Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(40): e2208844119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36179047

RESUMO

Aberrant fibroblast growth factor 19 (FGF19) signaling mediated by its receptor, FGF receptor 4 (FGFR4), and coreceptor, klotho ß (KLB), is a driver of hepatocellular carcinoma (HCC). Several potent FGFR4-selective inhibitors have been developed but have exhibited limited efficacy in HCC clinical trials. Here, by using HCC cell line models from the Cancer Cell Line Encyclopedia (CCLE) and the Liver Cancer Model Repository (LIMORE), we show that selective FGFR4 inactivation was not sufficient to inhibit cancer cell proliferation and tumor growth in FGF19-positive HCC. Moreover, genetic inactivation of KLB in these HCC cells resulted in a fitness defect more severe than that resulting from inactivation of FGFR4. By a combination of biochemical and genetic approaches, we found that KLB associated with FGFR3 and FGFR4 to mediate the prosurvival functions of FGF19. KLB mutants defective in interacting with FGFR3 or FGFR4 could not support the growth or survival of HCC cells. Genome-wide CRISPR loss-of-function screening revealed that FGFR3 restricted the activity of FGFR4-selective inhibitors in inducing cell death; the pan-FGFR inhibitor erdafitinib displayed superior potency than FGFR4-selective inhibitors in suppressing the growth and survival of FGF19-positive HCC cells. Among FGF19-positive HCC cases from The Cancer Genome Atlas (TCGA), FGFR3 is prevalently coexpressed with FGFR4 and KLB, suggesting that FGFR redundancy may be a common mechanism underlying the de novo resistance to FGFR4 inhibitors. Our study provides a rationale for clinical testing of pan-FGFR inhibitors as a treatment strategy for FGF19-positive HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo
2.
J Physiol ; 600(7): 1771-1790, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35081669

RESUMO

Intrauterine growth restriction (IUGR) is a leading cause of neonatal morbidity and mortality in humans and domestic animals. Developmental adaptations of skeletal muscle in IUGR lead to increased risk of premature muscle loss and metabolic disease in later life. Here, we identified ß-Klotho (KLB), a fibroblast growth factor 21 (FGF21) co-receptor, as a novel regulator of muscle development in IUGR. Using the pig as a naturally-occurring disease model, we performed transcriptome-wide profiling of fetal muscle (day 90 of pregnancy) from IUGR and normal-weight (NW) littermates. We found that, alongside large-scale transcriptional changes comprising multiple developmental, tissue injury and metabolic gene pathways, KLB was increased in IUGR muscle. Moreover, FGF21 concentrations were increased in plasma in IUGR fetuses. Using cultures of fetal muscle progenitor cells (MPCs), we showed reduced myogenic capacity of IUGR compared to NW muscle in vitro, as evidenced by differences in fusion indices and myogenic transcript levels, as well as mechanistic target of rapamycin (mTOR) activity. Moreover, transfection of MPCs with KLB small interfering RNA promoted myogenesis and mTOR activation, whereas treatment with FGF21 had opposite and dose-dependent effects in porcine and also in human fetal MPCs. In conclusion, our results identify KLB as a novel and potentially critical mediator of impaired muscle development in IUGR, through conserved mechanisms in pigs and humans. Our data shed new light onto the pathogenesis of IUGR, a significant cause of lifelong ill-health in humans and animals. KEY POINTS: Intrauterine growth restriction (IUGR) is associated with large-scale transcriptional changes in developmental, tissue injury and metabolic gene pathways in fetal skeletal muscle. Levels of the fibroblast growth factor 21 (FGF21) co-receptor, ß-Klotho (KLB) are increased in IUGR fetal muscle, and FGF21 concentrations are increased in IUGR fetal plasma. KLB mediates a reduction in muscle development through inhibition of mechanistic target of rapamycin signalling. These effects of KLB on muscle cells are conserved in pig and human, suggesting a vital role of this protein in the regulation of muscle development and function in mammals.


Assuntos
Retardo do Crescimento Fetal , Desenvolvimento Muscular , Animais , Feminino , Mamíferos , Músculo Esquelético/metabolismo , Gravidez , Transdução de Sinais , Suínos
3.
Gastroenterology ; 157(5): 1413-1428.e11, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31352001

RESUMO

BACKGROUND & AIMS: Obesity is a risk factor for pancreatic cancer. In mice, a high-fat diet (HFD) and expression of oncogenic KRAS lead to development of invasive pancreatic ductal adenocarcinoma (PDAC) by unknown mechanisms. We investigated how oncogenic KRAS regulates the expression of fibroblast growth factor 21, FGF21, a metabolic regulator that prevents obesity, and the effects of recombinant human FGF21 (rhFGF21) on pancreatic tumorigenesis. METHODS: We performed immunohistochemical analyses of FGF21 levels in human pancreatic tissue arrays, comprising 59 PDAC specimens and 45 nontumor tissues. We also studied mice with tamoxifen-inducible expression of oncogenic KRAS in acinar cells (KrasG12D/+ mice) and fElasCreERT mice (controls). KrasG12D/+ mice were placed on an HFD or regular chow diet (control) and given injections of rhFGF21 or vehicle; pancreata were collected and analyzed by histology, immunoblots, quantitative polymerase chain reaction, and immunohistochemistry. We measured markers of inflammation in the pancreas, liver, and adipose tissue. Activity of RAS was measured based on the amount of bound guanosine triphosphate. RESULTS: Pancreatic tissues of mice expressed high levels of FGF21 compared with liver tissues. FGF21 and its receptor proteins were expressed by acinar cells. Acinar cells that expressed KrasG12D/+ had significantly lower expression of Fgf21 messenger RNA compared with acinar cells from control mice, partly due to down-regulation of PPARG expression-a transcription factor that activates Fgf21 transcription. Pancreata from KrasG12D/+ mice on a control diet and given injections of rhFGF21 had reduced pancreatic inflammation, infiltration by immune cells, and acinar-to-ductal metaplasia compared with mice given injections of vehicle. HFD-fed KrasG12D/+ mice given injections of vehicle accumulated abdominal fat, developed extensive inflammation, pancreatic cysts, and high-grade pancreatic intraepithelial neoplasias (PanINs); half the mice developed PDAC with liver metastases. HFD-fed KrasG12D/+ mice given injections of rhFGF21 had reduced accumulation of abdominal fat and pancreatic triglycerides, fewer pancreatic cysts, reduced systemic and pancreatic markers of inflammation, fewer PanINs, and longer survival-only approximately 12% of the mice developed PDACs, and none of the mice had metastases. Pancreata from HFD-fed KrasG12D/+ mice given injections of rhFGF21 had lower levels of active RAS than from mice given vehicle. CONCLUSIONS: Normal acinar cells from mice and humans express high levels of FGF21. In mice, acinar expression of oncogenic KRAS significantly reduces FGF21 expression. When these mice are placed on an HFD, they develop extensive inflammation, pancreatic cysts, PanINs, and PDACs, which are reduced by injection of FGF21. FGF21 also reduces the guanosine triphosphate binding capacity of RAS. FGF21 might be used in the prevention or treatment of pancreatic cancer.


Assuntos
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Transformação Celular Neoplásica/metabolismo , Dieta Hiperlipídica , Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias Intraductais Pancreáticas/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Acinares/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/prevenção & controle , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação para Baixo , Fatores de Crescimento de Fibroblastos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Klotho , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Mutação , PPAR gama/genética , PPAR gama/metabolismo , Cisto Pancreático/genética , Cisto Pancreático/metabolismo , Cisto Pancreático/patologia , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Intraductais Pancreáticas/prevenção & controle , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/prevenção & controle , Pancreatite/genética , Pancreatite/metabolismo , Pancreatite/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
J Cell Physiol ; 234(3): 2500-2510, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30317562

RESUMO

Previous studies suggest that specific binding to the complex consisting of fibroblast growth factor receptor-1 (FGFR1) and the coreceptor beta-Klotho (KLB) is the premise for human FGF19 and FGF21 activating the downstream signaling cascades, and regulating the metabolic homeostasis. However, it was found that human FGF21 loses its ability to bind to FGFR1-KLB after iodination with Na125 I and chloramine T, whereas human FGF19 retained its affinity for FGFR1-KLB even after iodination. The molecular mechanisms underlying these differences remained elusive. In this study, we first demonstrated that an intramolecular disulfide bond was formed between cysteine-102 and cysteine-121 in FGF21, implying that the oxidation of the cysteine to cysteic acid, which may interfere with the active conformation of FGF21, did not occur during the iodination procedures, and thus ruled out the possibility of the two conserved cysteine residues mediating the loss of FGF21 binding affinity to FGFR1-KLB upon iodination. Site-directed mutagenesis and molecular modeling were further applied to determine the residue(s) responsible for the loss of FGFR1-KLB affinity. The results showed that mutation of a single tyrosine-207, but not the other five tyrosine residues in FGF21, to a phenylalanine retained the FGFR1-KLB affinity of FGF21 even after iodination, whereas replacing the corresponding phenylalanine residue with tyrosine in FGF19 did not alter its binding affinity to FGFR1-KLB, but decreased the receptor binding ability of the iodinated protein, suggesting that tyrosine-207 is the crucial amino acid responsible for the loss of specifying FGFR1-KLB affinity of the iodinated FGF21.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Proteínas de Membrana/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Aminoácidos/efeitos dos fármacos , Aminoácidos/genética , Linhagem Celular , Cloraminas/farmacologia , Fatores de Crescimento de Fibroblastos/efeitos dos fármacos , Halogenação , Homeostase/genética , Humanos , Proteínas Klotho , Oxirredução/efeitos dos fármacos , Fenilalanina/genética , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Iodeto de Sódio/farmacologia , Compostos de Tosil/farmacologia , Tirosina/efeitos dos fármacos
5.
Liver Int ; 39(9): 1682-1691, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30698907

RESUMO

BACKGROUND AND AIMS: Fibroblast growth factor 19 (FGF19) and fibroblast growth factor receptor 4 (FGFR4) signalling play critical roles in hepatocarcinogenesis. This study explored the potential of FGF19- and FGFR4-related biomarkers in predicting early tumour recurrence (ETR) and survival in patients with resectable hepatocellular carcinoma (HCC). METHODS: We examined the mRNA expressions of FGF19, FGFR4, klotho-beta (KLB), cyclin D1 (CCND1) and FGF4 in 151 surgically resected, primary unifocal HCCs through quantitative real-time polymerase chain reaction. Generalized additive models were fitted to detect nonlinear effects of continuous covariates and define thresholds of biomarker expressions. Univariate and multivariate analyses were performed to evaluate prognostic values of these biomarkers for tumour recurrence and patient survival. RESULTS: Overexpression of FGF19, FGFR4, KLB, CCND1 and FGF4 mRNA was detected in 40%, 32%, 26%, 15% and 35% of 151 tumours respectively. ETR was the strongest prognostic factor predicting worse overall survival (hazard ratio [HR], 5.678; 95% confidence interval, 3.7-8.713; P < 0.001). Furthermore, we revealed that mRNA expression levels of KLB (HR, 3.857; P = 0.021) and FGF19 (HR, 3.248; P = 0.017) were significantly associated with the occurrence of ETR. CONCLUSIONS: Frequent overexpression of FGF19/FGFR4-related biomarkers was detected in resectable HCC. Expression levels of KLB and FGF19 may determine patient survival outcomes through their effects on ETR.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismo , Recidiva Local de Neoplasia/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinogênese , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/cirurgia , Proliferação de Células/efeitos dos fármacos , Feminino , Fatores de Crescimento de Fibroblastos/genética , Humanos , Proteínas Klotho , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/cirurgia , Modelos Logísticos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Prognóstico , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Taiwan , Adulto Jovem
6.
Gastroenterology ; 152(3): 571-585.e8, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27765690

RESUMO

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is associated with increased risk of hepatic, cardiovascular, and metabolic diseases. High-protein diets, rich in methionine and branched chain amino acids (BCAAs), apparently reduce liver fat, but can induce insulin resistance. We investigated the effects of diets high in animal protein (AP) vs plant protein (PP), which differ in levels of methionine and BCAAs, in patients with type 2 diabetes and NAFLD. We examined levels of liver fat, lipogenic indices, markers of inflammation, serum levels of fibroblast growth factor 21 (FGF21), and activation of signaling pathways in adipose tissue. METHODS: We performed a prospective study of individuals with type 2 diabetes and NAFLD at a tertiary medical center in Germany from June 2013 through March 2015. We analyzed data from 37 subjects placed on a diet high in AP (rich in meat and dairy foods; n = 18) or PP (mainly legume protein; n = 19) without calorie restriction for 6 weeks. The diets were isocaloric with the same macronutrient composition (30% protein, 40% carbohydrates, and 30% fat). Participants were examined at the start of the study and after the 6-week diet period for body mass index, body composition, hip circumference, resting energy expenditure, and respiratory quotient. Body fat and intrahepatic fat were detected by magnetic resonance imaging and spectroscopy, respectively. Levels of glucose, insulin, liver enzymes, and inflammation markers, as well as individual free fatty acids and free amino acids, were measured in collected blood samples. Hyperinsulinemic euglycemic clamps were performed to determine whole-body insulin sensitivity. Subcutaneous adipose tissue samples were collected and analyzed for gene expression patterns and phosphorylation of signaling proteins. RESULTS: Postprandial levels of BCAAs and methionine were significantly higher in subjects on the AP vs the PP diet. The AP and PP diets each reduced liver fat by 36%-48% within 6 weeks (for AP diet P = .0002; for PP diet P = .001). These reductions were unrelated to change in body weight, but correlated with down-regulation of lipolysis and lipogenic indices. Serum level of FGF21 decreased by 50% in each group (for AP diet P < .0002; for PP diet P < .0002); decrease in FGF21 correlated with loss of hepatic fat. In gene expression analyses of adipose tissue, expression of the FGF21 receptor cofactor ß-klotho was associated with reduced expression of genes encoding lipolytic and lipogenic proteins. In patients on each diet, levels of hepatic enzymes and markers of inflammation decreased, insulin sensitivity increased, and serum level of keratin 18 decreased. CONCLUSIONS: In a prospective study of patients with type 2 diabetes, we found diets high in protein (either animal or plant) significantly reduced liver fat independently of body weight, and reduced markers of insulin resistance and hepatic necroinflammation. The diets appear to mediate these changes via lipolytic and lipogenic pathways in adipose tissue. Negative effects of BCAA or methionine were not detectable. FGF21 level appears to be a marker of metabolic improvement. ClinicalTrials.gov ID NCT02402985.


Assuntos
Laticínios , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Fígado/diagnóstico por imagem , Carne , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Proteínas de Vegetais Comestíveis/uso terapêutico , Adiponectina/metabolismo , Tecido Adiposo , Idoso , Animais , Composição Corporal , Quimiocina CCL2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Alimentares , Regulação para Baixo , Metabolismo Energético , Ensaio de Imunoadsorção Enzimática , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Técnica Clamp de Glucose , Humanos , Inflamação , Insulina/metabolismo , Resistência à Insulina , Interleucina-18/metabolismo , Metabolismo dos Lipídeos , Lipogênese , Fígado/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estudos Prospectivos
7.
J Intern Med ; 281(3): 233-246, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27878865

RESUMO

Fibroblast growth factor (FGF) 21 belongs to a hormone-like subgroup within the FGF superfamily. The members of this subfamily, FGF19, FGF21 and FGF23, are characterized by their reduced binding affinity for heparin that enables them to be transported in the circulation and function in an endocrine manner. It is likely that FGF21 also acts in an autocrine and paracrine fashion, as multiple organs can produce this protein and its plasma concentration seems to be below the level necessary to induce a pharmacological effect. FGF21 signals via FGF receptors, but for efficient receptor engagement it requires a cofactor, membrane-spanning ßKlotho (KLB). The regulation of glucose uptake in adipocytes was the initial biological activity ascribed to FGF21, but this hormone is now recognized to stimulate many other pathways in vitro and display multiple pharmacological effects in metabolically compromised animals and humans. Understanding of the precise physiology of FGF21 and its potential medicinal role has evolved exponentially over the last decade, yet numerous aspects remain to be defined and others are a source of debate. Here we provide a historical overview of the advances in FGF21 biology focusing on the uncertainties in the mechanism of action as well as the differing viewpoints relating to this intriguing protein.


Assuntos
Fatores de Crescimento de Fibroblastos/fisiologia , Adipócitos/metabolismo , Animais , Glicemia/metabolismo , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/efeitos adversos , Fatores de Crescimento de Fibroblastos/farmacologia , Glucose/metabolismo , Humanos , Lipólise , Obesidade/fisiopatologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
8.
J Infect Dev Ctries ; 18(4): 618-626, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38728647

RESUMO

INTRODUCTION: Hepatitis B virus (HBV) infection is a global epidemic that can lead to several liver diseases, seriously affecting people's health. This study aimed to investigate the clinical potential of serum ß-klotho (KLB) as a promising biomarker in HBV-related liver diseases. METHODOLOGY: This study enrolled 30 patients with chronic hepatitis B (CHB), 35 with HBV-related cirrhosis, 66 with HBV-related hepatocellular carcinoma (HCC), and 48 healthy individuals. ELISA measured the levels of serum KLB in the four groups. We then compared the differences in serum KLB levels among the groups and analyzed the relationship between serum KLB and routine clinical parameters. RESULTS: The concentrations of serum KLB levels were increased sequentially among the healthy subjects, the HBV-related CHB group, the HBV-related cirrhosis group, and the HBV-related HCC group (p < 0.05). Expression of KLB was positively correlated with alpha-fetoprotein (AFP), total bilirubin, direct bilirubin, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl-transferase, alkaline phosphatase, total bile acid, serum markers for liver fibrosis, ascites, cirrhosis, splenomegaly, and model for end-stage liver disease sodium, while negatively correlated with platelet count, albumin, and prothrombin activity (p < 0.05). In addition, serum KLB has better sensitivity in diagnosing HCC than AFP, and serum KLB combined with AFP has higher sensitivity and specificity than AFP alone in diagnosing HCC. CONCLUSIONS: Serum KLB level is associated with the severity of HBV-related liver diseases and has important diagnostic value for HCC. Therefore, it could be a predictive biomarker for monitoring disease progression.


Assuntos
Biomarcadores , Carcinoma Hepatocelular , Hepatite B Crônica , Proteínas Klotho , Humanos , Masculino , Feminino , Biomarcadores/sangue , Pessoa de Meia-Idade , Adulto , Hepatite B Crônica/sangue , Hepatite B Crônica/complicações , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/virologia , Glucuronidase/sangue , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/virologia , Cirrose Hepática/sangue , Cirrose Hepática/diagnóstico , Cirrose Hepática/virologia , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Idoso
9.
Mol Metab ; 79: 101856, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141848

RESUMO

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) involves hepatic accumulation of intracellular lipid droplets via incompletely understood processes. Here, we report distinct and cooperative NAFLD roles of LysTTT-5'tRF transfer RNA fragments and microRNA miR-194-5p. METHODS: Combined use of diet induced obese mice with human-derived oleic acid-exposed Hep G2 cells revealed new NAFLD roles of LysTTT-5'tRF and miR-194-5p. RESULTS: Unlike lean animals, dietary-induced NAFLD mice showed concurrent hepatic decrease of both LysTTT-5'tRF and miR-194-5p levels, which were restored following miR-132 antisense oligonucleotide treatment which suppresses hepatic steatosis. Moreover, exposing human-derived Hep G2 cells to oleic acid for 7 days co-suppressed miR-194-5p and LysTTT-5'tRF levels while increasing lipid accumulation. Inversely, transfecting fattened cells with a synthetic LysTTT-5'tRF mimic elevated mRNA levels of the metabolic regulator ß-Klotho while decreasing triglyceride amounts by 30% within 24 h. In contradistinction, antisense suppression of miR-194-5p induced accumulation of its novel target, the NAFLD-implicated lipid droplet-coating PLIN2 protein. Further, two out of 15 steatosis-alleviating screened drug-repurposing compounds, Danazol and Latanoprost, elevated miR-194-5p or LysTTT-5'tRF levels. CONCLUSION: Our findings highlight the different yet complementary roles of miR-194-5p and LysTTT-5'tRF and offer new insights into the complex roles of small non-coding RNAs and the multiple pathways involved in NAFLD pathogenesis.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Lisina , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Oleico , Perilipina-2
10.
Physiol Rep ; 11(5): e15620, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36905134

RESUMO

Metabolic functions of GLP-1 and its analogues have been extensively investigated. In addition to acting as an incretin and reducing body weight, we and others have suggested the existence of GLP-1/fibroblast growth factor 21 (FGF21) axis in which liver mediates certain functions of GLP-1 receptor agonists. In a more recent study, we found with surprise that four-week treatment with liraglutide but not semaglutide stimulated hepatic FGF21 expression in HFD-challenged mice. We wondered whether semaglutide can also improve FGF21 sensitivity or responsiveness and hence triggers the feedback loop in attenuating its stimulation on hepatic FGF21 expression after a long-term treatment. Here, we assessed effect of daily semaglutide treatment in HFD-fed mice for 7 days. HFD challenge attenuated effect of FGF21 treatment on its downstream events in mouse primary hepatocytes, which can be restored by 7-day semaglutide treatment. In mouse liver, 7-day semaglutide treatment stimulated FGF21 as well as genes that encode its receptor (FGFR1) and the obligatory co-receptor (KLB), and a battery of genes that are involved in lipid homeostasis. In epididymal fat tissue, expressions of a battery genes including Klb affected by HFD challenge were reversed by 7-day semaglutide treatment. We suggest that semaglutide treatment improves FGF21 sensitivity which is attenuated by HFD challenge.


Assuntos
Dieta Hiperlipídica , Fatores de Crescimento de Fibroblastos , Peptídeos Semelhantes ao Glucagon , Hepatócitos , Animais , Camundongos , Fatores de Crescimento de Fibroblastos/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Transcrição/metabolismo , Peptídeos Semelhantes ao Glucagon/farmacologia
11.
Mech Ageing Dev ; 209: 111756, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462538

RESUMO

Age-related deterioration in the reproductive capacity of women is directly related to the poor developmental potential of ovarian follicles. Although telomerase plays a key role in female fertility, TERT-targeting therapeutic strategies for age-related female infertility have yet to be investigated. This study elucidated the effect of Telomerase activation on mice ovaries and more specifically on Klb (ß-Klotho) gene expression, which is linked to ageing, female hormonal regulation, and cyclicity. The homology-based 3D model of hTERT was used to predict its binding mode of Cycloastragenol (CAG) using molecular docking and molecular dynamics simulations. Based on docking score, simulation behavior, and interaction with hTERT residues it was observed that CAG could bind with the hTERT model. CAG treatment to primary cultured mouse granulosa cells and activation of telomerase was examined via telomerase activity assay (Mouse TE (telomerase) ELISA Kit) and telomere length by quantitative fluorescence in situ hybridization. CAG mediated telomerase also significantly improved ß-Klotho protein level in the aged granulosa cells. To demonstrate that ß-Klotho is telomerase dependent, the TERT was knocked down via siRNA in granulosa cells and protein level of ß-Klotho was examined. Furthermore, CAG-mediated telomerase activation significantly enhanced the level of Klb and recovered ovarian follicles in the D-galactose (D-gal)-induced ovarian ageing mouse model. Moreover, Doxorubicin-induced ovarian damage, which changes ovarian hormones, and inhibit follicular growth was successfully neutralized by CAG activated telomerase and its recovery of ß-Klotho level. In conclusion, TERT dependent ß-Klotho regulation in ovarian tissues is one of the mechanisms, which can overcome female infertility.


Assuntos
Infertilidade Feminina , Telomerase , Humanos , Feminino , Camundongos , Animais , Telomerase/genética , Telomerase/metabolismo , Hibridização in Situ Fluorescente , Proteínas Klotho , Simulação de Acoplamento Molecular
12.
Indian J Otolaryngol Head Neck Surg ; 74(Suppl 3): 5375-5380, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36742836

RESUMO

Diphtheria is an acute infectious upper respiratory tract disease caused by toxigenic strains of Corynebacterium diphtheria and can lead to significant morbidity and mortality in all the age groups. Most of the time diagnosis of diphtheria is clinical. There may be a dirty white patch covering one or both tonsils on examination for which throat swabs are collected for Kleb's-Loeffler's Bacillus (KLB) by direct microscopy and for culture and sensitivity of the organism. To find out the association between clinical diagnosis of diphtheria with smear and culture positivity. 674 cases of Clinical diphtheria were admitted from June 2017 to September 2020 at a tertiary care hospital, Sawai Mansingh Hospital, Jaipur. throat, difficulty in swallowing and swelling in the neck. Out of 674 patients of clinical diphtheria, majority 610 cases (90.5%) were found to have both KLB smear and culture negative. 13 cases (1.9%) were found to have both KLB smear and culture positive. 19 cases (2.8%) were found to have KLB smear positive and culture negative and remaining 32 cases (4.8%) were found to have KLB smear negative and culture positive. Out of 19 patients of KLB smear positive,11 cases (3.5%) were found to have complications. Out of 32 culture positive patients,24 cases (7.7%) were found to have complications. Out of 13 patients of both KLB smear and culture positive,11 cases (3.5%) were found to have complications. Our study concluded that the negative report of KLB smear and culture does not rule out diphtheria and it is evident that percentage of complication is high in patients with either KLB smear or culture or both positive with respect to both being negative. The correlation is found to be significant (p < 0.001).

13.
J Exp Clin Cancer Res ; 41(1): 189, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655320

RESUMO

BACKGROUND: Deregulation of FGF19-FGFR4 signaling is found in several cancers, including hepatocellular carcinoma (HCC), nominating it for therapeutic targeting. FGF401 is a potent, selective FGFR4 inhibitor with antitumor activity in preclinical models. This study was designed to determine the recommended phase 2 dose (RP2D), characterize PK/PD, and evaluate the safety and efficacy of FGF401 alone and combined with the anti-PD-1 antibody, spartalizumab. METHODS: Patients with HCC or other FGFR4/KLB expressing tumors were enrolled. Dose-escalation was guided by a Bayesian model. Phase 2 dose-expansion enrolled patients with HCC from Asian countries (group1), non-Asian countries (group2), and patients with other solid tumors expressing FGFR4 and KLB (group3). FGF401 and spartalizumab combination was evaluated in patients with HCC. RESULTS: Seventy-four patients were treated in the phase I with single-agent FGF401 at 50 to 150 mg. FGF401 displayed favorable PK characteristics and no food effect when dosed with low-fat meals. The RP2D was established as 120 mg qd. Six of 70 patients experienced grade 3 dose-limiting toxicities: increase in transaminases (n = 4) or blood bilirubin (n = 2). In phase 2, 30 patients in group 1, 36 in group 2, and 20 in group 3 received FGF401. In total, 8 patients experienced objective responses (1 CR, 7 PR; 4 each in phase I and phase II, respectively). Frequent adverse events (AEs) were diarrhea (73.8%), increased AST (47.5%), and ALT (43.8%). Increase in levels of C4, total bile acid, and circulating FGF19, confirmed effective FGFR4 inhibition. Twelve patients received FGF401 plus spartalizumab. RP2D was established as FGF401 120 mg qd and spartalizumab 300 mg Q3W; 2 patients reported PR. CONCLUSIONS: At biologically active doses, FGF401 alone or combined with spartalizumab was safe in patients with FGFR4/KLB-positive tumors including HCC. Preliminary clinical efficacy was observed. Further clinical evaluation of FGF401 using a refined biomarker strategy is warranted. TRIAL REGISTRATION: NCT02325739 .


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Anticorpos Monoclonais Humanizados , Teorema de Bayes , Biomarcadores , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Piperazinas , Piridinas
14.
Am J Cancer Res ; 11(5): 1982-2004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094665

RESUMO

Hepatoblastoma (HB) is the most frequent pediatric liver malignancy. However, the treatment outcome for patients with advanced-stage HB remains unsatisfactory. Accumulating evidence indicates that ßKlotho (KLB) acts as an oncogene or a tumor-suppressor gene in a context-dependent manner. Despite this, the expression profile and effects of KLB on the growth of HB are still elusive. This study aimed to explore the effect of miR-206/KLB axis on HB growth. The expression of KLB was explored in HB cells (HepG2 and HuH6) and tissues using quantitative polymerase chain reaction (qPCR), Western blot analysis, and immunohistochemistry. Besides, miR-206 expression was determined in HB cells and tissues using qPCR and fluorescence in situ hybridization. The prognostic value of KLB or miR-206 in our patients with HB was investigated using the Kaplan-Meier method. The biological effects of KLB or miR-206 on HB cells were identified in vitro. The proliferative effects of KLB on HuH6 cells were also investigated in vivo. Moreover, the mechanical signaling of KLB in HB was determined through bioinformatics analysis followed by experimental validation. The results showed a significant upregulation of KLB in HB tissues and cells. Elevated level of KLB was found to be significantly correlated with the aggressive phenotype and poor overall survival for children with HB. The in vitro function assay demonstrated that KLB knockdown promoted apoptosis and suppressed the proliferation, migration, and invasion of HB cells. Besides, KLB knockdown inhibited the proliferation of HuH6 cells in vivo, while KLB overexpression had the opposite effect. Furthermore, KLB was proved to be the direct target of miR-206. Low level of miR-206 served as an independent risk factor for poor prognosis in children with HB. The overexpression of miR-206 negatively regulated the aggressive biological behaviors of HB cells, which was partially rescued by KLB overexpression. Mechanically, the miR-206/KLB axis played a vital role in HB growth through augmenting the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling. In conclusion, the data demonstrated that the miR-206/KLB axis might serve as an important biomarker/therapeutic target for HB.

15.
World J Diabetes ; 12(12): 2058-2072, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35047120

RESUMO

BACKGROUND: Kallmann syndrome (KS) is a hypogonadotropic hypogonadism accompanied by anosmia or hyposmia. It is associated with the low secretion of gonadotropins which can lead to other abnormal endocrine metabolism disorders such as diabetes. Through genetic and molecular biological methods, more than 10 KS pathogenic genes have been found. AIM: To identify the existing mutation sites of KS with diabetes and reveal the relationship between genotype and phenotype. METHODS: We studied KS pathogenesis through high-throughput exome sequencing on four diabetes' patients with KS for screening the potential pathogenic sites and exploring the genotype-phenotype correlation. Clinical data and peripheral blood samples were collected from the patients. White blood cells were separated and genomic DNA was extracted. High-throughput sequencing of all exons in the candidate pathogenic genes of probands was performed, and the results obtained were analyzed. RESULTS: Sequencing revealed mutations in the KLB p.T313M, ANOS1 p.C172F, and IGSF10 gene (p.Lys1819Arg and p.Arg1035Thr) at different sites, which may have been associated with disease onset. CONCLUSION: The diagnosis of KS is challenging, especially in early puberty, and the clinical manifestations reflect physical delays in development and puberty. Timely diagnosis and treatment can induce puberty, thereby improving sexual, bone, metabolic and mental health.

16.
J Thorac Dis ; 13(5): 3137-3150, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34164204

RESUMO

BACKGROUND: We aimed to investigate the ß-klotho (KLB) expression in non-small cell lung cancer (NSCLC) and to determine its value as a novel molecular target for survival prognosis in patients with NSCLC. METHODS: The serum KLB concentrations in 50 patients with NSCLC and the 20 healthy persons were measured by enzyme-linked immunosorbent assay (ELISA) methods. The relationship between serum KLB level, including the level change after therapy, and the progression-free survival (PFS) and overall survival (OS) were analyzed. The KLB expression in A549 cells was measured by real-time polymerase chain reaction (RT-PCR) and western blotting. The function of cells was revealed by in vitro studies. RESULTS: The concentrations of serum KLB in patients with NSCLC were obviously lower than those in healthy subjects. KLB expression was significantly increased in patients after chemotherapy and epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) targeted therapy. In addition, expression of KLB was positively related with PFS and OS. Compared with 16-human bronchial epithelial (HBE) cells, the expression level of KLB was significantly decreased in A549 cells. Overexpression of KLB suppressed the proliferation of A549 cells, along with G1-to-S phase arrest and apoptosis induction. CONCLUSIONS: KLB plays an anti-tumorigenic role in NSCLC. KLB may be a candidate target for the diagnosis and treatment of NSCLC and may serve a potentially significant role in future clinical applications.

17.
FEBS Open Bio ; 9(5): 1029-1038, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30972974

RESUMO

Endothelial-mesenchymal transition (EndMT) has emerged as an essential bioprocess responsible for the development of organ fibrosis. We have previously reported that fibroblast growth factor receptor 1 (FGFR1) is involved in the anti-EndMT effect of N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP). FGFR1 is expressed on the cell membrane and performs its biological function through interaction with co-receptors, including ßklotho (KLB). However, it remains unknown whether KLB is involved in the anti-EndMT effects of AcSDKP. Here, we demonstrated that AcSDKP increased KLB expression in an FGFR1-dependent manner and that KLB deficiency induced AcSDKP-resistant EndMT via the induction of the mitogen-activated protein kinase (MAPK) pathway. In cultured endothelial cells, AcSDKP increased KLB protein level in an FGFR1-dependent manner through induction of the FGFR1-KLB complex. KLB suppression by small interfering RNA transfection did not affect FGFR1 levels and resulted in the induction of EndMT. In contrast to the EndMT observed under FGFR1 deficiency, the EndMT induced by KLB suppression was not accompanied by the induction of Smad3 phosphorylation; instead, KLB-deficient cells exhibited induced activation of the MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK) and ERK pathways. Treatment with the specific MEK inhibitor U0126 diminished KLB deficiency-induced EndMT. Consistent with this finding, AcSDKP did not suppress either EndMT or MEK/ERK activation induced by KLB deficiency. Application of either FGF19 or FGF21 synergistically augmented the anti-EndMT effects of AcSDKP. Taken together, these results indicate that endogenous peptide AcSDKP exerts its activity through induction of the FGFR1-KLB complex in vascular endothelial cells.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores do Crescimento/farmacologia , Proteínas de Membrana/genética , Oligopeptídeos/farmacologia , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Proteínas Klotho , Masculino , Proteínas de Membrana/metabolismo , Camundongos
18.
Cell Rep ; 27(10): 2934-2947.e3, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167139

RESUMO

Reduced dietary protein intake induces adaptive physiological changes in macronutrient preference, energy expenditure, growth, and glucose homeostasis. We demonstrate that deletion of the FGF21 co-receptor ßKlotho (Klb) from the brain produces mice that are unable to mount a physiological response to protein restriction, an effect that is replicated by whole-body deletion of FGF21. Mice forced to consume a low-protein diet exhibit reduced growth, increased energy expenditure, and a resistance to diet-induced obesity, but the loss of FGF21 signaling in the brain completely abrogates that response. When given access to a higher protein alternative, protein-restricted mice exhibit a shift toward protein-containing foods, and central FGF21 signaling is essential for that response. FGF21 is an endocrine signal linking the liver and brain, which regulates adaptive, homeostatic changes in metabolism and feeding behavior during protein restriction.


Assuntos
Encéfalo/metabolismo , Dieta com Restrição de Proteínas , Comportamento Alimentar , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Fatores de Crescimento de Fibroblastos/genética , Preferências Alimentares/fisiologia , Intolerância à Glucose/metabolismo , Resistência à Insulina , Proteínas Klotho , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo
19.
Cell Rep ; 26(10): 2738-2752.e4, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30840894

RESUMO

Exercise promotes adipose remodeling and improves obesity-induced metabolic disorders through mechanisms that remain obscure. Here, we identify the FGF21 signaling in adipose tissues as an obligatory molecular transducer of exercise conferring its metabolic benefits in mice. Long-term high fat diet-fed obese mice exhibit compromised effects of exogenous FGF21 on alleviation of hyperglycemia, hyperinsulinemia, and hyperlipidemia, accompanied with markedly reduced expression of FGF receptor-1 (FGFR1) and ß-Klotho (KLB) in adipose tissues. These impairments in obese mice are reversed by treadmill exercise. Mice lacking adipose KLB are refractory to exercise-induced alleviation of insulin resistance, glucose dysregulation, and ectopic lipid accumulation due to diminished adiponectin production, excessive fatty acid release, and enhanced adipose inflammation. Mechanistically, exercise induces the adipose expression of FGFR1 and KLB via peroxisome proliferator-activated receptor-gamma-mediated transcriptional activation. Thus, exercise sensitizes FGF21 actions in adipose tissues, which in turn sends humoral signals to coordinate multi-organ crosstalk for maintaining metabolic homeostasis.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Exercício Físico/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Obesidade/complicações , Condicionamento Físico Animal/métodos , Animais , Humanos , Masculino , Camundongos
20.
J Pharmacol Toxicol Methods ; 94(Pt 1): 19-25, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29660397

RESUMO

INTRODUCTION: bFKB1 is a humanized bispecific IgG1 antibody, created by conjoining an anti-Fibroblast Growth Factor Receptor 1 (FGFR1) half-antibody to an anti-Klothoß (KLB) half-antibody, using the knobs-into-holes strategy. bFKB1 acts as a highly selective agonist for the FGFR1/KLB receptor complex and is intended to ameliorate obesity-associated metabolic defects by mimicking the activity of the hormone FGF21. An important aspect of the biologics product manufacturing process is to establish meaningful product specifications regarding the tolerable levels of impurities that copurify with the drug product. The aim of the current study was to determine acceptable levels of product-related impurities for bFKB1. METHODS: To determine the tolerable levels of these impurities, we dosed obese mice with bFKB1 enriched with various levels of either HMW impurities or anti-FGFR1-related impurities, and measured biomarkers for KLB-independent FGFR1 signaling. RESULTS: Here, we show that product-related impurities of bFKB1, in particular, high molecular weight (HMW) impurities and anti-FGFR1-related impurities, when purposefully enriched, stimulate FGFR1 in a KLB-independent manner. By taking this approach, the tolerable levels of product-related impurities were successfully determined. DISCUSSION: Our study demonstrates a general pharmacology-guided approach to setting a product specification for a bispecific antibody whose homomultimer-related impurities could lead to undesired biological effects.


Assuntos
Anticorpos/química , Anticorpos/farmacologia , Animais , Células CHO , Linhagem Celular , Cricetulus , Modelos Animais de Doenças , Combinação de Medicamentos , Células HEK293 , Humanos , Imunoglobulina G/química , Masculino , Proteínas de Membrana/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Peso Molecular , Obesidade/tratamento farmacológico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA