portable and affordable to purchase and maintain, making them an attractive option for medical facilities looking to reduce costs. Very low-field MRI systems also have lower RF power deposition, making them safer and less likely to cause tissue heating or other safety concerns. They are also simpler to maintain, as they do not require cooling agents such as liquid helium. However, these portable MR scanners are impacted by temperature, lower magnetic field strength, and inhomogeneity, resulting in images with lower signal-to-noise ratio (SNR) and higher geometric distortions. It is essential to investigate and tabulate the variations in these parameters to establish bounds so that subsequent in vivo studies and deployment of these portable systems can be well informed. PURPOSE: The aim of this work is to investigate the repeatability of image quality metrics such as SNR and geometrical distortion at 0.05 T over 10 days and three sessions per day. METHODS: We acquired repeatability data over 10 days with three sessions per day. The measurements included temperature, humidity, transmit frequency, off-resonance maps, and 3D turbo spin echo (TSE) images of an in vitro phantom. This resulted in a protocol with 11 sequences. We also acquired a 3 T data set for reference. The image quality metrics included computing SNR and eccentricity (to assess geometrical distortion) to investigate the repeatability of 0.05 T image quality. The image reconstruction included drift correction, k-space filtering, and off-resonance correction. We computed the experimental parameters' coefficient of variation (CV) and the resulting image quality metrics to assess repeatability. We have explored the impact of electromagnetic interference (EMI) on image quality in very low-field MRI. The investigation involved varying both the distance and amplitude of the EMI-producing coil from the signal generator to analyze their effects on image quality. RESULTS: The range of temperature measured during the study was within 1.5 °C. The off-resonance maps acquired before and after the 3D TSE showed similar hotspots and were changed mainly by a global constant. The SNR measurements were highly repeatable across sessions and over the 10 days, quantified by a CV of 6.7%. The magnetic field inhomogeneity effects quantified by eccentricity showed a CV of 13.7%, but less than 5.1% in two of the three sessions over 10 days. The use of conjugate phase reconstruction mitigated geometrical distortion artifacts. Temperature and humidity did not significantly affect SNR or mean frequency drift within the ranges of these environmental factors investigated. The EMI experiment showed that as the amplitude increased the SNR decreased, and concurrently the root mean square of the background increased with a rise in EMI amplitude or a reduction in distance. CONCLUSIONS: We found that humidity and temperature in the range investigated did not impact SNR or frequency. Based on the CV values computed session-wise and for the overall study, our findings indicate high repeatability for SNR and magnetic field homogeneity.

11.
NMR Biomed ; : e5224, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082385

RESUMO

We aim to assess a straightforward technique to enhance spectral quality in the brain, particularly in the cerebellum, during 7 T MRI scans. This is achieved through a wireless RF array insert designed to mitigate signal dropouts caused by the limited transmit field efficiency in the inferior part of the brain. We recently developed a wireless RF array to improve MRI and 1H-MRS at 7 T by augmenting signal via inductive coupling between the wireless RF array and the MRI coil. In vivo experiments on a Siemens 7 T whole-body human scanner with a Nova 1Tx/32Rx head coil quantified the impact of the dorsal cervical array in improving signal in the posterior fossa, including the cerebellum, where the transmit efficiency of the coil is inherently low. The 1H-MRS experimental protocol consisted of paired acquisition of data sets, both with and without the RF array, using the semi-LASER and SASSI sequences. The overall results indicate that the localized 1H-MRS is improved significantly in the presence of the array. Comparison of in vivo 1H-MRS plots in the presence versus absence of the array demonstrated an average SNR enhancement of a factor of 2.2. LCModel analysis reported reduced Cramér-Rao lower bounds, indicating more confident fits. This wireless RF array can significantly increase detection sensitivity. It may reduce the RF transmission power and data acquisition time for 1H-MRS and MRI applications, specifically at 7 T, where 1H-MRS requires a high-power RF pulse. The array could provide a cost-effective and efficient solution to improve detection sensitivity for human 1H-MRS and MRI in the regions with lower transmit efficiency.

12.
J Magn Reson Imaging ; 60(2): 777-788, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38305462

RESUMO

BACKGROUND: The minimum admissible detuning efficiency (DE) of a receive coil is an essential parameter for coil designers. A receive coil with inefficient detuning leads to inhomogeneous B1 during excitation. Previously proposed criteria for quantifying the DE rely on indirect measurements and are difficult to implement. PURPOSE: To present an alternative method to quantify the DE of receive-only surface coils. STUDY TYPE: Theoretical study supported by simulations and phantom experiments. PHANTOMS: Uniform spherical (100 mm diameter) and cylindrical (66 mm diameter) phantoms. FIELD STRENGTH/SEQUENCE: Dual repetition time B1 mapping sequence at 1.5T, and Bloch-Siegert shift B1 mapping sequence at 3.0T. ASSESSMENT: One non-planar (80 × 43 mm2) and two planar (40 and 57 mm diameter) surface coils were built. Theoretical analysis was performed to determine the minimum DE required to avoid B1 distortions. Experimental B1 maps were acquired for the non-planar and planar surface coils at both 1.5T and 3.0T and visually compared with simulated B1 maps to assess the validity of the theoretical analysis. STATISTICAL TESTS: None. RESULTS: Based on the theoretical analysis, the proposed minimum admissible DE, defined as DEthr = 20 Log (Q) + 13 dB, depended only on the quality factor (Q) of the coil and was independent of coil area and field strength. Simulations and phantom experiments showed that when the DE was higher than this minimum threshold level, the B1 field generated by the transmission coil was not modified by the receive coil. DATA CONCLUSION: The proposed criterion for assessing the DE is simple to measure, and does not depend on the area of the coil or on the magnetic field strength, up to 3T. Experimental and simulated B1 maps confirmed that detuning efficiencies above the theoretically derived minimal admissible DE resulted in a non-distorted B1 field. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Simulação por Computador , Desenho de Equipamento , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Imageamento por Ressonância Magnética/instrumentação , Reprodutibilidade dos Testes , Humanos , Processamento de Imagem Assistida por Computador , Algoritmos , Modelos Teóricos
13.
Sensors (Basel) ; 24(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39204951

RESUMO

The best method to prevent error due to inhomogeneity is to use a new thermocouple design-the thermocouple with controlled temperature field (TCTF). It uses the auxiliary furnace to control the temperature field along its legs. Such a design allows setting and maintaining the temperature field along the thermocouple (TC) legs for the sensor. Error due to inhomogeneity of TCs cannot appear in a stable temperature field. However, the auxiliary furnace and TCs, to control the temperature field, have errors, so the temperature field along the main TC is maintained with some error. This leads to residual error due to acquired inhomogeneity of the TCTF. We constructed the mathematical models to fit the experimental data of error due to drift for the type K TC. The authors used the constructed models to study error due to inhomogeneity of the TCTF and the conventional type K TC under considerable changes in temperature field. The main results of modelling are as follows: (i) if the changes in temperature field exceed 7 °C, error due to inhomogeneity of the TCTF is lesser than that of the conventional TC; (ii) the maximum error due to inhomogeneity of the conventional type K TC is 10.75 °C; (iii) the maximum error due to inhomogeneity of the TCTF is below 0.2 °C.

14.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474129

RESUMO

Li3V2(PO4)3 cathodes for Li-ion batteries (LIBs) were synthesized using a hydrothermal method with the subsequent annealing in an argon atmosphere to achieve optimal properties. The X-ray diffraction analysis confirmed the material's single-phase nature, while the scanning electron microscopy revealed a granular structure, indicating a uniform particle size distribution, beneficial for electrochemical performance. Magnetometry and electron spin resonance studies were conducted to investigate the magnetic properties, confirming the presence of the relatively low concentration and highly uniform distribution of tetravalent vanadium ions (V4+), which indicated low lithium deficiency values in the original structure and a high degree of magnetic homogeneity in the sample, an essential factor for consistent electrochemical behavior. For this pure phase Li3V2(PO4)3 sample, devoid of any impurities such as carbon or salts, extensive electrochemical property testing was performed. These tests resulted in the experimental discovery of a remarkably high lithium diffusion coefficient D = 1.07 × 10-10 cm2/s, indicating excellent ionic conductivity, and demonstrated impressive stability of the material with sustained performance over 1000 charge-discharge cycles. Additionally, relithiated Li3V2(PO4)3 (after multiple electrochemical cycling) samples were investigated using scanning electron microscopy, magnetometry and electron spin resonance methods to determine the extent of degradation. The combination of high lithium diffusion coefficients, a low degradation rate and remarkable cycling stability positions this Li3V2(PO4)3 material as a promising candidate for advanced energy storage applications.


Assuntos
Lítio , Argônio , Condutividade Elétrica , Eletrodos , Íons
15.
BMC Oral Health ; 24(1): 865, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080607

RESUMO

BACKGROUND: Recent studies have reported the inhomogeneity in the light emitted by dental light-curing units (LCUs). It is essential to understand how this uneven light distribution affects the physical properties of resin-based composites (RBCs) at various points across their surfaces. This study aimed to evaluate the effect of LCU beam's inhomogeneity on the microhardness of RBCs with different shades and thicknesses. METHODS: Four body (A1B, A2B, A3B, and A4B), one dentin (A3D), and one enamel shade (A3E) of RBC (Filtek Z350 XT) were examined. The specimens were fabricated in four thicknesses (1, 2, 3, and 4 mm) and subjected to a 40-second light-curing. Vickers microhardness testing was performed at the center point, and 3 mm left and right from the center at the bottom surface of each sample. The LCU beam profile was characterized using a beam profiler, while irradiance after specimen passage was measured using a spectrometer. One-way analysis of variance (ANOVA) and Tukey's post-hoc tests were used to analyze the effects of shades and thicknesses on irradiance and microhardness, respectively. One-way repeated-measures ANOVA was used to compare the microhardness across different points. Pearson's correlation analysis examined the relationship between irradiance and microhardness. RESULTS: The beam profile of LCU revealed inhomogeneous light distribution. Light irradiance was decreased with both the increase in thickness and darker shade of the specimens (p < 0.05). Microhardness was found to decline with an increase in sample thickness (p < 0.05), and was consistently higher at the center point compared to the periphery, particularly in thicker (3 and 4 mm) and darker shades (A3B, A4B, and A3D). A positive correlation was found between the irradiance and microhardness across all evaluated points (p < 0.05). CONCLUSIONS: Inhomogeneous light emission from LCU significantly influences the microhardness of RBC samples, depending on the thicknesses and shades. The findings underline the importance of considering LCU beam inhomogeneity in clinical settings to ensure optimal polymerization of RBC.


Assuntos
Cor , Resinas Compostas , Lâmpadas de Polimerização Dentária , Dureza , Teste de Materiais , Resinas Compostas/efeitos da radiação , Resinas Compostas/química , Humanos , Propriedades de Superfície , Cura Luminosa de Adesivos Dentários/métodos , Esmalte Dentário/efeitos da radiação , Dentina/efeitos da radiação , Materiais Dentários/efeitos da radiação , Materiais Dentários/química , Polimerização , Luz
16.
Math Mech Solids ; 29(1): 121-128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38130974

RESUMO

We study the anti-plane strain problem associated with a p-Laplacian nonlinear elastic elliptical inhomogeneity embedded in an infinite linear elastic matrix subjected to uniform remote anti-plane stresses. A full-field exact solution is derived using complex variable techniques. It is proved that the stress field inside the elliptical inhomogeneity is nevertheless uniform. The uniformity of stresses is also observed inside a p-Laplacian nonlinear elastic parabolic inhomogeneity.

17.
Angew Chem Int Ed Engl ; 63(15): e202400012, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38340327

RESUMO

Hollow nanoporous carbon architectures (HNCs) present significant utilitarian value for a wide variety of applications. Facile and efficient preparation of HNCs has long been pursued but still remains challenging. Herein, we for the first time demonstrate that single-component metal-organic frameworks (MOFs) crystals, rather than the widely reported hybrid ones which necessitate tedious operations for preparation, could enable the facile and versatile syntheses of functional HNCs. By controlling the growth kinetics, the MOFs crystals (STU-1) are readily engineered into different shapes with designated styles of crystalline inhomogeneity. A subsequent one-step pyrolysis of these MOFs with intraparticle difference can induce a simultaneous self-hollowing and carbonization process, thereby producing various functional HNCs including yolk-shell polyhedrons, hollow microspheres, mesoporous architectures, and superstructures. Superior to the existing methods, this synthetic strategy relies only on the complex nature of single-component MOFs crystals without involving tedious operations like coating, etching, or ligand exchange, making it convenient, efficient, and easy to scale up. An ultra-stable Na-ion battery anode is demonstrated by the HNCs with extraordinary cyclability (93 % capacity retention over 8000 cycles), highlighting a high level of functionality of the HNCs.

18.
Neuroimage ; 268: 119868, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36646161

RESUMO

Cortico-spinal fMRI acquisitions aim to investigate direct interactions between brain and spinal cord, e.g. during motor output or pain processing, by covering both regions in a single measurement. Due to their large distance and location in the body, a dynamic shim update of constant and linear shim terms is required when using echo-planar imaging (EPI) to achieve reasonable image quality in both target regions. A previously presented approach with region-wise shim settings is based on a standard single-region shim algorithm and suffers from (i) non-optimal shim settings because it combines linear and second-order shim terms optimized for different volumes, and (ii) significant user interactions making it rather cumbersome, time consuming, and error-prone. Here, a dedicated ("CoSpi") shim algorithm for cortico-spinal fMRI is presented that performs joint optimization of static second-order shim terms and one set of linear and constant shim terms for each region in a single run and with minimal user interaction. Field map and T2*-weighted EPI measurements were performed on a clinical 3 T whole-body MR system in water phantoms and five healthy volunteers using the conventional region-wise and CoSpi shim settings as well as "gold standard" shim settings optimized for one of the target regions only. With CoSpi shim settings, (i) overall field inhomogeneity was reduced by about 65% / 75% (brain / spinal cord volume) compared to the conventional region-wise approach and in vivo was within 5% of the values obtained with the single-volume shim settings, (ii) geometric distortions derived from voxel displacement maps were reduced on average by about 35% / 70%, (iii) the temporal SNR determined from an EPI time series that may reflect the impact of through-slice dephasing, was increased by about 17% / 10%, and (iv) the variation of the mean field between slices, a measure targeting the predisposition to insufficient fat saturation and GRAPPA-related ghosting artifacts, was reduced by about 90% / 45%. Thus, the presented algorithm not only speeds up and simplifies the shim procedure considerably, but also provides a better field homogeneity and image quality, which both could help to significantly improve the applicability of cortico-spinal fMRI.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Humanos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Algoritmos
19.
Small ; 19(50): e2304546, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37626462

RESUMO

Crystalline/amorphous phase engineering is demonstrated as a powerful strategy for electrochemical performance optimization. However, it is still a considerable challenge to prepare transition metal-based crystalline/amorphous heterostructures because of the low redox potential of transition metal ions. Herein, a facile H2 -assisted method is developed to prepare ternary Ni2 P/MoNiP2 /MoP crystalline/amorphous heterostructure nanowires on the conductive substrate. The characterization results show that the content of the MoNiP2 phase and the crystallinity of the MoP phase can be tuned by simply controlling the H2 concentration. The obtained electrocatalyst exhibits a superior alkaline hydrogen evolution reaction performance, delivering overpotentials of 20 and 76 mV to reach current densities of 10 and 100 mA cm-2 with a Tafel slope of 30.6 mV dec-1 , respectively. The catalysts also reveal excellent stability under a constant 100 h operation, higher than most previously reported electrocatalysts. These striking performances are ascribed to the optimized hydrogen binding energy and favorable hydrogen adsorption/desorption kinetics. This work not only exhibits the potential application of ternary Ni2 P/MoNiP2 /MoP crystalline/amorphous heterostructure nanowires catalysts for practical electrochemical water splitting, but also paves the way to prepare non-noble transition metal-based electrocatalysts with optimized crystalline/amorphous heterostructures.

20.
Magn Reson Med ; 90(1): 166-176, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36961093

RESUMO

PURPOSE: To characterize the mechanism of formation and the removal of aliasing artifacts and edge ghosts in spatiotemporally encoded (SPEN) MRI within a k-space theoretical framework. METHODS: SPEN's quadratic phase modulation can be described in k-space by a convolution matrix whose coefficients derive from Fourier relations. This k-space model allows us to pose SPEN's reconstruction as a deconvolution process from which aliasing and edge ghost artifacts can be quantified by estimating the difference between a full sampling and reconstructions resulting from undersampled SPEN data. RESULTS: Aliasing artifacts in SPEN MRI reconstructions can be traced to image contributions corresponding to high-frequency k-space signals. The k-space picture provides the spatial displacements, phase offsets, and linear amplitude modulations associated to these artifacts, as well as routes to removing these from the reconstruction results. These new ways to estimate the artifact priors were applied to reduce SPEN reconstruction artifacts on simulated, phantom, and human brain MRI data. CONCLUSION: A k-space description of SPEN's reconstruction helps to better understand the signal characteristics of this MRI technique, and to improve the quality of its resulting images.


Assuntos
Algoritmos , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Proteínas de Ligação a DNA , Proteínas de Ligação a RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA