Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Entropy (Basel) ; 25(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37509981

RESUMO

Within the scope of concrete internal defect detection via laser Doppler vibrometry (LDV), the acquired signals frequently suffer from low signal-to-noise ratios (SNR) due to the heterogeneity of the concrete's material properties and its rough surface structure. Consequently, these factors make the defect signal characteristics challenging to discern precisely. In response to this challenge, we propose an internal defect detection algorithm that incorporates local mean decomposition-singular value decomposition (LMD-SVD) and weighted spatial-spectral entropy (WSSE). Initially, the LDV vibration signal undergoes denoising via LMD and the SVD algorithms to reduce noise interference. Subsequently, the distribution of each frequency in the scan plane is analyzed utilizing the WSSE algorithm. Since the vibrational energy of the frequencies caused by the defect resonance is concentrated in the defect region, its energy distribution in the scan plane is non-uniform, resulting in a significant difference between the defect resonance frequencies' SSE values and the other frequencies' SSE values. This feature is used to estimate the resonant frequencies of internal defects. Ultimately, the defects are characterized based on the modal vibration patterns of the defect resonant frequencies. Tests were performed on two concrete blocks with simulated cavity defects, using an ultrasonic transducer as the excitation device to generate ultrasonic vibrations directly from the back of the blocks and applying an LDV as the acquisition device to collect vibration signals from their front sides. The results demonstrate the algorithm's capacity to effectively pinpoint the information on the location and shape of shallow defects within the concrete, underscoring its practical significance for concrete internal defect detection in practical engineering scenarios.

2.
Adv Exp Med Biol ; 1364: 411-422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508886

RESUMO

Skull bone is the main obstacle for transcranial ultrasound therapy and imaging applications. Most efforts in characterizing ultrasonic properties of the skull have been limited to a narrow frequency range and normal incidence. On the other hand, acoustic guided waves in plates have been used in non-destructive evaluation of materials and also to assess the strength of long bones. Recent work has likewise revealed the existence of skull-guided waves (SGWs) in mice and humans when performing measurements over a broad range of frequencies and incidence angles. Here we provide an overview on the recent progress in our understanding on the propagation of SGWs, describe the measurement techniques used to detect SGWs, the experimental observations, and the accompanying modeling efforts. Finally, the outstanding challenges to harness SGWs in applications such as transcranial therapy, imaging, and cranial bone assessment are discussed.


Assuntos
Crânio , Terapia por Ultrassom , Animais , Cabeça , Camundongos , Crânio/diagnóstico por imagem , Som
3.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501758

RESUMO

This study was devoted to the development of novel devices and a methodology intended for generating ultrasonic waves in an air medium by using atmospheric pressure gas discharge. In the proposed electrode system, the discharge process was accompanied by the generation of acoustic waves on the emitter surface and, consequently, in the ambient air. The gas discharge emitter vibrations were analyzed by applying the technique of Scanning Laser Doppler Vibrometry (SLDV). It was shown that the magnitude of displacements matched the corresponding characteristics of classical piezoelectric and magnetostrictive transducers. The use of the Fast Fourier transform procedure supplied amplitude-frequency spectra of vibrations generated by the gas discharge emitter. The amplitude-frequency spectrum analysis showed that the proposed emitter was able to generate acoustic waves in the air with frequencies from 50 Hz to 100 kHz, and such a device can be used for the nondestructive testing (NDT) of materials. The results of the statistical analysis of vibration displacements in the repetitive pulsed mode were discussed. A non-stable characteristic of the vibration displacement of the emitter membrane was demonstrated. The parameters of such instability were associated with the features of gas discharge processes. In the experiments, the proposed gas discharge emitter was used in combination with SLDV for inspecting carbon-fiber-reinforced polymer composites. The experiments demonstrated the possibility of using an air-coupled gas discharge transmitter to generate acoustic waves in NDT applications.

4.
Sensors (Basel) ; 21(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919359

RESUMO

The voice producing process is a complex interplay between glottal pressure, vocal folds, their elasticity and tension. The material properties of vocal folds are still insufficiently studied, because the determination of material properties in soft tissues is often difficult and connected to extensive experimental setups. To shed light on this less researched area, in this work, a dynamic pipette aspiration technique is utilized to measure the elasticity in a frequency range of 100-1000 Hz. The complex elasticity could be assessed with the phase shift between exciting pressure and tissue movement. The dynamic pipette aspiration setup has been miniaturized with regard to a future in-vivo application. The techniques were applied on 3 different porcine larynges 4 h and 1 d postmortem, in order to investigate the deterioration of the tissue over time and analyze correlation in elasticity values between vocal fold pairs. It was found that vocal fold pairs do have different absolute elasticity values but similar trends. This leads to the assumption that those trends are more important for phonation than having same absolute values.


Assuntos
Laringe , Prega Vocal , Animais , Fenômenos Biomecânicos , Elasticidade , Fonação , Suínos
5.
Sensors (Basel) ; 19(9)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31027335

RESUMO

Composite materials are widely used in the industry, and the interest of this material is growing rapidly, due to its light weight, strength and various other desired mechanical properties. However, composite materials are prone to production defects and other defects originated during exploitation, which may jeopardize the safety of such a structure. Thus, non-destructive evaluation methods that are material-independent and suitable for a wide range of defects identification are needed. In this paper, a technique for damage characterization in composite plates is proposed. In the presented non-destructive testing method, guided waves are excited by a piezoelectric transducer, attached to tested specimens, and measured by a scanning laser Doppler vibrometer in a dense grid of points. By means of signal processing, irregularities in wavefield images caused by any material defects are extracted and used for damage characterization. The effectiveness of the proposed technique is validated on four different composite panels: Carbon fiber-reinforced polymer, glass fiber-reinforced polymer, composite reinforced by randomly-oriented short glass fibers and aluminum-honeycomb core sandwich composite. Obtained results confirm its versatility and efficacy in damage characterization in various types of composite plates.

6.
Biol Lett ; 14(10)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333263

RESUMO

Insects have evolved a diversity of hearing organs specialized to detect sounds critical for survival. We report on a unique structure on butterfly wings that enhances hearing. The Satyrini are a diverse group of butterflies occurring throughout the world. One of their distinguishing features is a conspicuous swelling of their forewing vein, but the functional significance of this structure is unknown. Here, we show that wing vein inflations function in hearing. Using the common wood nymph, Cercyonis pegala, as a model, we show that (i) these butterflies have ears on their forewings that are most sensitive to low frequency sounds (less than 5 kHz); (ii) inflated wing veins are directly connected to the ears; and (iii) when vein inflations are ablated, sensitivity to low frequency sounds is impaired. We propose that inflated veins contribute to low frequency hearing by impedance matching.


Assuntos
Borboletas/fisiologia , Asas de Animais/anatomia & histologia , Estimulação Acústica , Animais , Feminino , Audição , Masculino , Microscopia Eletrônica de Varredura , Membrana Timpânica/fisiologia , Membrana Timpânica/ultraestrutura , Asas de Animais/fisiologia
7.
J Exp Biol ; 220(Pt 6): 1112-1121, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28082619

RESUMO

Male grigs, bush crickets and crickets produce mating calls by tegminal stridulation: the scraping together of modified forewings functioning as sound generators. Bush crickets (Tettigoniidae) and crickets (Gryllinae) diverged some 240 million years ago, with each lineage developing unique characteristics in wing morphology and the associated mechanics of stridulation. The grigs (Prophalangopsidae), a relict lineage more closely related to bush crickets than to crickets, are believed to retain plesiomorphic features of wing morphology. The wing cells widely involved in sound production, such as the harp and mirror, are comparatively small, poorly delimited and/or partially filled with cross-veins. Such morphology is similarly observed in the earliest stridulating ensiferans, for which stridulatory mechanics remains poorly understood. The grigs, therefore, are of major importance to investigate the early evolutionary stages of tegminal stridulation, a critical innovation in the evolution of the Orthoptera. The aim of this study is to appreciate the degree of specialization on grig forewings, through identification of sound radiating areas and their properties. For well-grounded comparisons, homologies in wing venation (and associated areas) of grigs and bush crickets are re-evaluated. Then, using direct evidence, this study confirms the mirror cell, in association with two other areas (termed 'neck' and 'pre-mirror'), as the acoustic resonator in the grig Cyphoderris monstrosa Despite the use of largely symmetrical resonators, as found in field crickets, analogous features of stridulatory mechanics are observed between C. monstrosa and bush crickets. Both morphology and function in grigs represents transitional stages between unspecialized forewings and derived conditions observed in modern species.


Assuntos
Gryllidae/anatomia & histologia , Gryllidae/fisiologia , Vocalização Animal , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia , Acústica , Animais , Evolução Biológica , Feminino , Masculino , Som
8.
J Exp Biol ; 218(Pt 13): 1990-4, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25944922

RESUMO

Insects display signs of ageing, despite their short lifespan. However, the limited studies on senescence emphasize longevity or reproduction. We focused on the hearing ability of ageing adult locusts, Schistocerca gregaria. Our results indicate that the youngest adults (2 weeks post-maturity) have a greater overall neurophysiological response to sound, especially for low frequencies (<10 kHz), as well as a shorter latency to this neural response. Interestingly, when measuring displacement of the tympanal membrane that the receptor neurons directly attach to, we found movement is not directly correlated with neural response. Therefore, we suggest the enhanced response in younger animals is due to the condition of their tissues (e.g. elasticity). Secondly, we found the sexes do not have the same responses, particularly at 4 weeks post-adult moult. We propose female reproductive condition reduces their ability to receive sounds. Overall our results indicate older animals, especially females, are less sensitive to sounds.


Assuntos
Gafanhotos/fisiologia , Envelhecimento/fisiologia , Animais , Feminino , Audição/fisiologia , Masculino , Células Receptoras Sensoriais/fisiologia , Fatores Sexuais , Som , Membrana Timpânica/fisiologia
9.
Sensors (Basel) ; 15(6): 12594-612, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26029948

RESUMO

This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH) prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4-4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation.

10.
Ecol Lett ; 17(2): 203-10, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24350855

RESUMO

Community genetics research has demonstrated 'bottom-up' effects of genetic variation within a plant species in shaping the larger community with which it interacts, such as compositions of arthropod faunas. We demonstrate that such cross-trophic interactions also influence sexually selected traits. We used a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) to ask whether male mating signals are influenced by host plant genetic variation. We reared a random sample of the treehoppers on potted replicates of a sample of host plant clone lines. We found that treehopper male signals varied according to the clone line on which they developed, showing that genetic variation in host plants affects male treehoppers' behavioural phenotypes. This is the first demonstration of cross-trophic indirect genetic effects on a sexually selected trait. We discuss how such effects may play an important role in the maintenance of variation and within-population phenotypic differentiation, thereby promoting evolutionary divergence.


Assuntos
Comunicação Animal , Variação Genética , Hemípteros/genética , Herbivoria , Comportamento Sexual Animal , Viburnum/genética , Animais , Feminino , Masculino , Análise de Componente Principal , Árvores/genética
11.
Muscle Nerve ; 50(1): 133-5, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24395193

RESUMO

INTRODUCTION: A stand-alone and low-cost elastography technique has been developed using a single continuously scanning laser Doppler vibrometer. METHODS: This elastography technique is used to measure the propagation velocity of surface vibrations over superficial skeletal muscles to assess muscle stiffness. RESULTS: Systematic variations in propagation velocity depending on the contraction level and joint position of the biceps brachii were demonstrated in 10 subjects. CONCLUSIONS: This technique may assist clinicians in characterizing muscle stiffness (or tone) changes due to neuromuscular disorders.


Assuntos
Músculo Esquelético/diagnóstico por imagem , Adulto , Braço/diagnóstico por imagem , Elasticidade , Articulação do Cotovelo/diagnóstico por imagem , Feminino , Humanos , Lasers , Masculino , Contração Muscular/fisiologia , Doenças Neuromusculares/diagnóstico por imagem , Ultrassonografia Doppler , Vibração , Articulação do Punho/diagnóstico por imagem
12.
J Exp Biol ; 216(Pt 11): 2001-11, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23430987

RESUMO

Sound production in crickets relies on stridulation, the well-understood rubbing together of a pair of specialised wings. As the file of one wing slides over the scraper of the other, a series of rhythmic impacts causes harmonic oscillations, usually resulting in the radiation of pure tones delivered at low frequencies (2-8 kHz). In the short-winged crickets of the Lebinthini tribe, acoustic communication relies on signals with remarkably high frequencies (>8 kHz) and rich harmonic content. Using several species of the subfamily Eneopterinae, we characterised the morphological and mechanical specialisations supporting the production of high frequencies, and demonstrated that higher harmonics are exploited as dominant frequencies. These specialisations affect the structure of the stridulatory file, the motor control of stridulation and the resonance of the sound radiator. We placed these specialisations in a phylogenetic framework and show that they serve to exploit high-frequency vibrational modes pre-existing in the phylogenetic ancestor. In Eneopterinae, the lower frequency components are harmonically related to the dominant peak, suggesting they are relicts of ancestral carrier frequencies. Yet, such ghost frequencies still occur in the wings' free resonances, highlighting the fundamental mechanical constraints of sound radiation. These results support the hypothesis that such high-frequency songs evolved stepwise, by a form of punctuated evolution that could be related to functional constraints, rather than by only the progressive increase of the ancestral fundamental frequency.


Assuntos
Gryllidae/fisiologia , Vocalização Animal , Acústica , Animais , Gryllidae/anatomia & histologia , Movimento (Física) , Periodicidade , Som , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia
13.
Materials (Basel) ; 16(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37109919

RESUMO

The paper presents an approach to efficiently detect local defect resonances (LDRs) in solids with localized defects. The 3D scanning laser Doppler vibrometry (3D SLDV) technique is applied to acquire vibration responses on the surface of a test sample due to a broadband vibration excitation applied by a piezoceramic transducer and modal shaker. Based on the response signals and known excitation, the frequency characteristics for individual response points are determined. The proposed algorithm then processes these characteristics to extract both out-of-plane and in-plane LDRs. Identification is based on calculating the ratio between local vibration levels and the mean vibration level of the structure as a background. The proposed procedure is verified on simulated data obtained from finite element (FE) simulations and validated experimentally for an equivalent test scenario. The obtained results confirmed the effectiveness of the method in identifying in-plane and out-of-plane LDRs for both numerical and experimental data. The results of this study are important for damage detection techniques utilizing LDRs to enhance the efficiency of detection.

14.
Ultrasonics ; 114: 106369, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33636443

RESUMO

Engineering structures are often composed of thin elements containing features such as free edges, welds, ribs, and holes, which makes distant safety inspections based on guided waves difficult due to wave scattering. However, these features can themselves generate so-called 'feature-guided' waves, which can potentially be utilised for damage detection. One such example are flexural wedge waves, which have been investigated extensively both theoretically and experimentally in the past. Another example is edge waves. These waves, which are a natural analogue of Rayleigh waves propagating in a finite thickness plate, have received relatively little attention, specifically with respect to their possible use in distant damage inspections and Structural Health Monitoring systems. The current paper is aimed to address this gap, and it is focused on the investigation of the fundamental mode of edge waves (ES0), which is the most promising for practical applications. The features of the transient ES0 mode are investigated experimentally and numerically, and compared with previous theoretical studies. It was demonstrated that the ES0 mode can be effectively excited with the wedge excitation method, and distant damage detection with this wave mode at low frequency-thickness values (FTV < 5) is readily achievable. In particular, in a laboratory environment the ES0 mode propagated several meters with almost no decay. However, at higher frequency-thickness values, a wave amplitude modulation, significant energy decay and strong coupling between the ES0 and S0 wave modes were observed. These phenomena may restrict the defect resolution as well as the range of damage inspections based on the fundamental edge wave mode.

15.
Ultrasonics ; 114: 106378, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33582459

RESUMO

The effect of temperature and electrical drive conditions on the output of lead zirconate titanate (PZT) transducers is of particular interest in ultrasound metrology and medical ultrasound applications. In this work, the temperature-dependent output of two single-element PZT transducers was measured between 22 °C and 46 °C. Two independent measurement methods were used, namely radiation force balance measurements and laser vibrometry. When driven at constant voltage using a 50 Ω matched signal generator and amplifier using continuous wave (CW) or quasi-CW excitation, the output of the two transducers increased on average by 0.6 % per degree, largely due to an increase in transducer efficiency with temperature. The two measurement methods showed close agreement. Similar trends were observed when using single cycle excitation with the same signal chain. However, when driven using a pulser (which is not electrically matched), the two transducers exhibited different behaviour depending on their electrical impedance. Accounting for the temperature-dependent output of PZT transducers could have implications for many areas of ultrasound metrology, for example, in therapeutic ultrasound where a coupling fluid at an increased or decreased temperature is often used.

16.
Ultrasonics ; 114: 106387, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33610965

RESUMO

Grazing incidence ultrasonic microscopy (GIUM) is an experimental method for visualising the microstructures of polycrystals with local preferential orientations. It has previously been demonstrated on an austenitic stainless steel weld, exposing grains much smaller than the propagating wavelength, but the physical mechanism of the method has only been proposed as a hypothesis. In this paper, we use grain-scale finite element simulations based on the EBSD measurements to verify the principles behind GIUM images further and to assess how deep does the method penetrate the component under examination. The simulations indicate that while lateral contraction of grains contains microstructure signatures, the free surface effect is the crucial factor contributing to the generation of the images. Further, we show that only features up to the depth in the order of the average grain size in that direction can be visualised.

17.
Materials (Basel) ; 14(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34885426

RESUMO

Glass fiber-reinforced polymer structures (GFRPS) are widely used in civil and mechanical fields due to their light weight and corrosion resistance. However, these structures are prone to damage with very-low-energy impacts. The reliability of such structures is of prime importance before their installation and usage. This study aimed to identify, visualize, localize, and verify multiple barely visible impact damage (BVID) in a GFRPS using a combination of guided waves (GW)-based online structural health monitoring (SHM) and thermal strain-based nondestructive testing (NDT) approaches. Global NDT techniques like the use of a laser Doppler vibrometer (LDV) and digital image correlation (DIC) were used in the experimental analysis. The effectiveness of the experimental LDV-GW process was also checked numerically with the spectral element method (SEM). A threshold-based baseline free SHM approach to effectively localize the damages was proposed along with quick DIC verification of composite structure with thermal loading based on short-pulse heating as an excitation source. This study analyzed combined experimental- and numerical-based SHM-NDT methods in characterizing the multiple BVIDs located in a GFRPS.

18.
Hear Res ; 395: 108043, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32828615

RESUMO

Sound and hearing play an important role in the lives of many birds, and studies have been published on the acoustic habitat of various species, as well as on various aspects of their hearing system. However the function of the middle ear remains largely unexplored, with existing studies focusing on either single species, or a very narrow range of species. In this article we report measurements of the middle ear transfer function in 39 taxonomically diverse avian species. We used laser vibrometry to measure the vibrations of the columellar footplate in response to tones played in each animal's ear canal, and calculated the middle ear transfer functions. Transfer functions varied substantially across species, but appeared to follow common trends. Comparisons between the peak frequency in the transfer function and length/mass of the columella reveal a correlation between the three, however statistical analysis suggests that columellar length is a primary indicator of the peak frequency. These results provide a broad survey of avian middle ear function, and the observed trends provide a method with which to begin to predict the response of single ossicle middle ear systems.


Assuntos
Orelha Média , Animais , Aves , Audição , Som
19.
Materials (Basel) ; 13(9)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349448

RESUMO

: The present article describes the results of theoretical and experimental investigations of the force response of materials to external tensile stresses. The method used is based on remote precision measurements of the amplitudes of the harmonics of vibration signals and synchronous fixation of deformations under load. It was determined that the shape of the propagating acoustic signal depends not only on the bias time, but also on the frequency. In addition, fixation of the moments of occurrence of the vibrational signals and determination of the number of excesses in the amplitudes of harmonics over the discrimination level allows structural models to be studied in order to diagnose the strength properties of materials under dynamic loading of solids. The experimental setup consisted of a P100 Labtest-2 tearing machine providing a loading speed of 6.22 mm/min, a Polytech PSV-400 vibrometer including lasers, and a computer. Measurements were made at frequencies of 0.4, 1.6, and 40 kHz. An analysis of the mathematical models of the occurrence and propagation of acoustic signals in a material under load is presented, and the features of their application are reported. Transferring the moments of occurrence of vibrational signals to a strain diagram from the applied load allows the development of physical processes of hardening and destruction of materials to be traced. The occurrence of vibrational signals under load can be used as an information parameter for the diagnosis of developing defects in the structure of materials under load.

20.
Mater Sci Eng C Mater Biol Appl ; 109: 110646, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228956

RESUMO

Passive activation of endodontic irrigants provides improved canal disinfection, smear layer removal, and better subsequent sealing. Although evidence suggests that passive activating endodontic devices increase the effectiveness of irrigation, no study exists to quantitatively compare and validate vibrational characteristics and cavitation produced by different ultrasonic endodontic devices. The current study aims to compare the efficiency of various commercially available ultrasonic endodontic activating devices (i.e., EndoUltra™, EndoChuck, Irrisafe™, and PiezoFlow®). The passive endodontic activating devices were characterized in terms of tip displacement and cavitation performance using scanning laser vibrometry (SLV) and sonochemical analysis, respectively. The obtained results showed that activator tip displacements and speed correlate to established cavitation thresholds. The EndoUltra™ tip speed was measured to be 14.5 and 28.1 m/s at 45 and 91 kHz, respectively, which is greater than the threshold. The EndoUltra™ was found to be the only device that exceeds the cavitation thresholds (i.e. tip speed and displacement), as evident from laser vibrometry analysis, and subsequently yielded measurable cavitation quantified via sonochemical analysis. All other passive endodontic activation devices, despite ultrasonic oscillation, were unable to produce cavitation.


Assuntos
Cavidade Pulpar , Desinfecção , Irrigantes do Canal Radicular , Ondas Ultrassônicas , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA