Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(9): 3546-3555, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30755530

RESUMO

The mitochondrial uniporter is a Ca2+-channel complex resident within the organelle's inner membrane. In mammalian cells the uniporter's activity is regulated by Ca2+ due to concerted action of MICU1 and MICU2, two paralogous, but functionally distinct, EF-hand Ca2+-binding proteins. Here we present the X-ray structure of the apo form of Mus musculus MICU2 at 2.5-Å resolution. The core structure of MICU2 is very similar to that of MICU1. It consists of two lobes, each containing one canonical Ca2+-binding EF-hand (EF1, EF4) and one structural EF-hand (EF2, EF3). Two molecules of MICU2 form a symmetrical dimer stabilized by highly conserved hydrophobic contacts between exposed residues of EF1 of one monomer and EF3 of another. Similar interactions stabilize MICU1 dimers, allowing exchange between homo- and heterodimers. The tight EF1-EF3 interface likely accounts for the structural and functional coupling between the Ca2+-binding sites in MICU1, MICU2, and their complex that leads to the previously reported Ca2+-binding cooperativity and dominant negative effect of mutation of the Ca2+-binding sites in either protein. The N- and C-terminal segments of the two proteins are distinctly different. In MICU2 the C-terminal helix is significantly longer than in MICU1, and it adopts a more rigid structure. MICU2's C-terminal helix is dispensable in vitro for its interaction with MICU1 but required for MICU2's function in cells. We propose that in the MICU1-MICU2 oligomeric complex the C-terminal helices of both proteins form a central semiautonomous assembly which contributes to the gating mechanism of the uniporter.


Assuntos
Canais de Cálcio/química , Proteínas de Ligação ao Cálcio/química , Proteínas de Transporte da Membrana Mitocondrial/química , Conformação Proteica , Animais , Sítios de Ligação , Cálcio/química , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/genética , Cristalografia por Raios X , Dimerização , Motivos EF Hand/genética , Células HeLa , Humanos , Camundongos , Mitocôndrias/química , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Estrutura Secundária de Proteína
2.
Methods Mol Biol ; 1607: 357-376, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28573581

RESUMO

This chapter describes experimental phasing methods as implemented in SHELX. After introducing fundamental concepts underlying all experimental phasing approaches, the methods used by SHELXC/D/E are described in greater detail, such as dual-space direct methods, Patterson seeding and density modification with the sphere of influence algorithm. Intensity differences from data for experimental phasing can also be used for the generation and usage of difference maps with ANODE for validation and phasing purposes. A short section describes how molecular replacement can be combined with experimental phasing methods. The second half covers practical challenges, such as prerequisites for successful experimental phasing, evaluation of potential solutions, and what to do if substructure search or density modification fails. It is also shown how auto-tracing in SHELXE can improve automation and how it ties in with automatic model building after phasing.


Assuntos
Algoritmos , Cristalografia por Raios X/métodos , Proteínas/ultraestrutura , Software , Enxofre/química , Automação , Cristalização , Interpretação Estatística de Dados , Conformação Proteica , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA